How to treat cerebral venous and sinus thrombosis

Jonathan M. Coutinho
Jan Stam

J Thromb Haemost. 2010;8:877-883
Abstract

Cerebral venous and sinus thrombosis (CVT) is a rare form of thrombosis, with many different clinical manifestations. Better imaging techniques have greatly improved the diagnosis, but due to the paucity of controlled trials, choosing the optimal treatment for each patient often remains a challenge. Heparin is generally considered the mainstay of treatment, supported by data from a few small trials. More invasive treatment options are available, such as endovascular thrombolysis and – in some severe cases – decompressive hemicraniectomy. Furthermore, CVT is often accompanied by various neurological complications, such as seizures and intracranial hypertension, which require specific treatment. In this review we summarize the available treatment options for CVT and suggest which therapy should be reserved for which patients.
Introduction

Thrombosis of the cerebral venous system, also known as cerebral venous and sinus thrombosis (CVT) or dural sinus thrombosis, is a rare condition, with an estimated annual incidence of 2-4 per million. In comparison, deep venous thrombosis of the lower extremity is approximately 250 times as common.

For many years, cerebral angiography was the only technique to definitively diagnose CVT in alive patients, but nowadays this invasive procedure is rarely necessary. Although never reliably compared to angiography, magnetic resonance imaging (MRI) combined with MR-venography is now considered the golden standard (figure 1A). A good alternative to MRI is CT-venography, which is considerably faster, more readily available and often produces similar results. Studies that examined the accuracy of CT-venography compared to MRI found a sensitivity and specificity between 75 and 100%, depending on the sinus or vein involved.

Figure 1

A: T1 weighted mid-sagittal MRI showing a thrombus located in the superior sagittal sinus and straight sinus (white arrows).

B: CT-scan of a typical venous infarct of the right cerebral hemisphere, with areas of hemorrhage (open white arrows) within a hypodense area of focal edema.
In leg-vein thrombosis, the measurement of D-dimer concentration to exclude thrombosis is well established, but in CVT its accuracy is controversial. One study found a high negative predictive value, but this study excluded patients with certain risk factors, such as malignancy and pregnancy, which probably resulted in an overestimation of the specificity.\(^4\) In contrast, a study by Crassard et al. reported that 26% of CVT patients with headache as the sole symptom had a normal D-dimer concentration.\(^5\) Several other studies on this subject included only a limited number of patients.\(^6,7\) Until additional data in a larger group of patients become available, routine use of D-dimer measurement to exclude CVT cannot be recommended.

Risk factors for CVT are genetic or acquired prothrombotic conditions, systemic inflammatory disease, hematological conditions, and many others.\(^8-10\) A local trauma, such as head injury or surgery may precipitate the thrombosis. Regional infections, especially otitis, were a well known cause of CVT in the pre-antibiotic era, but are now less frequent. In about 20% of patients no cause or risk factor is identified. In women there is a statistically significant association with oral contraceptive use\(^11\), and CVT is more frequent during pregnancy and in the puerperium. As a result of these sex specific risk factors CVT is approximately 3 times more common in women than in men.\(^12\) In children and elderly the sexes are equally represented.

CVT usually starts in the large venous sinuses and may extend into the cortical veins. In a minority of cases the thrombosis is limited to the cortical or internal cerebral veins. The clinical symptoms depend on the localization and extension of the thrombus and are highly diverse. When the thrombus is confined to the major sinuses or jugular veins, the main problem is intracranial hypertension, due to diminished venous drainage and a decreased absorption of cerebrospinal fluid. Intracranial hypertension causes headache, often with papilledema, and sometimes with diplopia due to 6\(^{th}\) cranial nerve palsy. Severe papilledema can rarely result in blindness. In patients with widespread thrombosis of multiple sinuses, or when the cortical veins become obstructed, additional symptoms often develop. Collateral venous drainage in the brain is limited, and venous obstruction causes increased capillary pressure, cerebral edema and eventually venous infarcts (figure 2).\(^13\) These focal cerebral lesions can result in seizures and neurological signs, such as hemiparesis, aphasia, hemianopia and cognitive
disorders. If left untreated, large venous infarcts can be life-threatening and death by cerebral herniation may occur within hours in these patients.14

Figure 2

Posterior view of the right cerebral hemisphere of a 36 year old patient with CVT during decompressive hemicraniectomy. Thrombosis is visible in multiple cortical veins (black arrows). There is general swelling of the brain due to cerebral edema. Small areas with subarachnoid hemorrhage are present around cortical veins (open white arrow).

Venous infarcts develop in approximately half of all CVT patients. A characteristic of these infarcts is their tendency to become hemorrhagic, which occurs in approximately 30 to 40% (figure 1B). The latter feature has raised controversy regarding the treatment of CVT. Heparinisation, the obvious treatment for any thrombotic event, was considered dangerous because of the risk of bleeding associated with cerebral venous infarcts. This controversy has been all but resolved in recent years, as will be discussed below.
Chapter 7

General measures

Patients with CVT should be admitted and closely monitored in the acute phase, preferably in a medium or intensive care unit. This is especially warranted if large venous infarcts or severe intracranial hypertension are present, since these patients can deteriorate rapidly. Also, the risk of seizures, if not already present at baseline, is high in patients with parenchymal brain lesions caused by CVT. Treatable underlying conditions, such as infections, should be identified and treated promptly. To reduce vasogenic cerebral edema, steroids are sometimes administered, but in a post-hoc analysis of a large prospective cohort study, steroids were not shown to be beneficial. Actually, in patients with parenchymal lesions, steroid use was associated with a worse outcome.15

Anticoagulation

The British gynecologist Stansfield was one of the first to advocate the use of heparin for the treatment of CVT. In 1941 he described a case of puerperal CVT that responded well to this therapy, and concluded that “the introduction of heparin gives us an effective weapon to treat what has invariably been a fatal complication of the puerperium, and the clinician’s reward for an early diagnosis will be the survival of the patient rather than the sterile pleasure of making an accurate diagnosis and confirming it in the post-mortem room.”16

While most experts now agree that patients with CVT should receive full anti-coagulation as soon as the diagnosis is made8,10,17, this policy has been controversial for many years. This may seem counterintuitive to those who treat patients with leg vein thrombosis or pulmonary embolism, conditions in which the use of anti-coagulants has been accepted without reservation. The reason for this controversy was concern about its safety in CVT, because of the high incidence of spontaneous intracerebral hemorrhages. On the other hand, the risk of withholding anticoagulants is an enlarging thrombus, with the hazard of occluding additional cortical veins and causing more venous infarcts.

Clinical trials to resolve this dilemma are difficult due to the rarity of the disease, and only two small randomized trials that met minimal methodological standards
have been performed. The first was a single-centre trial that randomized 20 patients to unfractionated heparin or placebo. Heparin dose was adjusted using the activated partial thromboplastin time (aPTT), intended to achieve at least twice the pre-treatment value. All 10 patients in the treatment group had a good outcome at 3 months, while in the placebo group 3 patients died. The second trial randomized 60 patients to subcutaneous low-molecular weight heparin (nadroparin, 90 IU/kg twice daily) or placebo. In the nadroparin group, 13% of patients had a poor outcome at 3 months, compared to 21% in the placebo group. In a meta-analysis of the 2 trials, heparin was associated with an absolute reduction of mortality of 13% (95% confidence interval -27% to 1%, p = 0.08). Although statistically non-significant, for most experts these results confirmed clinical observations that patients put on heparin tend to have better outcomes.

Additional evidence supporting heparin treatment came from the largest prospective cohort study on CVT, the International Study on Cerebral Vein and dural sinus Thrombosis (ISCVT), which included 624 patients, many of whom (39%) had intra-cerebral hemorrhages before treatment. Eighty-three percent of all patients were treated with heparin. The 30 day mortality was only 3.4%, and the final outcomes were better than in many of the older published series. In spite of these encouraging data, the risk of new or increasing cerebral hemorrhage cannot be discarded as negligible. Although in the two clinical trials no new intracranial hemorrhages developed among the patients treated with heparin, this finding cannot be generalized confidently due to the small number of patients. In the control groups of these trials, however, two patients (out of 40) had a new intracranial hemorrhage, and two others suffered fatal pulmonary embolism, which demonstrates the risk of withholding heparin in these patients.

In patients with deep venous thrombosis of the leg, it is now standard practice to start low-molecular weight heparin (LMWH) instead of unfractionated heparin, since clinical trials have shown that patients treated with LMWH have better outcomes. Due to a lack of research data, there are no guidelines on which type of heparin to use for CVT. In the ISCVT study, adjusted dose, unfractionated heparin was used in approximately three-quarters of patients who received heparin treatment. Advantages of unfractionated heparin are that it may provide a faster therapeutical level of anticoagulation and is easier to
antagonize in acute situations, such as the necessity of surgical intervention. We prefer subcutaneous LMWH – in therapeutic dose – because it provides a more stable anticoagulant concentration and does not require dose adjustment based on aPTT measurements.

**Endovascular treatment**

Many case reports and case series have reported positive results of endovascular thrombolysis for CVT, but randomized controlled trials have never been performed. An analysis of all case reports up to 2001 showed good clinical outcome (defined as independency in daily activities) in 86% of patients treated with endovascular thrombolysis, a similar outcome as CVT patients treated with heparin. The patients who underwent thrombolysis, however, were in a more severe clinical condition. This seems promising, but due the anecdotal and mostly retrospective evidence, it is impossible to conclude from these data that endovascular treatment is superior to heparin for CVT. An international randomized controlled trial to evaluate the efficacy of endovascular treatment is being prepared and is due to start in 2010. Until the results are available, thrombolysis should be reserved for the very severe cases and for patients who deteriorate despite adequate anticoagulation.

There are several different approaches for endovascular thrombolysis of CVT. The cerebral venous system is accessed by a transjugular or transfemoral approach. A thrombolytic agent, usually urokinase or recombinant tissue plasminogen activator (rt-PA), is then infused into the thrombus (figure 3). The dosage of the thrombolytic agent and the duration of thrombolysis are highly variable. Some interventionalists use only bolus injections, while others apply local infusions for up to several days. In addition to pharmacological thrombolysis, mechanical techniques such as balloon angioplasty or rheolytic catheters are sometimes used to disrupt and remove clot material. These techniques may reduce the dosage of thrombolytic drugs, and could thus reduce the risk of intracranial hemorrhage. On the other hand, these procedures carry an increased risk of rupturing the vessel wall. A comprehensive review of the different endovascular techniques for CVT is beyond the scope of this paper. For details we refer to several existing reviews on this topic.
Endovascular thrombolysis in a 35 year old patient with thrombosis of the superior sagittal sinus. At the beginning of the procedure, the sinus does not fill with contrast (left). 600,000 IU of urokinase were infused into the superior sagittal sinus, which resulted in partial filling of the proximal part of the sinus after 2 hours (middle). An additional infusion of 600,000 IU in 4 hours resulted in recanalisation of the entire superior sagittal sinus (right, closed arrows), with the exception of the most anterior part (open arrow).

Decompressive hemicraniectomy

Rarely, large hemorrhagic venous infarcts cause displacement of central brain structures (diencephalon and brain stem), a process called cerebral herniation.14 These patients may initially show signs of third cranial nerve compression (dilated pupil), followed by rapidly progressing coma. If untreated, death from brainstem compression is inevitable. In these situations, emergency decompressive hemicraniectomy can remove the threat of fatal transtentorial herniation. A similar approach can be effective in young patients with malignant middle cerebral artery infarction.31 In CVT this intervention is applied rarely: in the ISCVT population, only 9 patients (1.4%) underwent decompressive hemicraniectomy.21 We32 and others33 have found that prompt hemicraniectomy can be life-saving and result in excellent neurological outcome in these severest cases of CVT. A CT-scan of the brain of a patient successfully treated with decompressive hemicraniectomy is shown in figure 4.
A: CT-scan of the brain of a patient with CVT who became comatose due to transtentorial herniation by a large left-sided parieto-temporal hemorrhagic infarct. There is mass effect and shift of midline structures to the right (midline shift 11 mm).

B: CT scan several hours after hemicraniectomy. The midline shift is reduced to 3 mm. After the procedure the patient recovered with mild neurologic sequelae.

**Anti-epileptic drugs**

Epileptic seizures frequently complicate CVT, occurring in 35-50% of all patients, far more than in arterial strokes. Status epilepticus is less frequent, but potentially life-threatening. Predictors for the occurrence of seizures are supratentorial lesions, focal motor deficits and thrombosis of the superior sagittal sinus or cortical veins. Most patients suffer from seizures in the acute phase, until 2 weeks from diagnosis, but late seizures do occur. Seizures in the acute phase should be treated promptly with anti-epileptic drugs, preferably by intravenous administration. Because of the high incidence of seizures in patients with CVT, some authors advocate prophylactic anti-epileptic treatment for high-risk patients in the acute phase. Late seizures usually occur within 6-12 months and mostly in patients who had seizures in the acute phase. We therefore suggest continuing anti-epileptic drugs for 1 year before tapering.
Intracranial hypertension

Increased intracranial pressure is common in CVT. In the acute phase, specific treatment is usually not necessary. Longstanding, severe intracranial hypertension, however, can lead to loss of vision due to papilledema. Frequent measurement of vision and evaluation of papilledema is therefore advisable. In case of threatened vision, lumbar puncture with removal of cerebrospinal fluid can result in immediate improvement of symptoms, but contraindications, especially space-occupying mass lesions, should be considered carefully. If multiple lumbar punctures are necessary, a shunting procedure, such as an external lumbar drain, should be considered. A complicating factor with these procedures is that most CVT patients receive anticoagulation, which increases the risk of bleeding complications. In an acute situation with impending visual loss, however, withholding a lumbar puncture is more harmful to a patient than the small risk of bleeding.

Oral acetazolamide or diuretics can effectively reduce intracranial hypertension, but are of limited value in the acute phase. High dose steroids (e.g. intravenous methylprednisolone 1 gram daily for 5 days) have shown to be effective in cases of idiopathic intracranial hypertension, but data on its efficacy in CVT are lacking.

Oral anticoagulation

Unless there are evident contraindications, oral anticoagulation with vitamin K antagonists is generally indicated in all CVT patients after the acute phase. If the thrombosis is associated with a transient risk factor, such as an infection or a trauma, a period of 3 months is usually sufficient. In other situations, notably in the case of a recurrent thrombosis, some forms of genetic thrombophilia, an unprovoked thrombosis, a positive lupus anticoagulant or an active malignancy, a longer period of treatment is warranted. Solid data on the optimal duration of treatment in these patients are lacking. Usually a period of 6 to 12 months is chosen, but occasionally lifelong treatment is indicated in patients with multiple persistent risk factors. It is important to carefully weigh the risks and benefits of treatment in each individual. Target ranges for the international normalized ratio are the same as in deep venous thrombosis of the leg (i.e. 2.0-3.0).
Prognosis and follow-up

The prognosis of CVT was previously considered grave. Mortality rates between 40% and 80% were not uncommon in case series published in the 1950’s and 60’s.\(^1\),\(^3\),\(^9\) This was an overestimation, since CVT could only be diagnosed confidently post-mortem. Modern neuroimaging techniques have lead to the identification of many less severe cases, and nowadays the majority of patients with CVT have a favorable prognosis. In the ISCVT study, almost 80% of patients had fully recovered after 6 months of follow-up. Fourteen percent of patients had a poor outcome, half of whom had died. The remaining patients (6%) had a minor disability, but were able to live an independent life.\(^2\),\(^1\)

Several small studies investigated recanalization rates after CVT.\(^4\),\(^0\) In the majority of patients, partial or complete recanalization can be demonstrated with MRI. It appears that recanalization predominantly occurs within the first few months, since in 2 studies in which multiple follow-up MRI’s were performed no difference in recanalization rate at 3 months or 1 year was found.\(^4\),\(^1\),\(^2\) It is unknown if MRI visualized recanalization is associated with the probability of recurrence, and no correlation has been found between the degree of recanalization and clinical outcome.\(^4\),\(^1\),\(^3\) Therefore, we do not recommend routine use of MRI during follow-up of CVT patients.

Headache is the most common long-lasting symptom after the acute phase, and in a subgroup of patients it can become chronic and excessive.\(^4\),\(^4\) These patients should be carefully evaluated for the presence of chronic intracranial hypertension. Late seizures occur in approximately 10% of patients, usually within the first year.\(^3\),\(^6\) This often has a significant impact on the lives of patients due to necessity of long-term use of anti-epileptic drugs, driving restrictions and fear of new seizures. Recurrence of CVT is rare and occurs in no more than 3% of patients.\(^4\),\(^0\) Other thrombotic events, mostly deep venous thrombosis of the leg and pulmonary embolism, occur at similar rates. For unknown reasons, this is much lower than reported recurrence rates after deep vein thrombosis.\(^4\),\(^5\)

In the follow-up of female patients of childbearing age, counseling regarding the risk of a subsequent pregnancy is often an issue. From the scarce data available, it appears that the risk of a CVT recurrence during pregnancy is very low.\(^4\),\(^6\) Since
CVT recurrences predominantly occur within the first year, we advise women not to become pregnant within the first year. Thereafter, a former CVT is no reason to avoid pregnancy.

Unfortunately, there are no reliable data about antithrombotic prophylaxis during pregnancy in women who suffered CVT. Therefore, we follow general recommendations for venous thromboembolism. Patients who had CVT and a transient risk factor are advised to use LMWH prophylaxis during the post-partum period only (4-6 weeks). In those with CVT and confirmed thrombophilia, or with an apparently spontaneous CVT, prophylaxis throughout pregnancy and puerperium is recommended.

Conclusion

Due to improved imaging techniques, earlier diagnosis of CVT has become possible. This, combined with now widely accepted early treatment with heparin, has resulted in a much better prognosis for most patients. Still, in a significant minority, CVT remains a severe condition, that may cause lasting neurologic impairment or death. Aggressive treatment, including endovascular thrombolysis and hemicraniectomy, can however give excellent results, even in seemingly hopeless cases.
Chapter 7

References

How to treat cerebral venous thrombosis


