Optical spectra of the carbon-oxygen accretion discs in the ultra-compact X-ray binaries 4U 0614+09, 4U 1543-624 and 2S 0918-549
Nelemans, G.; Jonker, P.G.; Marsh, T.R.; van der Klis, M.B.M.

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1111/j.1365-2966.2004.07486.x

Citation for published version (APA):
Optical spectra of the carbon–oxygen accretion discs in the ultra-compact X-ray binaries 4U 0614+09, 4U 1543−624 and 2S 0918−549

G. Nelemans,1† P. G. Jonker,1 T. R. Marsh2 and M. van der Klis3

1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA
2Department of Physics, University of Warwick, Coventry CV4 7AL
3Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, NL-1098 SJ Amsterdam, the Netherlands

Accepted 2003 December 1. Received 2003 November 27; in original form 2003 October 5

ABSTRACT

We present optical spectra in the range 4600–8600 Å for three low-mass X-ray binaries which have been suggested to belong to the class of ultra-compact X-ray binaries based on their X-ray spectra. Our spectra show no evidence for hydrogen or helium emission lines, as are seen in classical X-ray binaries. The spectrum of 4U 0614+09 does show emission lines, which we identify with carbon and oxygen lines of C II, C III, O II and O III. While the spectra of 4U 1543−624 and 2S 0918−549 have a lower signal-to-noise ratio, and thus are more difficult to interpret, some of the characteristic features of 4U 0614+09 are present in these spectra too, although sometimes they are clearly weaker. We conclude that the optical spectra give further evidence for the ultra-compact nature of these X-ray binaries and for their donor stars being carbon–oxygen white dwarfs.

Key words: binaries: close − stars: individual: 2S 0918−549 − stars: individual: 4U 0614+09 − stars: individual: 4U 1543−624.

1 INTRODUCTION

Low-mass X-ray binaries are systems in which a neutron star or black hole accretes from a low-mass companion. Most systems have orbital periods of hours to days and are consistent with the scenario (van den Heuvel 1983) in which the donors are main-sequence or evolved, hydrogen-rich stars. A few ultra-compact systems have orbital periods below an hour and are so compact that the donor stars cannot be main-sequence stars, but instead must be hydrogen-poor (e.g. Verbunt & van den Heuvel 1995).

From X-ray spectra of five X-ray binaries, including the persistent sources 4U 0614+09, 4U 1543−624 and 2S 0918−549 Juett, Psaltis & Chakrabarty (2001) inferred an enhanced neon/oxygen ratio, which they interpreted as being local to the systems. The similarities between these three systems and the other two, which are known ultra-compact X-ray binaries, led Juett et al. (2001) to conclude that these systems all have ultra-short orbital periods and to propose that their donor stars originally were carbon–oxygen or oxygen–neon–magnesium white dwarfs. Recently, Juett & Chakrabarty (2003) reported further X-ray spectroscopy for 4U 1543−624 and 2S 0918−549, confirming their earlier findings. Yungelson, Nelemans & van den Heuvel (2002) argued, based on mass-transfer stability arguments, that the donor stars in ultra-compact X-ray binaries that have formed from white dwarf–neutron star binaries should be low-mass white dwarfs (M_{donor} < 0.45 M_{⊙}). Combining binary evolution constraints and white dwarf interior studies, Yungelson et al. (2002) concluded that these systems could be brought into one unifying scheme in which the systems were descendants of binaries consisting of a so called hybrid white dwarf [carbon–oxygen (CO) core with thick helium mantle; Iben & Tutukov 1985] and a neutron star. The systems came into contact by angular momentum loss due to gravitational wave emission, and quickly evolved from periods of a few minutes to typical periods of tens of minutes. After cooling for several Gyr, the interior of a CO white dwarf crystallizes and, due to differential gravitational settling, chemical fractionation will occur (e.g. Hernanz et al. 1994). At periods above 10 min, neon enriched layers could be exposed (see Yungelson et al. 2002). At these orbital periods, the only alternative donor stars are degenerate helium stars or hydrogen-poor remnants of stars that started mass transfer at the very end of the main sequence (for the latter, see Podsiaidlowski, Han & Rappaport 2003), which would consist mainly of helium.

To further test the possible ultra-compact nature of 4U 0614+09, 2S 0918−549 and 4U 1543−624, we obtained optical spectra for these sources, because ultra-compact systems are expected to be hydrogen-deficient, and even more, neon-rich donors stars are also expected to be helium-deficient. Previous optical spectra of 4U 0614+09 (Davidsen et al. 1974; Machin et al. 1990) indeed show no signs of the classical accretion disc hydrogen emission lines, but have a relatively low signal-to-noise (S/N) ratio.

2 OBSERVATIONS AND REDUCTION

Spectra were taken with the FORS2 spectrograph on UT4 of the 8-m Very Large Telescope (VLT) on Paranal in Chile. For each object,
we took spectra both with the 1400V and 600RI holographic grisms, with a 1-arcsec slit, using 2 × 2 on-chip binning. This setup resulted in coverage of 4620–5930 Å with mean dispersion of 0.64 Å−1 for the 1400V spectra and 5290–8620 Å with mean dispersion of 1.63 Å−1 for the 600RI spectra. A log of the observations is given in Table 1.

Data reduction was done using standard IRAF tasks. The bias was removed using the overscan region of the CCD, after which the images were flat-field corrected using the standard calibration plan flat-fields. Spectra were extracted using optimal extraction (Horne 1986) with the APALL task. Arc lamp spectra were extracted from the same place on the CCD. The 1400V wavelength calibration was obtained using the positions of 17 lines, giving an rms scatter of 0.05 Å in fitting a fourth-order Lagrangian polynomial. The 600RI wavelength calibration uses 40 lines and gives an rms scatter of 0.15 Å for a fourth-order Lagrangian polynomial.

The spectra were flux calibrated, using the nearest two flux standard stars that were available from the VLT archive. Because these were taken many days from our observations, the flux calibration only provides a very rough absolute flux calibration, but it does give a reasonable estimate of the continuum shape. The reduced spectra were subsequently imported in the MOLLY package for further analysis. For 4U 0614+09, where the S/N ratio is the highest, we removed the telluric absorption features by dividing the flux-calibrated spectrum by a template of the absorption. The template was constructed from the spectrum of a bright star that was also in the slit as follows.

We fitted a third-order cubic spline to line-free regions of the continuum of this spectrum and used the fit to normalize the continuum to unity. The value of all pixels in the spectrum was set to 1, except for the wavelength ranges 6865–7700 and 8085–8265 Å, where strong telluric features are present.

For each object, all spectra were combined and averaged to obtain one final spectrum.

3 ANALYSIS AND INTERPRETATION

3.1 Identification of the lines

In Fig. 1, we show the combined spectra. In the figure, we also show the positions of the most common hydrogen emission lines seen in classical X-ray binaries as solid vertical lines (Hα at 6563 Å and Hβ at 4861 Å). We also show the positions of several helium emission lines observed in optical spectra of some interacting binaries (e.g. GP Com; see Marsh, Horne & Rosen 1991). The dashed lines show He I lines at 4713, 4921, 5015, 5876, 6678, 7065 and 7286 Å. The dotted line shows the position of the He II 4686 Å line often seen together with hydrogen emission. From Fig. 1, it is clear that the objects do not show strong lines of hydrogen or helium. Upper limits on the equivalent widths (EWs) of these lines are shown in Table 2 (where we give the value of −EW to avoid minus signs). There is a hint of absorption around Hβ in 4U 1543−624 and possibly emission around He I 4713 in 2S 0918−54.

The 4U 0614+09 spectrum shows clear, though sometimes weak, emission lines. We propose that these are due to partially ionized carbon and oxygen, which have many lines in the optical region. In order to identify the lines, we calculated a simple emission profile for a 30:70 mixture (by number) of carbon and oxygen at a temperature of 27 000 K, using a local thermodynamic equilibrium (LTE) emission line model, as described in Marsh et al. (1991). We assume a particle density of 3 × 1013 cm−3 and a line of sight through the medium of 107 cm. The only update is that we consider ions up to medium of 107 cm. The only update is that we consider ions up to medium of 107 cm. The only update is that we consider ions up to medium of 107 cm. The only update is that we consider ions up to medium of 107 cm. The only update is that we consider ions up to medium of 107 cm. The only update is that we consider ions up to medium of 107 cm.

The model is smoothed with a 12 Å Gaussian kernel, which at these wavelengths corresponds to a ~ 600 km s−1 velocity width, if it is associated with kinematics. This model is not a physical model of the accretion disc, as photoionization is surely important. However, we believe it correctly identifies the lines in the observed spectrum. Almost all features are blends of multiple lines, most of them from C II, C III and O II, while the strong feature at 5585 Å is due to O IV. Around 5810 Å, C IV might be present. In Table 3, we give the positions of the strongest features and the lines that may contribute to them. We also list the measured EWs of the different features (again negative). The entries within parentheses are either weak lines or uncertain identifications. The 7240- and 8220 Å features could be affected by the telluric correction.

The lower two spectra in Fig. 1 are of 4U 1543−624 and 2S 0918−549, rebinned to 4 Å to enhance the S/N ratio. In Table 3, we also list the EWs of the features in these spectra. The spectrum of 4U 1543−624 looks like a scaled-down version of the 4U 0614+09

1 http://physics.nist.gov/cgi-bin/AtData/lines_form

2 http://www.pa.uky.edu/~pete/atomic/
spectra of 4U 0614+09, 4U 1543–624 and 2S 0918–549, rebinned to a scale of 2 or 4 Å pix$^{-1}$. The thick smooth curve plotted over the 4U 0614+09 spectrum shows the pure carbon plus oxygen LTE model used to identify the lines, on top of the fit to the continuum. The vertical lines show the wavelength positions of several hydrogen (solid) and helium (dashed, dotted) emission lines seen in hydrogen- or helium-rich accreting systems. The horizontal bars show the wavelength ranges in which the 4U 0614+09 spectrum is corrected for telluric absorption. This figure is available in colour in the on-line version of the journal on Synergy.

3.2 Spectral shape and reddening

In Table 2, we also list the measured spectral slope of the three objects, assuming a power law ($F_\lambda \propto \lambda^{-\alpha}$), and the temperatures of the best-fitting blackbody spectra (T_{BB}). The spectrum of 4U 1543–624 is significantly bluer than the other two. For 4U 0614+09, the continuum is well fitted with $\alpha = 1.67$ for $\lambda \gtrsim 5100$ Å, but is significantly flatter below. This flattening is not seen in the spectrum of Machin et al. (1990), and thus might be due to the flux calibration.

We also list several estimates or limits on the interstellar reddening of the objects. We have two possible reddening indicators available in the spectra: the Na D lines and the diffuse interstellar band (DIB) at 5780 Å. In Table 2, we list the measured EWs of these features and the implied reddening according to Munari & Zwitter (1997) and Herbig (1993), respectively. The Na D lines only give rough lower limits, as the EWs level off above $E(B-V) \approx 0.5$ due to saturation. The high EWs measured here would then be the result of multiple components in the lines, as can indeed be seen in the 4U 0614+09 spectrum. In the table, we also list the maximum reddening according to the Schlegel et al. (1998) dust maps and the implied reddening for the hydrogen column found in the spectral modelling of the X-ray spectra (Juett et al. 2001). These last values are upper limits, as the local O and Ne absorption implied by the spectra would artificially enhance the hydrogen column in the fits to the X-ray spectra (e.g. Juett et al. 2001). Although the above gives a barely consistent picture, we conclude that the reddening of these objects is probably close to the maximum in the Galaxy in their directions.

3.3 Origin of the line emission

Although detailed modelling of the observed spectra is beyond the scope of this paper, we briefly discuss the possible origin of the line emission. The spectral shapes of the continua, corrected for the reddening [using $E(B-V) = 0.6, 0.4$ and 0.6 for 4U 0614+09, 4U 1543–624 and 2S 0918–549, respectively] are consistent with a blackbody of temperature ~ 20000 K. The fact that these objects are persistent X-ray sources could point at the origin of the lines in either the irradiated disc or the irradiated donor star, although in that case, more than doubly ionized species might be expected to be present. Only phase-resolved spectroscopy will conclusively tell, but the observed width of the lines (~ 600 km s$^{-1}$) might suggest the inner parts of the accretion disc.

4 DISCUSSION

Previous spectra have been interpreted in a different way to that presented here, but were hampered by quite low S/N ratio. For
Table 3. Strongest features in the 4U 0614+09 spectrum and the (possible) line identifications and measured negative EWs (−EWs, to avoid minus signs) for the three spectra. For each feature, the wavelength range over which the EW is determined is given in parentheses.

<table>
<thead>
<tr>
<th>Feature (Å)</th>
<th>Ion</th>
<th>Lines (Å)</th>
<th>−EW (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4650</td>
<td>C III</td>
<td>4647.418−4650.246</td>
<td>9.77 ± 0.15</td>
</tr>
<tr>
<td>(4624−4680)</td>
<td></td>
<td>4651.016−4651.473</td>
<td>4652.048−4659.058</td>
</tr>
<tr>
<td>5715</td>
<td>C III</td>
<td>5585.085−5586.588</td>
<td>5592.252−5592.943</td>
</tr>
<tr>
<td>(5675−5715)</td>
<td></td>
<td>(5680−5688)</td>
<td>5715.705−5716.098</td>
</tr>
<tr>
<td>6070</td>
<td>C III</td>
<td>6080.085−6081.365</td>
<td>6095.29−6098.51</td>
</tr>
<tr>
<td>(6040−6070)</td>
<td></td>
<td>(6080−6098)</td>
<td>6100.64−6103.74</td>
</tr>
<tr>
<td>6150</td>
<td>C III</td>
<td>6151.27−6151.49</td>
<td>0.56 ± 0.19</td>
</tr>
<tr>
<td>(6130−6180)</td>
<td></td>
<td>(6151−6153)</td>
<td>(6151−6153)</td>
</tr>
<tr>
<td>6580</td>
<td>C III</td>
<td>6578.05−6582.88</td>
<td>3.14 ± 0.15</td>
</tr>
<tr>
<td>(6550−6600)</td>
<td></td>
<td>(6578−6582)</td>
<td>(6578−6582)</td>
</tr>
</tbody>
</table>

Table 3 – continued

<table>
<thead>
<tr>
<th>Feature (Å)</th>
<th>Ion</th>
<th>Lines (Å)</th>
<th>−EW (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5810</td>
<td>C III</td>
<td>5826.42−5830.153</td>
<td>1.76 ± 0.11</td>
</tr>
<tr>
<td>(5785−5840)</td>
<td></td>
<td>(5801−5811)</td>
<td>(5801−5811)</td>
</tr>
<tr>
<td>6070</td>
<td>C III</td>
<td>6095.29−6098.51</td>
<td>0.61 ± 0.23</td>
</tr>
<tr>
<td>(6040−6070)</td>
<td></td>
<td>(6098−6101)</td>
<td>(6098−6101)</td>
</tr>
<tr>
<td>6150</td>
<td>C III</td>
<td>6151.27−6151.49</td>
<td>0.56 ± 0.19</td>
</tr>
<tr>
<td>(6130−6180)</td>
<td></td>
<td>(6151−6153)</td>
<td>(6151−6153)</td>
</tr>
<tr>
<td>6730</td>
<td>C III</td>
<td>6727.48−6731.04</td>
<td>2.18 ± 0.16</td>
</tr>
<tr>
<td>(6700−6760)</td>
<td></td>
<td>(6714−6743)</td>
<td>(6714−6743)</td>
</tr>
<tr>
<td>7720?</td>
<td>C III?</td>
<td>7707.43−7710.74</td>
<td>1.75 ± 0.23</td>
</tr>
<tr>
<td>(7700−7750)</td>
<td></td>
<td>(7714−7743)</td>
<td>(7714−7743)</td>
</tr>
<tr>
<td>8220?</td>
<td>(O II)?</td>
<td>8220.085−8220.153</td>
<td>(8220−8220)</td>
</tr>
</tbody>
</table>

instance, Machin et al. (1990) interpreted the strongest lines near 4650 and 5590 Å as the Bowen blend, and possibly O I at 5577 Å. They already commented on the intriguing absence of the usual He II 4686-Å line, which casts doubt on the interpretation of the emission at 4650 Å as the Bowen blend, because the Bowen mechanism is driven by helium. The total absence of any sign of helium at any of the positions indicated in the plots strongly argues against (much) helium in the system.

As discussed in the Introduction, Juett et al. (2001) suggested that the donor stars originally were carbon–oxygen or oxygen–neon–magnesium white dwarfs, whereas Yungelson et al. (2002) argued that they were hybrid white dwarfs. Our spectra thus give further evidence for the interpretation of 4U 0614+09, 2S 0918−549 and 4U 1543−624 as ultra-compact X-ray binaries with carbon–oxygen white dwarf donors. One very interesting prospect is the determination of the carbon/oxygen ratio in the transferred material from...
detailed modelling of the disc spectrum, which would give an unprece-dented view into the interior of a white dwarf and possibly could be used to constrain the rate of the $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction (for a discussion and references, see Straniero et al. 2003).

Further evidence for the ultra-compact nature of 4U 0614+09 and 2S 0918–549 comes from their absolute visual magnitude. Using the magnitudes and reddening of the objects from the low-mass X-ray binary catalogue (Liu, van Paradijs & van den Heuvel 2001) and the distances of these systems of <3 and 4.2 kpc, respectively, from Type I X-ray bursts (Brandt et al. 1992; Cornelisse et al. 2002), we find absolute magnitudes of >5.4 and 6.9 for 4U 0614+09 and 2S 0918–549, respectively. These are very faint for X-ray binaries and, from the van Paradijs & McClintock (1994) relation between accretion discs almost purely made out of oxygen and carbon.

spectra are thus of accretion discs mainly consisting of oxygen and carbon. These objects originally were hybrid white dwarfs that have lost most of their mass and now consist mainly of oxygen and carbon. These findings pose an interesting question concerning Type I bursts. As discussed by Juett & Chakrabarty (2003), the bursts observed in 4U 0614+09 (Swank et al. 1978; Brandt et al. 1992) and 2S 0918–549 (Jonker et al. 2001) are all short bursts, which are believed to be caused by hydrogen and/or helium. They suggest that possibly the donor stars still have non-negligible hydrogen fraction, and would have evolved from binaries that start mass transfer close to the end of the main sequence (Nelson, Rappaport & Joss 1986; Podsadiłowski, Rappaport & Pfahl 2002). However, these are expected to consist of mainly helium, rather than carbon and oxygen. The alternative Juett & Chakrabarty (2003) suggest, which seems the only remaining option in light of the lack of helium lines in the optical spectrum, is that spallation of the carbon and oxygen nuclei at the impact onto the neutron star (cf. Bildsten, Salpeter & Wasserman 1992) turns them into helium (or possibly hydrogen), which subsequently triggers the burst.

5 CONCLUSIONS

We presented optical spectra of the three suspected ultra-compact X-ray binaries 4U 0614+09, 4U 1543–624 and 2S 0918–549. The spectra show no sign of hydrogen or helium emission lines. We identify the observed features as lines of C II, C III, O II and O III. This is in agreement with the interpretation of these sources as ultracompact X-ray binaries and the expectation that the donor stars in these objects originally were hybrid white dwarfs that have lost most of their mass and now consist mainly of oxygen and carbon. These spectra are thus of accretion discs almost purely made out of oxygen and carbon.

ACKNOWLEDGMENTS

This paper is based on observations made with ESO Telescopes at the Paranal Observatories under programme ID 071.D-0119. IRAF is distributed by the National Optical Astronomy Observatories. We thank the referee Janet Drew for comments that improved the paper. We are thankful to Peter van Hoof and the National Institute of Standards and Technology for compiling the atomic line lists we use. We further thank Lars Bildsten for stimulating discussions. GN acknowledge the hospitality of the Kavli Institute for Theoretical Physics. This work was supported by the National Science Foundation under grant PHY99-07949.

REFERENCES

This paper has been typeset from a TeX/LaTeX file prepared by the author.