Core and conal component analysis of pulsar B1237+25 – II. Investigation of the segregated modes

Emily Smith,1 Joanna Rankin1,2 and Dipanjan Mitra3

1Physics Department, University of Vermont, Burlington, VT 05405, USA
2Sterrenkundig Instituut ‘Anton Pannekoek’, University of Amsterdam, NL-1090 GE Amsterdam, the Netherlands
3National Centre for Radio Astrophysics, Ganeshkhind, Pune 411 007, India

ABSTRACT

Radio pulsar B1237+25 is the prime exemplar of a five-component profile indicating a core/double cone emission-beam structure. Here we conduct a pulse-sequence analysis of its three behaviours based on our earlier partial profile study in Paper I. Focusing on the core region, we find first that its two `orthogonal’ polarization modes are far from orthogonal and second that aberration/retardation (A/R) of the secondary orthogonal polarization mode is responsible. As expected this A/R effect is seen both in the retarded core power and the delayed polarization-angle signature. The A/R effect thus seems to reflect a cascade or amplifying process along the magnetic axis extending to a height of some 230 km – indeed, very similar to what was found earlier for pulsar B0329+54. The pulsar’s three ‘states’ reflect different conditions of core activity: in the quiet-normal mode, core emission is barely perceptible, and the two cones exhibit phase-locked modulation in the manner of a carousel beam system. In the flare-normal mode, this modulation persists for short intervals, while the core is more active, exhibiting intensity-dependent A/R associated mainly with a single, apparently X, propagation mode. Finally, in the abnormal mode, the intensity-dependent A/R-associated core emission is continuous – the primary X trailing and secondary O leading – and appears to distort and retard the conal O-mode emission and quench its modulation.

1 INTRODUCTION

The widely studied pulsar B1237+25 exhibits five components produced by a near-central traverse of the sightline through the emission region (Rankin 1993a,b; hereafter ET VI); see Fig. 1. The five components1 of the pulsar’s emission consist of two concentric emission cones and a central core beam. The pulsar also exhibits emission modes, frequent nulling and a 2.7-rotation-period (hereafter P_1) subpulse modulation (Backer 1970a,b,c, 1973). Pulsar B1237+25’s rich phenomenology has been studied extensively; however, links between these effects and the appropriate physical emission mechanisms have not yet been clearly identified. In particular, since the publication of Paper I (Srostlik & Rankin 2005), we now understand (a) that modes represent global changes in the magnetospheric ‘state’ (e.g. Kramer et al. 2006), (b) that both nulls and pseudo-nulls punctuate pulse sequences (e.g. Herfindal & Rankin 2007, 2009) and (c) that carousel action (Deshpande & Rankin 1999, 2001) not only underlies drifting subpulses but also conal beams and other effects as well.

Traditionally, B1237+25 had been regarded as having two modes: its ‘normal’ (N) and ‘abnormal’ (Ab) modes (Backer 1970a,b,c, 1973). The N mode exhibited the classical double conal and weak core structure as well as a regular $2.7-P_1$ subpulse modulation of its conal components (Hanks & Wright 1980; Bartel et al. 1982). By contrast, the Ab mode is characterized by strong core emission, conflation of the trailing conal components and cessation of the modulation. Additionally, each mode is distinguished by significant changes in both total power and polarization properties.

The presence of three modes was proposed in Paper I, rather than the traditional two identified by previous studies. The N mode was found to have two distinguishable patterns of emission. Pulse sequences (PSs) with significant core emission were seen to interrupt mainly conal intervals regularly. In addition, these intervals of core activity differed in both polarization and total power. These distinctions prompted Srostlik & Rankin (2005) to divide the N mode into...
and \(\perp \) to the projected magnetic field direction (Lyubarskii 2002). The height at which this polarization is fixed may vary in different regions within the polar flux tube, but to the extent that the field is dipolar, the field orientation can be traced across the profile. Because electromagnetic-wave propagation is so constrained by the intense magnetic field to these two orientations, we can say little about the underlying emission physics on the basis of modal polarization.

In what follows, Section 2 describes our observations, Section 3 undertakes a nulling analysis, and Section 4 the respective emission modes. In Section 5 we discuss connections to the O and X propagation modes, Section 6 describes the OPM segregation analysis and Section 7 studies the different intensity levels (hereafter intensity fractions) of the various modes. Section 8 reviews the dynamics of core emission, Section 9 then provides an analytical summary and Section 10 a discussion of our results.

2 OBSERVATION

The observation used in our analyses was made using the 305-m Arecibo Telescope in Puerto Rico. The primary 327-MHz polarized PS was acquired using the upgraded instrument together with the Wideband Arecibo Pulsar Processor (WAPP) on 2005 January 8 comprised of 5209 pulses. The auto- and cross-correlation functions of the channel voltages produced by receivers connected to orthogonal linearly polarized feeds were three-level sampled. Upon Fourier transforming, 64 channels were synthesized across a 25-MHz bandpass with a 512-\(\mu \mbox{s} \) sampling time, providing a resolution of 0.133 in pulse longitude and effectively swamping interstellar scintillation effects on a several hour time-scale. The Stokes parameters have been corrected for dispersion, interstellar Faraday rotation and various instrumental polarization effects. While most of the observation was of very high quality, a few per cent of the pulses showed visible effects of interference, which complicated the mode segregation below. Errors in the PPA were computed relative to the off-pulse noise phasor – that is, \(\sigma_{\text{PPA}} \sim \tan^{-1}(\sigma_{\text{off-pulse}}/L) \).

3 NULLING ANALYSIS

Early study of B1237+25 observations had found that approximately 6 per cent of its pulses were ‘nulls’ (reviewed in Rankin 1986; hereafter ET III). Using an appropriate threshold relative to the mean pulse intensity \(\langle I \rangle \) of 10 per cent, our finding was similar. Additionally, Paper I identified a population of weak pulses that qualify as nulls, but exhibit appropriate polarization at particular longitudes which show them to be weak emission features.

By separating the total PS into N and Ab partial sequences, null histograms were computed to study the proportion of nulls or weak pulses within each mode; see Fig. 2. The N mode was thus found to have a null fraction of 5.2 per cent, and this fraction was significantly larger than the 2.7 per cent for the Ab mode. This different nulling behaviour in the two modes is a new finding for B1237+25, but not surprising as several other pulsars are now known to exhibit a similar effect (e.g. B2303+30; see Redman, Wright & Rankin 2005). In Ab mode PSs, the greater intensity and prominent core nulls and bursts have a significantly different distribution. Not only are nulls more frequent at 5.2 per cent, but nulls lasting for two or more pulses are far more common. Similarly, although

![Figure 1. Total polarized profile of the 5209-pulse B1237+25 observation from 2005 January 8. Its relatively bright central core feature reflects the unusually strong contribution of Ab mode apparitions in this observation. The edges are slightly truncated to better show details under the pulsar’s core and two conal component pairs. The top panel gives the total intensity (Stokes \(I \); solid curve), the total linear \([L = \sqrt{Q^2 + U^2}] \); dashed red) and the circular polarization (Stokes \(V \); dotted blue). The PPA \([\frac{1}{2} \tan^{-1}(U/Q)] \) histogram (lower panel) corresponds to those samples having errors smaller than 8°, and it is plotted twice for clarity with the average PPA traverse overplotted (red). The green and magenta model curves are discussed in the text. The origin is taken near the profile centre as determined by the Stokes \(V \) inflection point. Note the two linear polarization minima framing the central core emission as well as the two parallel PPA traverses in the \(-1^\circ\) to \(+1.5^\circ\) longitude region.](http://mnras.oxfordjournals.org/)

a core-active ‘flare-normal’ (FN) mode and the core-weak ‘quiet-normal’ (QN) mode.

The three emission modes were suggested in part to better segregate and exhibit their particular orthogonal polarization modal (OPM) behaviours. The presence of OPM emission was identifiable both in modal partial average profiles and in the polarization characteristics of PSs. In particular, Paper I noted that the total average profile conflates all three modes, so the expected central 180°-polarization-position-angle (PPA) sweep is distorted. However, when a partial profile is constructed with pulses having little to no core emission, the PPA traverse is unusually abrupt and complete. This appeared to show that the total profile was comprised of both OPMs near the centre under the core component.

As discussed by Rankin & Ramachandran (2003. hereafter ET VII), the depolarized edges of pulsar profiles also indicate the presence of OPM emission. This led to the conclusion that one OPM’s emission is offset from the other in both magnetic colatitude and azimuth. The orthogonal polarization modes likely result from propagation effects as the waves pass through the dense magnetosphere. Various mechanisms for the production of pulsed OPM emission have been suggested (e.g. Melrose 1979; Allen & Melrose 1982; Arons & Barnard 1986a,b). Primarily, it seems that the emission || and \(\perp \) to the projected magnetic field direction separate due to different refractive properties.

Therefore, in our analysis below, we explicitly assume that all pulsar radio emission escapes the magnetosphere oriented either \(|| \) and \(\perp \) to the projected magnetic field direction (Lyubarskii 2002). The height at which this polarization is fixed may vary in different regions within the polar flux tube, but to the extent that the field is dipolar, the field orientation can be traced across the profile. Because electromagnetic-wave propagation is so constrained by the intense magnetic field to these two orientations, we can say little about the underlying emission physics on the basis of modal polarization.
many short bursts do occur, two having lengths of nearly 200 pulses occurred in our observations; see Fig. 3. Here the runs test (see Redman & Rankin 2009) then indicates that these nulls do not occur randomly – rather they are grouped such as to be highly ‘undermixed’ within N mode PSs.

The weak emission features identified during many of B1237+25’s nulls in Paper I were noted in this observation as well. Many of the pulses, classified as nulls by failing the 0.10 $\langle I \rangle$ threshold – particularly those lasting for several pulses – had very discernible weak, highly polarized emission throughout the ‘null’. This ‘sputtering’ effect is similar to that found in B0818–13 by Janssen & van Leeuwen (2004) and suggests that these nulls are in fact pseudo-nulls wherein there is no cessation of the pulsar’s emission engine.

4 THE TWO OR THREE EMISSION MODES

Since the time of Don Backer’s pioneering studies in the early 1970s, B1237+25 was regarded as having two distinct modes, the N and Ab modes. Paper I then argued that the N mode is comprised to two distinct behaviours, a core-active, FN mode, and a weak core, QN mode. In what follows, we will treat both modal schemes in an effort to discern detailed aspects of the pulsar’s emission characteristics.

Fig. 5 (upper left) gives a N mode partial profile for the observation under study. Its 3907 constituent pulses were identified by inspecting each pulse of the full observation and segregating those pulses that exhibited the weak core, full profile N mode characteristics as opposed to the strong core, curtailed profile properties of the Ab mode. Nulls were omitted. Note the overall larger fractional linear polarization, the clear OPM emission under the outer conal components, and the weak core feature with an even weaker hint of an antisymmetric circularly polarized V signature. There is much to see as well in the PPA behaviour in the centre of the profile. First, as discussed in Paper I, the average PPA traverse fails to exhibit the expected steep, nearly 180° traverse here, and that discussion argued that this was due to secondary polarization-mode (SPM) OPM emission dominating in the core region in contrast to primary polarization-mode (PPM) emission dominating throughout the profile otherwise.

Indeed, this N partial profile shows substantial linear depolarization under the core region that contrasts with the relatively large fractional linear polarization elsewhere. Note also that, unusually, there are two distinct PPA ‘tracks’ under the core region: coincident with the linear minimum, there is a partial one (green curve) that is associated with the PPM under the conal components; and just under this curve there is a second distinct track that is centred at the PPA of the surrounding PPM emission (i.e. in the $-40°$–$70°$ range) and thus must represent SPM power. This second track, however, is no ordinary SPM track as we can see from the 90°-shifted PPM (magenta) curve, as it lags this curve by much of a degree! Indeed, the average (red) PPA curve follows this second track between 0° and 1° longitude. It will be interesting to see how these features will divide between the QN and FN partial profiles. Finally, note the positive-going ‘patch’ of PPAs just prior to the longitude origin; the emission that these represent is notable because it seems not to be associated with either of the two OPMs – indeed, it appears to represent power that is impossible to fit with any rotating vector model (RVM). We return to consider this peculiar power below.

Partial profiles for the QN and FN modes are given in Fig. 5 (upper and lower right, respectively). As expected, the QN profile aggregates the roughly 81 per cent of N pulses with little to no core emission. Apart from this low level of core emission, the QN profile is almost indistinguishable from the N partial profile. Note that a small inflection can be seen in the total power corresponding to a small remaining core contribution, but hardly even a ‘shadow’ of ‘diagonal’ SPM PPAs remains in the lower panel. Therefore, only here in the QN mode does the average PPA follow the earlier of the two ‘tracks’ in the N profile, and the two RVM curves (green and magenta) represent joint fits to these traverses. These yield α and β values of 57.6 and -0.3, respectively, as well as an inflection at 0° longitude and a PPA of $+36.6$. The goodness of fit is largely determined by the $R [\sin \alpha / \sin \beta]$ value, and β values differing by ±0.1 or so gave acceptable fits. Interestingly, only negative values of β provided the ‘squarish’ behaviour needed to fit this pulsar’s PPA tracks. This fit is overplotted on the N, FN and Ab partial profiles.

The FN profile, by contrast, representing the remaining about 19 per cent of the N pulses, is quite dramatic. Here we first encounter strong core emission, with a significant antisymmetric V signature. The components of both cones are somewhat less linearly polarized,
Figure 3. Null- and burst-length histograms for the N mode. Null lengths of a single rotation are highly favoured, however, long nulls of up to six pulses in length were found in our observation. Burst lengths ranged from a single pulse to intervals persisting for nearly 200 pulses.

and overall the FN profile is slightly narrower than its QN counterpart. The core region is flanked by two linear polarization minima corresponding almost precisely to the breadth of the ‘diagonal’ PPA feature in the lower panel. Both PPA ‘tracks’ are clear, but the SPM one is dominant and carries most of the power noted earlier for the N profile.

The overall shape of the FN profile is worthy of note: all five components are in clear evidence, although the trailing two are slightly less resolved than the others, mostly because the outer trailing component appears earlier than in the QN profile by 0.5. Note the ‘triangular’ shape of the core component with its more shallow rise and steep fall-off. Note also that the deep minimum remains between the leading inner cone and core components. Here also we see very clearly the four inflections of the PPA noted in Paper I that are characteristic of the changing OPM dominance under the core component.

Finally, Fig. 6 shows the 686-pulse partial profile of the Ab mode. Here the core is dominant with its very strong and fully antisymmetric circularly polarized signature, the trailing components are mysteriously conflated into a single feature and the profile overall is linearly depolarized apart from the leading inner conal feature. Also note the deep linear minimum just prior to the core, its pronounced ‘triangular’ form and the appearance of the emission ‘bridge’ connecting the leading inner cone and core components.

The PPA distributions also give important information: both OPM PPA ‘tracks’ are in evidence, but relative to the earlier profiles the SPM emission is much stronger and longer. Indeed, note that it is dominant under the surviving trailing conal component. Under the core the usual ‘diagonal’ SPM feature is strongly in evidence, but note that there is also a second PPM PPA ‘track’ that traces the full negative-going traverse. It starts about -1° longitude, continues clearly through the centre of the profile, and then a weaker connection can just be discerned (beside the SPM ‘diagonal’ feature) going all the way to the trailing PPM ‘track’. Note also that a weak positive-going patch of emission can also be seen just prior to the centre of the profile. This patch is associated with the shallow rise of the core and the deep minimum in linear polarization.

The Ab PSs were found to exhibit their well-known properties, and these distinct properties in both total power and polarization made it easy to positively identify the Ab intervals in our colour
Figure 5. Partial average profiles and PPA histograms for the N (upper left), QN (upper right) and FN (lower right) modes, respectively, after Fig. 1, comprised of 3907, 3156 and 751 pulses and with sample PPA thresholds of 7°, 5° and 7°. Comparing the N profile with its QN and FN mode constituents, we see that the core emission largely goes to the FN profile, whereas the conal emission divides between the two. Note the pronounced dual PPA ‘tracks’ under the N core component; whereas only one is seen in the QN profile. The QN PPA traverse is clearly most associated with the conal emission, and RVM-fitted curves showing its PPM (green) and 90°-shifted (magenta) traverses are overplotted. These conal RVM curves are also shown in the N and FN panels, but note that neither follows the stronger, later ‘diagonal’ traverse that is most associated with the SPM core emission. The scale intensities of the QN and FN profiles are 99 and 103 per cent that of the N mode profile; whereas the former has 91.4 per cent and the latter 8.6 per cent of the power.

displays. This observation is unique in the number of times in which the Ab mode occurs. Ab mode PSs appear 12 times throughout the observation. Three of these PSs were lengthy whereas the other nine were much shorter.

The separation of the observation into the three distinct modes delineated in Paper I is strongly reflected in our single pulse analysis. However, the question remains whether QN and FN intervals are actually modes or merely behaviours. The FN’s core flares interrupt QN intervals fairly regularly, however, without very long N sequences, it is impossible to determine whether these interruptions occur periodically.

5 ASSIMILATING THE PROPAGATION MODES

The splitting of core emission into the two OPMs which occurs in the Ab and FN modes seems to indicate that the core emission propagates as two independent and orthogonal electromagnetic waves. If so, then we must explore how this modal radiation is related to the O (ordinary) and X (extraordinary) physical propagation modes. In our earlier work on pulsar B0329+54 (Mitra, Rankin & Gupta 2007) we attempted to determine the direction of the modal PPAs with respect to the projected magnetic field by comparing the fiducial PPA and proper-motion directions, but no such line of argument
In Paper I our conclusions were based almost entirely on

is possible for this pulsar because the difference angle falls far from

Here we rather suggest, and assume in our further analysis, that
core emission fills the polar flux tube at low altitudes and propa-
gates outward along the magnetic axis. In order not to suffer re-
fraction, this lower altitude core radiation must be associated with
the extraordinary X physical propagation mode. This then identifies
the SPM as corresponding to X-mode radiation. Some support for
this suggestion seems apparent from Fig. 5 in that the SPM PPA
‘patches’ under the outer conal combs seem to fall slightly inte-
rior to their PPM counterparts – assuming that the two modes are
emitted at similar heights, that the O mode (PPM here) is subject to
refraction, and that this refraction is outward (following Barnard &
However, the overall widths in Table A1 provide a weak contrary
indication.

In any case, this is the same modal identification as we made
earlier for B0329+54 (Mitra et al. 2007).

6 ORTHOGONAL POLARIZATION MODE SEGREGATION

In few pulsars is the OPM activity more prominent than in
B1237+25, as we have seen above. A major intent of this study
is to look at this phenomenon more closely in an effort to glean
more about the physical circumstances associated with OPM emis-

partial profile analyses, here we wish to investigate the effects at the
individual pulse level.

Deshpande & Rankin (2001, hereafter DR01; see appendix) de-
volved methods to separate PSs into polarized OPM sequences
using a sample-by-sample segregation. The techniques were ap-
plied to pulsar B0329+54 (Mitra et al. 2007) in a manner similar to
what is needed below. Thereby these authors were able to separate
behaviours pertaining to a particular mode and relate them to the
expected characteristics of the X and O propagation modes.

The two methods described by DR01 entail different assumptions
about how the emission is depolarized: in the two-way segregation,
the parent radiation is assumed to be comprised of two fully polar-
ized OPMs that become depolarized by incoherent superposition,
such that modal repolarization is feasible. By contrast, the three-
way method makes no such assumption; the power is segregated
into PPM, SPM and unpolarized (UP) PSs.

Each of B1237+25’s emission modes (N, QN, FN and Ab) were
segregated using first the two- and then the three-way methods, so
that the effects of the assumptions in the former could be assessed
with the latter. Results of the three-way technique are given below,
whereas the two-way segregations appear in Figs A2–A4. Because
of the non-orthogonal character of the two OPMs in B1237+25’s
core region, this segregation required significant modification of
Deshpande & Rankin’s techniques, and we have made most use of
the three-way technique.

Both methods require a PPM PPA model which defines the ±45°
modal boundaries, often provided by an RVM fit. Normally, such
a model is quite forgiving as little power falls near the boundary-
ary regions. However, the OPM PPA ‘tracks’ in B1237+25’s core
region are separated by hardly 40°, and effort had to be taken to
define the modal boundaries carefully. Our requirement here,
we emphasize, is to segregate the modal power reliably, not to fit
the PPA tracks precisely. RVM fits to either of this pulsar’s OPMs
are difficult in all respects and only confirm its highly central sight-
line and nearly orthogonal geometry – and our analysis depends on
the exactitude of neither. We therefore discuss the four modes in
turn below, beginning with the FN emission.

6.1 Flare-normal mode

As we saw in the bottom left-hand panel of Fig. 5, the PPA behaviour
is unusually complex in the central core region. There are two
distinct PPA ‘tracks’ belonging to the respective OPMs, and they are
not at all orthogonal in this region. The more prominent of the two
is the downward ‘diagonal’ track centred about +0.5 longitude that
must be associated with the SPM because it is centred at the same
PPA as the strong regions of PPM power that precede and follow it.
It traces the steep centre of a negative-going PPA traverse that starts
with the weak SPM ‘patch’ under the leading conal component at
+35° and ends with the similar one under the trailing component.
The second PPM traverse follows the average PPA through the
strong leading conal components, but there is so little PPM polarized
power in parts of the central core region that the full traverse cannot
be followed continuously; however, its full trajectory can be traced
as described above in the panels of Fig. 5. This combined with
the weak QN-mode analysis in Paper I leading to its fig. 8 fixes
the PPM traverse’s inflection point at a PPA of about +35° (in the
foregoing figure); whereas, that of the SPM is some −55°. Thus,
while the two OPM tracks follow the RVM closely, they are far from
orthogonal in the profile centre! We will argue below that this non-
orthogonality follows from the circumstance that the SPM emission
to include them. We will return to their interpretation below. This power was found to be associated with a handful of pulses having very strong SPM core emission, so we extended the boundary RVM) SPM samples just prior to 0 detail ing the segregated qualifying OPM points and boundaries. β sightline impact angle of 0.4 longitude. We therefore modelled the PPM traverse as reflecting an orthogonal magnetic latitude and a 3 centred at 0. Given the closeness of these two modal OPM-modal curves in the central region, we took the lower PPM boundary as 20◦ longitude. Then, we modelled the SPM track using the same RVM curve, but delayed by three 0.133 samples and shifted in PPA by 90◦. Given the closeness of these two modal OPM-modal curves in the central region, we took the lower PPM boundary as 20◦ above and the upper as 30◦ below the model SPM PPA curve. These boundaries and the qualifying samples are shown in Fig. 7 which is identical to the lower right-hand panel of Fig. 5 apart from the coloured points and curves detailing the segregated qualifying OPM points and boundaries. Finally, note the ‘patch’ of ostensibly positive-going (and non-RVM) SPM samples just prior to 0◦, most below the SPM boundary. This power was found to be associated with a handful of pulses having very strong SPM core emission, so we extended the boundary to include them. We will return to their interpretation below.

Figure 7. FN mode partial profile and OPM-segregation model after Figs 1 and 5 (lower right). Curves indicating the OPM boundaries are given in dash-dotted blue and ‘black (see text). The qualifying samples exceeding both total and linear power thresholds are shown in the lower panel. Most reflect partially polarized power and are shown in green (PPM) and red (SPM); whereas the fully polarized ones are shown in blue and cyan. The average PPA (solid black) curve follows the leading PPM power until about −1◦ longitude, at which point it diverts first to follow the positive-going ‘patch’ of non-RVM power and then the strong central ‘diagonal’ SPM traverse; whereas afterward it again diverts to follow the trailing PPM power. The SPM PPA track is incomplete because qualifying power is found only under the leading, core and trailing comps; whereas, the PPM track is so because only a few such samples are found in the core region. Nonetheless, note the few that do trace the PPM track in the region just above the central ‘diagonal’ SPM region.

shows evidence of substantial aberration/retardation (hereafter A/R) in the core region.

In practical terms, we found that the SPM track is delayed relative to the PPM one by about 0.4 longitude. We therefore modelled the PPM traverse as reflecting an orthogonal magnetic latitude and a sightline impact angle β of 0.5 centred at 0◦ longitude. Then, we modelled the SPM track using the same RVM curve, but delayed by three 0.133 samples and shifted in PPA by 90◦. Given the closeness of these two modal OPM-modal curves in the central region, we took the lower PPM boundary as 20◦ above and the upper as 30◦ below the model SPM PPA curve. These boundaries and the qualifying samples are shown in Fig. 7 which is identical to the lower right-hand panel of Fig. 5 apart from the coloured points and curves detailing the segregated qualifying OPM points and boundaries. Finally, note the ‘patch’ of ostensibly positive-going (and non-RVM) SPM samples just prior to 0◦, most below the SPM boundary. This power was found to be associated with a handful of pulses having very strong SPM core emission, so we extended the boundary to include them. We will return to their interpretation below.

By the above means the FN mode partial PS was segregated into its OPM constituents, and the results are shown in Fig. 8 (see also the two-way segregations in Fig. A2). Only polarized power can be distinguished, however, so the three displays show the respective polarization-modal fractions: PPM and SPM (upper left and right) as well as that for the residual unpolarized power (lower right). There is much to see in these plots: first, note that both the PPM and weaker SPM profiles are fully linearly polarized out to their outside edges, and the outside half-power width of the SPM profile is slightly greater than the PPM profiles as might be expected given the latter’s role in depolarizing the edges of the total profile. Note also that there is negligible SPM power under the inner conal components 2 and 4, although these features do appear in the UP fraction – thus the PPM is always dominant here though not fully linearly polarized.

Secondly, of greater import here, the preponderance of the core’s power is SPM emission, and this emission exhibits about equal amounts of antisymmetric (+/-; LH/RH) circular polarization. We see here again suggestions that the core has a weaker leading part in addition to its strong trailing portion – note the ‘triangular’ or unresolved-double forms of the core feature in the SPM and UP fractions. Some of this leading-edge core power is seen in the PPM fraction about −1◦ longitude as well as in the SPM fraction. Also this is just the region with the ostensibly positive-going ‘non-RVM’ SPM PPAs, and it tends to be more depolarized than adjacent regions.

6.2 Quiet-normal mode

The three modal fractions for the QN mode are given in Fig. 9 (see also the two-way segregations in Fig. A3), and there are few surprises. The PPM (upper left) clearly shows the negative excursion of its PPA under the core component. Overall the SPM is weaker under the entire profile. Its two outer conal features seem to be a bit wider than their PPM counterparts, power is again virtually absent under the two inner conal components, and the residual core power is just a noisy whisper in the profile centre. Somewhat counter-intuitively, the UP profile is well defined – this is because nine times more power accrues to it than to the SPM profile. Finally, note that the core power in both profiles falls a bit earlier than in the FN profiles, probably because those latter tend to include most of the stronger, later core samples.

6.3 Abnormal mode

The three-way OPM segregations for the Ab mode, seen in Fig. 10 (see also the two-way segregations in Fig. A4), show some similarities to the behaviours seen above in the FN mode, but are much more extreme. The core dominates its modal partial profile as can be seen in Fig. 6 and exhibits the same dual PPA tracks, the latter SPM one apparently indicative of A/R. In the modal segregations, the core power is divided mainly, and about equally, between the SPM and UP profiles, with some further earlier-falling PPM power in its profile. This reflects the relatively small fractional linear polarization-modal fractions. Some of this leading-edge core power is seen in the PPM fraction about −1◦ longitude as well as in the SPM fraction. Also this is just the region with the ostensibly positive-going ‘non-RVM’ SPM PPAs, and it tends to be more depolarized than adjacent regions.

2 These values differ slightly from those obtained from the fitted curves in Fig. 5, but their effects in segregating the modes are virtually identical.
Figure 8. FN mode three-way OPM segregations after Fig. 1 corresponding to the PPM (upper left), SPM (upper right) and UP (lower right) of the partial PS depicted in Fig. 5 (lower right). A threshold of 5 standard deviations in the off-pulse noise was used to build the PPM and SPM fractions, and thus they are nearly 100 per cent linearly polarized and the UP nearly unpolarized. Similarly, only samples with PPA errors less than 5° are plotted as dots in the lower panels. The 100 per cent intensity scales of the PPM, SPM and UP are 65, 24 and 33 per cent that of the FN partial profile, respectively, and the three respective profiles have 51, 11 and 38 per cent of the total power.

double structure of the SPM core, which is a factor in its asymmetric ‘triangular’ structure in the Ab partial profile.

Also dramatic and even mysterious is the huge change in the Ab mode’s profile structure. The profile seems to go from five to four components because components 4 and 5 appear to merge. Less remarked on, however, is another equally profound alteration: a new ‘component’ appears to fill in the region between component 2 and the core. We do not usually encounter pulsar emission components that disappear or appear, so how are we to interpret this effect? The FN SPM profile is very similar to its Ab counterpart here, only the latter is relatively about twice as strong. What is profoundly different about the B1237+25 Ab emission is the conal power distribution: here, the PPM emission in the trailing region of the profile is attenuated to almost negligible levels. And, the leading region brightens: only the component 2 region retains large fractional linear polarization, and the ‘empty’ region between component 2 and the core fills with bright PPM emission. It is almost as if the trailing PPM emission somehow shifts to the leading side in the Ab mode.

So, at least one thing is clear: components 4 and 5 do not disappear. Rather, PPM emission is greatly reduced in the trailing regions of the Ab-mode profile, and only in the PPM mode is a delineation of components 4 and 5 clear. What remains then is the SPM emission, and it only has a single component in the trailing region.

7 INTENSITY FRACTIONATION OF THE POLARIZATION MODES

We used the intensity-fractionation method (see Mitra et al. 2007 for its role in the analysis of pulsar B0329+54) to study the dynamics of the segregated profile mode and OPM emission. Three total-power plots summarizing this analysis are given in Fig. 11, but we also referred to corresponding sets of polarization profiles for each mode, level and OPM (Figs A5–A7). This analysis was carried out
on the FN (top), QN (middle) and Ab (bottom) modes. Five levels were used such that the PS was divided into five fractions according to the intensity in the central core (±3') region and then averaged to construct a profile.

The FN mode first alerted us to the interest of this analysis. The results, summarized in the top display of Fig. 11, show how the intensity of the emission throughout the profile varies for changes in the level within the central region. First, most of the variation in this central region is associated not with the core overall (blue) but with the SPM emission (red) within it. Remarkably, the SPM conal emission varies little, nor does the PPM power in either the core or conal regions. The SPM core emission therefore appears to be an independent process. Secondly, the brighter the SPM core emission, the broader and more fully antisymmetrically circularly polarized it is. Finally, the SPM core emission window appears to move earlier with larger intensity just as we had suspected above.

For contrast, we show the same analysis as applied to the QN mode in the middle panel of Fig. 11. Here we see only very weak variations in the central region as expected as well as small unsystematic variations in the OPM emission of the conal components. This is the mode in which the 2.7-\textit{P\textsubscript{1}} periodicity most prominently modulates the conal components.

It is for the Ab mode, however, that intensity fractionation is most revealing (bottom panel of Fig. 11). We can see clearly here how the very different SPM and PPM contributions join together to produce the core. The SPM, though, has the larger role, and that its emission moves earlier with larger intensity (while its PPA track shifts later, see Fig. A7) could not be clearer here. The earlier PPM part of the core emission is strange, as it spills over all the way to the leading inner cone component - a profile region that is relatively empty of emission in the other modes. This configuration almost suggests that the SPM core has a role in exciting the PPM core emission.

This ‘bridge’ between the second and core components is strongest by far in the Ab-mode PPM and is heavily correlated with the SPM core intensity. However, the shape of the ‘bridge’ remains the same at all intensity levels, which indicates a continuous and secondary emission process; see Fig. A7.

Finally, the lower panels of Fig. 11 provide a convenient means of comparing the forms of the QN and Ab modal profiles. Obviously, the outer conal (outside, half-power) width of the Ab profile is...
somewhat narrower. We can see that the PPM width of the outer conal components is narrower than the SPM width. The remaining major mystery is what happens to the inner conal emission. Note that even in the FN profile component 4 has lost some of its identity, but it is hardly absent! There is little to the FN core apart from its SPM emission, but in the Ab situation, it is almost as if the entire inner cone has been shrunk and thrown forward, so that the former component 4 becomes the ‘excited’ early portion of the Ab core.

8 CORE EMISSION DYNAMICS

The sequencing of modal changes has often been studied in an effort to decipher the physical processes behind them. In the present case short FN intervals seem to occur quasi-periodically every 40–80 or so rotations with FN intervals between them. Ab apparitions can be long or short, and close inspection of the sequences suggests that such Ab intervals may start and end with FN ones. The irregular or weak core activity and 2.7-\(P_1\) conal modulation characteristic of the FN mode seem to function as a transition to the Ab mode wherein core activity is constant and the conal modulation vanishes. FN intervals are always short, less than 20 pulses, and most ‘fizzle’ back to QN conditions. Most Ab intervals are also short, some are clearly identifiable in only 2–3 pulses, so it is unusual for the Ab mode to ‘get stuck’ and persist for 100–200 pulses. Similarly, Ab intervals often seem to decay into short FN sequences.

Obviously, the presence of core emission changes the dynamics of this pulsar. In the QN mode, the near absence of core emission appears to permit the formation of the fairly regularly spaced conal beamlets responsible for its long (50–60 pulse) intervals of phase-locked drifting subpulses in the outer and inner cones (e.g. Hankins & Wright 1980). In FN-mode episodes, the core of course is much brighter and the regular conal modulation persists; however, these episodes are shorter (5–15 pulses), and the core action is discontinuous with even the suggestion that it too is modulated at around the conal 2.7-\(P_1\) period. The SPM profile is slightly wider as can be seen in Fig. 8 and Table A1, with the shrinkage somewhat greater in the trailing two components. A close comparison of the QN and FN profiles in the figure and tables reveal as much as \(0.8\) shift in components 4/5, but only about \(0.2\) or less in components 1/2. (There is
The star’s drama, of course, is in its Ab mode where the core is not so much brighter as more consistent. It then dominates the Ab partial profile in Fig. 6 and develops a strong and balanced antisymmetric circular polarization signature (that is, as in Radhakrishnan & Rankin 1990). Its form, however, is canted with a slower rise than fall, apparently due to the complex admixture of its PPM and SPM portions (see Fig. 10) and the A/R-associated SPM power (Fig. 11, bottom panel). Both OPMs importantly configure the core’s power, and their respective dominance changes sharply at the deep L minimum in the above Ab partial profile at longitude -0.5.

Most perplexing have been the conal regions of the star’s Ab profile, which even seem to change from four to three components. The $2.7-P_1$ modulation in the conal region vanishes entirely in Ab intervals. Ab PSs can be short (some 10 pulses), but they can also persist for well over 100 pulses, during which they are punctuated by occasional nulls – thus some are well long enough to investigate for modulation. Again, the leading conal region is less transformed than the latter; components 1/2 retain their positions but there is more SPM power under the leading component. In the trailing region, by contrast, component 4 simply vanishes, in large part because the PPM power overall is greatly diminished, and the SPM profile narrows sufficiently on the trailing side that some workers have imagined the trailing feature to be a new component (see Fig. 10). The most puzzling feature, however, is the new power that fills in the formerly ‘empty’ region between component 2 and the core. The Ab emission here is so strong that it is tempting to regard it as a ‘new’ component, but such features are virtually unknown among pulsar profiles. Inspection of the PSs shows few peaks in this region, but rather a bright ‘filling in’ between the two components. Note also that this emission is nearly unimodal PPM radiation – such that it is almost as if the PPM radiation in the trailing portion of the Ab PSs was redirected to this earlier region (though we hasten to emphasize that we cannot imagine how this could be physically possible!).

The intensity-fractionated diagrams in Fig. 11 permit us to estimate the extent of the A/R quantitatively. Careful measurements of them show that in both the FN and Ab modes, the brightest SPM core emission arrives about 0.21 ± 0.03 earlier than the weakest. This value is somewhat smaller than the three-sample, 0.40 needed shift in the SPM model PPA traverse depicted in Fig. 7, thus it appears to be underestimated by this means. It is important to reemphasize that we see this effect in only a single OPM. The above 0.40 interval corresponds to 1.5 ± 0.5 ms, or a height difference of about 230 ± 80 km. If we interpret this effect as we did for pulsar B0329+54 (Mitra et al. 2007), then we are seeing evidence of a cascade or amplifying process along the magnetic axis.

Finally, Paper I noted that the width of B1237+25’s core component appears somewhat narrower than that expected according to the angular width of the polar cap $2.61 \left[= 2.45 P_1^{-1/2} \sin \alpha \right]$. Given the weakness of the core in the N modes, we might expect to see the fullest development of the core in the Ab mode, where the balanced antisymmetric V is also present. The measurements in Table A1 for this core are about 2.0 – still fully half a degree short of the expected value – but both are problematic: The shape of the core feature in Fig. 6 is oddly shaped for two reasons: first, it is canted earlier due to A/R and second, the separated OPMs in Fig. A4 reveal that the PPM power in the early part of the core is significantly weaker than the SPM intensity in the trailing core. Thus we might try to estimate the full width of the core/polar cap by taking the interval between the core’s SPM trailing half power point and the profile centre (the zero-crossing point of the antisymmetric V) and augmenting this by a differential shift in the OPM power.) Note also that the FN profile is more nearly symmetric – that is, its component 5 is stronger; however, its fractional linear is no larger, implying a larger contribution of SPM power under it. Finally, all the N-mode profiles have a broad low-intensity region between components 2 and 3, which is conspicuous as the most highly linearly polarized (nearly complete) region in the profile. High fractional linear implies that the emission is nearly unimodal, and indeed both the two- and three-way OPM segregations are relatively ‘empty’ of SPM emission here as well as in the inner cone regions of components 2 and 4.
the 0.40 of A/R determined above. Double this value gives a more satisfactory 2.66.

9 SUMMARY OF THE ANALYSIS

Pulsar B1237+25’s full core/double-cone geometry, relative brightness and highly central sightline traverse provide a rare opportunity to analyse and interpret its emission properties in unusual detail. In Paper I our emphasis was on examining its modal profiles; whereas, here we have been able to study the OPM properties and dynamics of its modal PSs.

Summarizing the pulsar’s basic properties then from both papers as follows:

(i) The pulsar has both an N and an Ab mode, wherein the core is relative weak/episodic and dominant, respectively. Within the former there are two contrasting core-region QN and FN normal behaviours.

(ii) Both the inner and outer conal component pairs are prominent in the N mode, exhibit the expected angular dimensions and are modulated at an approximately 2.7-P₁ P₅ such that the beamlets (or subpulses) within the inner and outer cones are phase locked with each other (see also Mann & Deshpande 2013).

(iii) The inner conal component pair is comprised largely of PPM emission as is much of the outer pair, though the exterior parts exhibit the usual effects in which their outer edges are strongly depolarized by SPM emission.

(iv) In the Ab mode the conal modulation vanishes, PPM power in the trailing conal components (4/5) decreases sharply, core emission becomes nearly constant and ‘new’ bright PPM emission fills the leading region between the leading inner conal component and the core region.

(v) The core emission is composed of both PPM and SPM constituents, such that the very steep expected average PPA traverse is disrupted, depolarized and exhibits the resulting (and unusual) four PPA inflections.

(vi) The QN, FN and Ab profiles have outer conal dimensions that become progressively slightly smaller.

(vii) The star’s cone and core null together in general, up to about 5 per cent of the time; however, the nulls in the N mode are about twice as frequent as those in the Ab mode. The N-mode nulls can persist for up to 5–6 pulses, whereas those in Ab PSs are rarely longer than a single period.

(viii) Nulling connects the core and conal emission: weak ‘sputtering’ is observed during both types of nulls and suggests they are pseudo-nulls; whereas the core involvement seems to indicate that the nulls represent cessations.

In the analysis above we have found or clarified the following properties.

(i) Geometry. Pulsar B1237+25 provides a canonical example of core/double conal emission-beam structure, wherein our sightline cuts both cones obliquely and passes well within 1° of the magnetic axis in the core region.

(ii) Carousel action. The regular 2.7-P₁ N-mode conal periodicity is primarily stationary amplitude modulation as expected from an oblique sightline geometry and thus seems to represent orderly rotating subbeam-carousel action in a pulsar that is very far from having an aligned geometry. Other pulsars with regular drifting subpulses (e.g. B0943+10 in Deshpande & Rankin) have closely aligned geometries. B1237+25, then, seems to indicate that orderly carousel action can occur in stars with more oblique geometries.

(iii) Propagation modes. We associate the main SPM portion of the core with the X propagation mode (as we did earlier for pulsar B0329+54). The PPM radiation is then O-mode radiation and subject to refraction.

(iv) Conal disruption by the core? Higher levels of core activity in this and other pulsars seem to disrupt the regular modulation in the core. Here, the 2.7-P₁ modulation seen strongly in the QN mode and also in the FN is absent in the Ab mode – that is, where the core emission is much more continuous. Also, the relatively symmetric inner and outer conal emission of the N mode is highly leading-side asymmetric in the Ab mode. Quenching of carousel action in the Ab mode appears to suppress conal emission in components 4/5.

(v) A/R. The trailing SPM (X) portion of the core exhibits strong intensity dependent and 0.40-delayed-PPA A/R, such that the most intense core subpulses are dominated by the SPM and arrive earlier by at least 0.21 in the FN and Ab, respectively – amounting to about a height difference range of some 250 km. This result is compatible with both our own earlier work on B0329+54 (Mitra et al. 2007) as well that of both Krishnamohan & Downs (1983) and McKinnon & Hankins (1993).

(vi) Core structure. Both OPMs contribute to core total power over most of its width; but in very different proportions. The leading portion of the core is marked by weaker PPM (O) power and the latter by strong A/R-associated SPM (X) emission. Both the FN and Ab partial profiles show L minima at about −0.5 longitude, a point nearly coinciding with the Stokes V/LHC maximum. Curiously, the antisymmetric Stokes V power is balanced despite the very different levels and dynamics of the respective PPM and SPM emission.

(vii) Ab profile structure. The Ab profile is reduced to four components because PPM power is greatly reduced in the trailing part of the profile – due probably to a failure of carousel action – causing the trailing inner conal component 4 to vanish. Though in most regions of the profile SPM power is more prominent in the Ab mode, PPM power increases dramatically in the regions between the leading inner conal component 2 and the core.

(viii) Ab ‘bridge’ structure. The Ab PPM ‘bridge’ emission between the leading inner conal component 2 and the core is highly correlated with the intensity-dependent A/R-associated SPM part of the core emission. The correlation is so strong as to suggest that the core has a role in producing this ‘bridge’ emission. Moreover, the ‘bridge’ emission’s linear polarization is essentially unimodal, suggesting that it is produced at high altitude above the polarization limiting region.

10 DISCUSSION

A major concern of this paper is to shed light on the characteristics of the core emission. Core emission is not well understood. While it is often the dominant source of radiation in a pulsar’s emission-beam system and seems to be ever more important for faster pulsars, it has so far been treated by no credible theory.

In B1237+25 the core exhibits three different behaviours, inactivity in the QN mode, irregular activity in the FN mode and con-
been successfully demonstrated for this star so far – that is, we have found no means to determine the carousel circulation time (CT) or its beamlet structure. Maan & Deshpande (2013) find strong indications of a CT, but hardly a consistent one. In any case, it seems probable that FN intervals so regularly interrupt the QN that its carousel is always in `recovery’ and few traces of a CT remain.

The brief, quasi-periodic episodes of FN mode appear to disrupt the conal order only moderately. However, they seem to bracket apparitions of the Ab mode and may have a role in exciting it. Moderately strong, irregular core emission is a defining property of the FN behaviour, and one of the key results of this analysis is its intensity-dependent SPM A/R. This is seen both in the manner that the total power is retarded and the PPA traverse delayed by some 0:40.

Even stronger core emission, of course, is characteristic of the Ab mode, and we determined that it is comprised of later stronger SPM and early weaker PPM radiation, and also that the former exhibits a nearly identical intensity-dependent A/R. This at least twice stronger core radiation appears to inhibit carousel action, enhancing the leading conal PPM emission at the expense of that in the trailing region, and filling the region between component 2 and the core with PPM emission that is highly intensity correlated with the core. How can this be?

In a previous analysis of pulsar B0329+54 (Mitra et al. 2007), we identified a similar A/R phenomenon associated primarily with the X-mode core emission of this pulsar, and we interpreted the effect as an accelerator or maser amplifier operating along the magnetic axis within the polar flux tube. And in that pulsar we also noted a ‘pedestal’ of (primarily O-mode) emission just leading the core. Thus, in both pulsars the `pedestal’ or component 2-to-core emission is associated primarily with the O mode and exhibits an intensity dependence. The two cores themselves, however, are both mixed mode, but the A/R is stronger in B0329+54’s X mode and apparently in B1237+25’s X mode as well. How can this be?

Pulsar B1237+25’s sightline traverse provides an unusually close view of its emission close to the magnetic axis. In generating the core emission, the pulsar’s ‘engine’ seems to produce X-mode (SPM) radiation at relatively low (∼1−200 km) altitudes in a cascade or amplifier manner such that higher intensities come from greater heights. This parent X-mode radiation then seems to undergo conversion to the O mode in a leading region of polar flux tube plasma, such that the conversion is nearly complete on the leading side and negligible on the other. Its antisymmetric circular polarization also may be generated in this conversion. This leading-edge, O-mode core radiation seems to be generated/converted at high altitude, seemingly above the polarization limiting height, thus its unimodal character. Moreover, it is subject to forward refraction, such that both effects retard its phase. At the highest intensities a combination of refraction and A/R thus result in some radiation filling the region between the inner conal component 2 and the core. If the two effects were comparable in ‘spilling’ O-mode radiation into the usually empty profile region about −2:5 prior to the magnetic axis, an altitude of some 1500 km would be indicated.

Finally, Petrova’s (2000) suggestion to the effect that core radiation may be inwardly refraction conal emission does not seem feasible for B1237+25. It is true that the core and cone null together as would be required. However, it is highly unlikely we believe that the core could exhibit its complex modal dynamics and intensity-dependent effects when the surrounding conal components show no hint of them.

DEDICATION

This paper is dedicated to the memory of our colleague, Professor Donald C. Backer of the University of California at Berkeley, who pioneered research into drifting, nulling and moding, importantly through study of this very pulsar.

ACKNOWLEDGEMENTS

Much of the work was made possible by support from the US National Science Foundation grants 08-07691 and 09-68296. One of us (JMR) also thanks the Anton Pannekoek Astronomical Institute of the University of Amsterdam for their hospitality and both the Netherlands National Science Foundation and ASTRON for visitor grants. Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation, and in alliance with Ana G. Méndez-Universidad Metropolitana and the Universities Space Research Association. This work made use of the NASA ADS astronomical data system.

REFERENCES

Backer D. C., 1976a, Nat, 228, 42
Backer D. C., 1976b, Nat, 228, 752
Backer D. C., 1976c, Nat, 228, 1297
APPENDIX A: PROFILE MEASUREMENTS, MODULATION AND MODAL SEPARATIONS

A1 Profile measurements

Measurements of the overall half-power widths, component widths and component positions are given in Tables A1 and A2. The values are of course most accurate when a particular component is relatively isolated. When not, we took the opportunity to accurately measure and then double the ‘freer’ half of the component, of course reporting it with a larger error. When neither ‘edge’ of a component was accessible, we estimated the position and width and marked the value with a larger error or as an approximation.

A2 Phase modulation, not drifting subpulses

In their extensive fluctuation-spectral analyses using their two-dimensional Fourier-transform technique Weltevrede, Edwards & Stappers (2006) and Weltevrede, Stappers & Edwards (2007) came to the conclusion that B1237+25 showed ‘drifting in opposite directions’ under its two outer conal components. Clearly, this is a strange result given the oblique manner in which the sightline cuts these components, so it is interesting to understand how these authors could have come to this conclusion. Of course, we cannot know what mode the pulsar was in when their observations were taken, but probably it was a mixed-mode PS, mostly N with a little Ab. In any case, we chose a QN interval with a particularly coherent 2.7-Ps modulation and analysed it in two ways. We first computed a display of the modulation phase such as that in Fig. A1 using the total power, and indeed it did show substantial phase ramps under the outer conal components. Then we computed the diagram above using the two-way PPM sequence, and this is the analysis in the figure. We then conclude that what the above authors saw was a polarization effect. Indeed, the OPM beamlets are offset in magnetic longitude as they rotate through the sightline, so some phase offset is expected (ET VII).

A3 Two-way segregations

The results of the two-way OPM segregations are given in Figs A2–A4 for the FN, QN and Ab modes, respectively.

Table A1. 327-MHz component widths.

<table>
<thead>
<tr>
<th>Profile // Components</th>
<th>Leading Outer (°)</th>
<th>Leading Inner (°)</th>
<th>Core (°)</th>
<th>Trailing Inner (°)</th>
<th>Trailing Outer (°)</th>
<th>Overall profile (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1.46 ± 0.03</td>
<td>1.56 ± 0.10</td>
<td>~2.0</td>
<td>≈2.5</td>
<td>1.96 ± 0.10</td>
<td>13.73 ± 0.07</td>
</tr>
<tr>
<td>Flare normal</td>
<td>1.45 ± 0.03</td>
<td>1.16 ± 0.10</td>
<td>1.99 ± 0.03</td>
<td>~2.4</td>
<td>2.02 ± 0.10</td>
<td>13.19 ± 0.07</td>
</tr>
<tr>
<td>PPM</td>
<td>1.44 ± 0.03</td>
<td>1.37 ± 0.10</td>
<td>–</td>
<td>~2.1</td>
<td>1.99 ± 0.10</td>
<td>13.16 ± 0.07</td>
</tr>
<tr>
<td>SPM</td>
<td>1.64 ± 0.03</td>
<td>1.40 ± 0.10</td>
<td>1.48 ± 0.03</td>
<td>–</td>
<td>2.55 ± 0.03</td>
<td>13.57 ± 0.07</td>
</tr>
<tr>
<td>Quiet normal</td>
<td>1.38 ± 0.03</td>
<td>1.34 ± 0.10</td>
<td>–</td>
<td>~2.0</td>
<td>1.56 ± 0.10</td>
<td>13.78 ± 0.07</td>
</tr>
<tr>
<td>PPM</td>
<td>1.37 ± 0.03</td>
<td>1.32 ± 0.10</td>
<td>–</td>
<td>~1.9</td>
<td>1.67 ± 0.03</td>
<td>13.76 ± 0.07</td>
</tr>
<tr>
<td>SPM</td>
<td>1.75 ± 0.03</td>
<td>1.08 ± 0.10</td>
<td>–</td>
<td>≈2.9</td>
<td>~1.9</td>
<td>14.44 ± 0.07</td>
</tr>
<tr>
<td>Abnormal</td>
<td>1.45 ± 0.03</td>
<td>1.63 ± 0.10</td>
<td>1.96 ± 0.03</td>
<td>–</td>
<td>2.49 ± 0.03</td>
<td>13.53 ± 0.07</td>
</tr>
<tr>
<td>PPM</td>
<td>1.38 ± 0.03</td>
<td>1.37 ± 0.10</td>
<td>–</td>
<td>~2.3</td>
<td>13.63 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>SPM</td>
<td>1.50 ± 0.03</td>
<td>–</td>
<td>2.07 ± 0.10</td>
<td>–</td>
<td>2.10 ± 0.03</td>
<td>13.41 ± 0.07</td>
</tr>
</tbody>
</table>

Notes: The widths of the pulsar’s components are often difficult to measure when they are not fully resolved. Thus the smallest errors are for isolated components; the larger errors reflect doubling the measurement of half the width; and those values without errors are estimates.

Table A2. 327-MHz component positions.

<table>
<thead>
<tr>
<th>Profile // Components</th>
<th>Leading Outer (°)</th>
<th>Leading Inner (°)</th>
<th>Core (°)</th>
<th>Trailing Inner (°)</th>
<th>Trailing Outer (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>−6.58 ± 0.05</td>
<td>−3.98 ± 0.10</td>
<td>+0.43 ± 0.10</td>
<td>+3.26 ± 0.10</td>
<td>+5.40 ± 0.10</td>
</tr>
<tr>
<td>Flare normal</td>
<td>−6.45 ± 0.05</td>
<td>−4.00 ± 0.05</td>
<td>–</td>
<td>+3.2 ± 0.2</td>
<td>+5.15 ± 0.05</td>
</tr>
<tr>
<td>PPM</td>
<td>−6.48 ± 0.05</td>
<td>−4.00 ± 0.05</td>
<td>–</td>
<td>+3.02 ± 0.20</td>
<td>+4.98 ± 0.05</td>
</tr>
<tr>
<td>SPM</td>
<td>−6.70 ± 0.05</td>
<td>−4.54 ± 0.20</td>
<td>+0.35 ± 0.06</td>
<td>–</td>
<td>+4.88 ± 0.05</td>
</tr>
<tr>
<td>Quiet normal</td>
<td>−6.66 ± 0.05</td>
<td>−4.07 ± 0.05</td>
<td>–</td>
<td>+3.35 ± 0.20</td>
<td>+5.64 ± 0.05</td>
</tr>
<tr>
<td>PPM</td>
<td>−6.69 ± 0.05</td>
<td>−4.06 ± 0.10</td>
<td>–</td>
<td>+3.22 ± 0.2</td>
<td>+5.58 ± 0.05</td>
</tr>
<tr>
<td>SPM</td>
<td>−6.64 ± 0.05</td>
<td>−4.38 ± 0.10</td>
<td>–</td>
<td>–</td>
<td>+5.70 ± 0.10</td>
</tr>
<tr>
<td>Abnormal</td>
<td>−6.33 ± 0.05</td>
<td>−3.73 ± 0.10</td>
<td>+0.42 ± 0.10</td>
<td>–</td>
<td>+5.1 ± 0.2</td>
</tr>
<tr>
<td>PPM</td>
<td>−6.29 ± 0.05</td>
<td>−3.68 ± 0.10</td>
<td>–</td>
<td>–</td>
<td>+5.2 ± 0.2</td>
</tr>
<tr>
<td>SPM</td>
<td>−6.88 ± 0.05</td>
<td>–</td>
<td>+0.40 ± 0.10</td>
<td>–</td>
<td>+5.1 ± 0.2</td>
</tr>
</tbody>
</table>
Here we used the same modal boundary adjustments as depicted in Fig. 7 above, but otherwise the segregations proceeded according to the algorithm described in the appendix of DR01.

A4 Three-way intensity-polarization segregations

Here, we give the full polarization information for each of the three PPM, SPM and UP segregations for each of the five intensity levels of the FN mode in Fig. A5, the QN mode in Fig. A6 and the Ab mode in Fig. A7. The model curves and other presentation are identical to that in the similar displays of the main paper.
Figure A3. QN mode two-way segregation, corresponding to Fig. 9 above. The 100 per cent intensity scales of the PPM and SPM are 80 and 20 per cent that of the QN partial profile in Fig. 5, respectively; and the respective profiles have 71 and 29 per cent of the total power.

Figure A4. Ab mode two-way segregation, corresponding to Fig. 10 above. The 100 per cent intensity scales of the PPM and SPM are 54 and 94 per cent that of the Ab partial profile in Fig. 5, respectively; and the respective profiles have 61 and 39 per cent of the total power.
Figure A5. FN mode intensity fractions.
Figure A6. QN mode intensity fractions.
Figure A7. Ab mode intensity fractions.

This paper has been typeset from a \TeX/LaTeX file prepared by the author.