Quantifying biometric life insurance risks with non-parametric smoothing methods

Tomas, J.

Citation for published version (APA):
Contents

Preface v

Contents vii

List of Publications xi

1 Context and motivations 1

1.1 Context 1

1.1.1 The origins of life tables and population dynamics studies 1

1.1.2 Measures of mortality: Notation 6

1.1.3 Portraying mortality over age and over age and time 8

1.1.4 The irregularities in the progression of the observed rates 13

1.2 Motivations 14

1.2.1 Getting out of a procrustean bed of fixed parametrization 14

1.2.2 Natura non agit per saltum 15

1.2.3 Smoothers and parameters selection 16

1.2.4 Historical review of the development of smoothing approaches 18

1.3 Outline of the thesis 21

2 Local regression methods 23

2.1 Introduction 23

2.1.1 Premises 24

2.1.2 Transforming the data 25

2.2 The local regression estimate 26

2.2.1 Uni-dimensional case 26

2.2.2 Two-dimensional case 28

2.3 The weighting system 29

2.3.1 The weighting system shape 29

2.3.2 The smooth weight diagram 31

2.3.3 Effective dimension for a linear smoother 34
2.3.4 Specific treatments at the boundaries 34
2.3.5 Comparison with the Whittaker-Henderson model .. 36
2.4 Statistical properties 40
 2.4.1 Assessment of bias and variance 40
 2.4.2 Construction of pointwise confidence intervals 43
 2.4.3 A bias and variance trade-off 44
2.5 Fitting criteria and choice of the smoothing parameters 49
 2.5.1 Criteria based on prediction error 50
 2.5.2 Criteria based on estimation error 54
 2.5.3 Plug-in method and theoretical bandwidth 56
 2.5.4 Graphical Diagnostics and heuristics 57
2.6 Applications .. 60
 2.6.1 The data .. 60
 2.6.2 Choice of the constellation of the smoothing parameters 60
 2.6.3 Plots of the fits on the transformed scale 62
 2.6.4 Plots of the smoothers 63
 2.6.5 Plots of the graduated series and diagnostic checks 64
2.7 Comparisons with the Whittaker-Henderson model 65
2.8 Summary and outlook 68

3 Local likelihood approaches 71
 3.1 Introduction ... 71
 3.2 The local likelihood model 73
 3.2.1 Localizing generalized linear models 73
 3.2.2 The choice of the link function 75
 3.2.3 Local likelihood equations 76
 3.2.4 Fisher’s scoring method 78
 3.3 Statistical properties 81
 3.3.1 Assessment of bias and variance 81
 3.3.2 Pointwise confidence intervals 84
 3.3.3 Effective dimension of a non-linear smoother ... 85
 3.4 Diagnostics for local likelihood 85
 3.4.1 Classical selectors 85
 3.4.2 Plug-in method and theoretical bandwidth 88
 3.5 Model for the probabilities of death 89
 3.5.1 The local likelihood binomial model 89
 3.5.2 Estimation method 90
 3.5.3 Statistical Inference 92
 3.5.4 Applications 92
 3.6 Model for the forces of mortality 98
 3.6.1 The local likelihood Poisson model 98
 3.6.2 Estimation method 100
 3.6.3 Statistical Inference 101
 3.6.4 Applications 102
3.7 Summary and outlook

4 Adaptive local kernel-weighted log-likelihood

- **4.1 Introduction**
- **4.2 Motivations for an adaptive smoothing**
 - 4.2.1 Influence of the boundaries on a global criterion
 - 4.2.2 The nature of the risk
- **4.3 Adaptive Methods**
 - 4.3.1 Intersection of confidence intervals
 - 4.3.2 Local bandwidth factor methods
- **4.4 Application**
 - 4.4.1 Analysis of the changes in mortality
 - 4.4.2 Bi-dimensional local likelihood
 - 4.4.3 \(p \)-splines framework for count data
 - 4.4.4 The data
 - 4.4.5 Smoothed surfaces and fits
 - 4.4.6 Analysis of the residuals
- **4.5 Comparisons**
 - 4.5.1 Tests to compare graduations
 - 4.5.2 Comparing figures summarizing the lifetime probability distribution
- **4.6 Summary and Outlook**

5 Entity specific prospective mortality tables

- **5.1 Introduction**
- **5.2 Notation, assumption, data and approach**
 - 5.2.1 Notation
 - 5.2.2 Piecewise constant forces of mortality
 - 5.2.3 The data
 - 5.2.4 The approach
- **5.3 Extrapolative method**
 - 5.3.1 Functional principal components analysis
 - 5.3.2 Extrapolation of the time-varying coefficients
- **5.4 Construction of a global prospective table**
 - 5.4.1 The aggregated data
 - 5.4.2 Comparisons of the fits
 - 5.4.3 Tests and quantities to compare graduations
 - 5.4.4 Extrapolation of the smoothed surfaces and completed tables
 - 5.4.5 Model risk and validation of the final table
- **5.5 Adjustment to entity specific mortality experience**
 - 5.5.1 Entity specific mortality experience
 - 5.5.2 Poisson GLM with age and calendar year interactions
- **5.6 Summary and outlook**