Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions

Ketterle, W.; van Druten, N.J.

DOI
10.1103/PhysRevA.54.656

Publication date
1996

Published in
Physical Review A

Citation for published version (APA):
Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions

Wolfgang Ketterle and N. J. van Druten

Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 16 January 1996)

Bose-Einstein condensation (BEC) of an ideal gas is investigated for a finite number of particles. In three dimensions, we find a transition temperature which is lower than in the thermodynamic limit. Lowering the dimension increases the transition temperature and is therefore favorable for BEC. This is in contrast to the standard result obtained in the thermodynamic limit which states that BEC is not possible in, e.g., a one-dimensional (1D) harmonic potential. As a result, 1D atom traps, such as radially tightly confining magnetic traps or optical dipole traps, are promising for studying BEC.

\[\sum_{i=0}^{\infty} N(E_i) = N. \]

Degeneracy factors are avoided by accounting for degenerate states individually. The phenomenon of BEC for non-interacting particles is fully described by Eqs. (1) and (2). The nontrivial aspect is the determination of the chemical potential \(\mu \) as \(z = \exp(\beta \mu) \). It is determined by the constraint that the total number of particles in the system is \(N \):

\[N = \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} z^j \exp(-j \beta E_i). \]

for a 3D isotropic harmonic potential with frequency \(\omega \) we obtain

\[N = \sum_{j=0}^{\infty} \left(\sum_{n=0}^{\infty} \exp(-n \beta \hbar \omega) \right)^3 = \sum_{j=0}^{\infty} z^j(1-x)^3, \]

where \(x = \exp(-\beta \hbar \omega) \). Note that no special treatment is given to the ground state, in contrast to what is necessary with the continuous spectrum approximation [6].

In Fig. 1, the number of atoms in the ground state \(N_0 = z/(1-z) \), is plotted versus temperature for various values of \(N \). \(z \) was determined numerically from Eq. (4). The reference temperature \(T_0^0 \) is given by

\[T_0^0 = \left(\frac{N}{g_3(1)} \right)^{1/3} \frac{\hbar \omega}{k_B} \]

with the usual definition of the Bose functions \(g_3(z) = \sum_{j=1}^{\infty} (z/j)^3 \) [4]. Figure 1 demonstrates that the signature...
of BEC in systems with a small number of particles is very similar to the case of infinite number, the major difference being a shifted and smeared out onset of the macroscopic population of the ground state. The population of the first excited level is shown in Fig. 2. It reaches at most a few percent in systems of less than a thousand particles, and vanishes in the limit of large N. It has been argued that exchange interaction is necessary to prevent the macroscopic population of several states which are almost degenerate in the thermodynamic limit [12]. Figure 2 shows that, for $N \to \infty$, the population of the first excited state is negligible even in the absence of any interactions [10], provided that the limit is correctly taken by first calculating the properties for finite N and then letting N approach ∞.

To compare our results with the standard treatment, we approximate Eq. (4) for $k_B T \gg \hbar \omega$, retaining the two highest-order terms in $k_B T / \hbar \omega$. Since the sum in Eq. (4) diverges for $z \to 1$, one has to rewrite Eq. (4) as $N = z/(1 - z) + \sum_{j=1}^{\infty} z^j \left(\frac{1}{1/(1 - x^j)} \right)^3 - 1$ before applying the high-temperature expansion [13]. Formally, this corresponds to splitting off the ground-state population. The result is

$$N = \frac{z}{1 - z} + g_3(z) \left(\frac{k_B T}{\hbar \omega} \right)^3 + \frac{3}{\pi} \frac{g_2(z)}{z^2} \left(\frac{k_B T}{\hbar \omega} \right)^2. \quad (6)$$

At this point we briefly digress to describe the usual treatment of BEC in a 3D harmonic potential [6] in some more detail. Starting from Eq. (3), the ground-state population is split off, and the finite sum over the excited states is replaced by an integral

$$N - N_0 = \sum_{j=1}^{\infty} \int_0^\infty \rho(E) \exp(-j \beta E) dE \quad (7)$$

where $\rho(E)$ is the density of states, usually taken to be $(E/\hbar \omega)^3/2$. The result is

$$N = \frac{z}{1 - z} + g_3(z) \left(\frac{k_B T}{\hbar \omega} \right)^3. \quad (8)$$

The critical temperature T_c can now be found by setting $N_0 = 0$ and $z = 1$. The physical meaning of this is that the second term in Eq. (8) represents the maximum number of particles which can be accommodated in excited states when the fugacity z reaches its maximum value of 1. All particles exceeding this maximum number must condense in the ground state. This results in Eq. (5) for the critical temperature, and a condensate fraction given by

$$N_0 / N = 1 - \left(T / T_c \right)^3. \quad (9)$$

It is in fact possible to obtain the last term in Eq. (6) using this traditional approach: since the degeneracy of the state with energy $n \hbar \omega$ is $(n + 1)(n + 2)/2$, a better approximation for the density of states is $\rho(E) = \frac{1}{2} \left[(E/\hbar \omega)^3 + 3(E/\hbar \omega) \right]$. Inserting this expression into Eq. (7) yields Eq. (6). This shows that there is no fundamental difference between the use of discrete sums or a continuous spectrum if the density of states is correctly approximated. In Fig. 3, several approximations to the exact result are compared. Already for $N = 1000$, results obtained with Eq. (6) are almost indistinguishable from the exact result [Eq. (4)]. However, the contribution of the last term in Eq. (6) is important.

Strictly speaking, phase transitions only occur in the thermodynamic limit (e.g., for infinite N). That is why we have so far avoided using the term “phase transition,” but rather concentrated on the fraction of atoms in the ground state which can be exactly calculated even for the finite-N system. However, as was shown above, the behavior of the finite-N system is very similar to the thermodynamic limit, even for N as low as 10^3. Phase transitions are usually defined by singularities and critical behavior. In the case of BEC, the phase transition is characterized by the appearance of a complex order parameter (which can be identified with the condensate wave function) and the onset of off-diagonal long-range order [14]. For the finite-N system, we adopt the treatment described above [6], and take the macroscopic occupation of the ground state as the defining characteristic of the BEC phase transition. Note that in the recent experiments...
[1–3], the appearance of a macroscopic occupation of the ground state was also regarded as evidence for BEC. We thus define the transition temperature T_c for a finite-N system by

$$\sum_{i=1}^{\infty} \frac{1}{e^{E_i/k_B T_c} - 1} = N.$$ \hspace{1cm} (10)

Using approximation (6) results in a transition temperature

$$\frac{T_c}{T_c^0} = 1 - \frac{g_2(z)}{2} N^{-1/3} = 1 - 0.7275 N^{-1/3}. \hspace{1cm} (11)$$

For $N=1000$, the transition temperature is lowered by 7% compared to the usual result [Eq. (5)] extrapolated from $N=\infty$. To measure this finite-N effect is in reach of current experiments [1–3]. Equation (9) describes the condensate fraction very well even for finite N; however, it is important to use T_c [Eq. (11)] and not T_c^0 (Fig. 3).

All experiments on BEC of atomic gases were done in anisotropic parabolic potentials. The generalization of the above treatment to a potential with three different frequencies ω_i is straightforward, and yields the exact result

$$N = \sum_{j=1}^{\infty} z^j / \prod_{i=1}^{3} (1 - x_i^j), \hspace{1cm} (12)$$

with $x_i = \exp(-\beta \hbar \omega_i)$, and

$$N = \frac{z}{1-z} + g_3(z) \left(\frac{k_B T}{\hbar} \right)^3 \frac{1}{\prod \omega_i} + \frac{g_2(z)}{2} \left(\frac{k_B T}{\hbar} \right)^2 \prod \omega_i \sum \omega_i,$$

$$\prod \omega_i \hspace{1cm} (13)$$

for $k_B T \gg \hbar \omega_i$.

The correction term to the transition temperature in (11) has to be multiplied by $\frac{1}{2} \sum \omega_i / (\Pi \omega_i)^{1/3}$, which is $\gg 1$, i.e., anisotropy enhances the low-N decrease of the transition temperature.

A nice feature of the exact result Eq. (12) is that it is valid for arbitrary ω_i. It is therefore possible to study the freezing out of degrees of freedom and the transition from a 3D system to systems of lower dimensions. The 1D case is particularly interesting because the standard result is that BEC is not possible, based on the use of the continuous spectrum [7]. Assuming $k_B T \approx \hbar \omega_i$ for $i=1$ and 2, from Eq. (12) with $\omega = \omega_3$ and $x = \exp(-\beta \hbar \omega_3)$, we obtain

$$N = \sum_{j=1}^{\infty} z^j (1 - x^j) = \frac{z}{1-z} + \sum_{j=1}^{\infty} \frac{z^j x^j}{1-x^j}. \hspace{1cm} (14)$$

Figure 4 shows the fraction of ground-state atoms versus temperature for various N. Qualitatively, the “condensation phenomenon” looks very similar to the 3D case, clearly indicating that BEC exists in a 1D harmonic potential in contrast to previous predictions [7].

For $\varepsilon = \hbar \omega / k_B T \ll 1$, Eq. (14) is approximated by [15]

$$N = \frac{z}{1-z} + \sum_{j=1}^{\infty} \frac{\left[z \exp(-\varepsilon/2)\right]^j}{j} = \frac{z}{1-z} - \frac{k_B T}{\hbar \omega} \ln \left[1 - z \exp\left(-\frac{\hbar \omega}{2 k_B T}\right)\right]. \hspace{1cm} (15)$$

This approximation is already excellent for $N=100$. Equation (15) can also be obtained from Eq. (7) using $\rho(E) = 1/\hbar \omega$, and introducing $\hbar \omega/2$ as the lower limit of the integral to avoid the unphysical low-frequency divergence.

The transition temperature T_c is determined by

$$N = \frac{k_B T_c}{\hbar \omega} \ln \left(\frac{2 k_B T_c}{\hbar \omega}\right), \hspace{1cm} (16)$$

FIG. 3. Various approximations for the condensate fraction versus temperature for $N=1000$ atoms. (a) The exact result (solid line) is compared to the result obtained using Eq. (6) (short dashes) and Eq. (8) (long dashes). (b) Comparison with Eq. (9) (short dashes) and Eq. (10) with T_c replaced by T_c^0 (long dashes).

FIG. 4. The condensate fraction for a finite number N of atoms in a one-dimensional harmonic potential versus temperature. Plots are shown for $N=100$ (solid line), 10^2, 10^3, and infinite (dotted).
and the condensate fraction is $N_0/N = 1 - \frac{T \ln(2k_BT/h\omega)}{T_c \ln(2k_BT/h\omega)}$ with the logarithmic terms becoming negligible for large N.

In the limit of large N, the relation between the number of atoms and the transition temperature T_c in 1D is given by (16), in 2D it is [7] $N = (k_BT_c/h\omega)^2 g_2(1)$, and in 3D $N = (k_BT_c/h\omega)^3 g_3(1)$. This demonstrates that the general rule [implied by (10)], the tighter the confinement the higher the transition temperature for a given N, is still valid when degrees of freedom freeze out and the system becomes two or one dimensional. It is only the usual thermodynamic limit in d dimensions, which assumes $N \to \infty$ with $N\omega^d$ finite [5], which incorrectly predicts that BEC is not possible in a 1D harmonic potential.

A 2D box has the same density of states $\rho(E) \propto E$ as a 1D harmonic potential, and should therefore show identical behavior around the BEC transition. Using (7) with the energy of the first excited state as the low-frequency limit of the integral, we obtain the relation between N and T_c in a 2D box $N = (L/\Lambda)^2 \ln(L/\Lambda)$, compared to $N = (L/\Lambda)^3 g_3(1)$ in a 3D box of linear size L. $\Lambda = (2\pi^2/mk_BT)^{1/2}$ is the thermal de Broglie wavelength. Again, the number of atoms N needed to reach BEC at a given temperature T_c is lower in 2D than in 3D. However, the thermodynamic limit in d dimensions assumes $N \to \infty$ with N/L^d finite, resulting in a transition temperature of zero (or the absence of BEC) in 2D in this limit.

Our result on the possibility of observing BEC in a 1D atom trap is important for current experimental efforts. To achieve BEC in alkali vapors requires tight confinement in a magnetic trap. This was achieved using time-dependent magnetic fields [1], permanent magnets [2], or an optically plugged magnetic trap [3]. All these solutions entail quite some inflexibility for future experiments. The tightest confinement in a more conventional magnetic trap is achieved in the Ioffe-Pritchard configuration [16,17] with a very tight radial confinement. Transverse gradients of 500 G/cm and a bias field of 0.1 G result in a radial field curvature of 2.5×10^6 G/cm2 corresponding to an oscillation frequency for Na atoms in the $F=2$ hyperfine state of 4 kHz. The separation between radial oscillator levels is 200 nK. We therefore expect the radial oscillations to freeze out at temperatures which have been reached by evaporative cooling [1]. Below 100 nK the systems behaves as a 1D harmonic oscillator, but will still undergo BEC. For example, with an axial frequency of 5 Hz, one-dimensional BEC would happen at 50 nK with $N = 1060$. Another example of a highly anisotropic atom trap is the optical dipole trap [18,19]. In this case, transverse oscillation frequencies can be tens of kHz resulting in a transition from 3D to 1D dynamics at a temperature of about 1 μK.

In conclusion, we have discussed BEC in systems with a finite number of particles. It was shown that corrections due to the finite number are small, but observable in the case of a 3D harmonic oscillator. Highly anisotropic trapping configurations may correspond to a 1D harmonic oscillator or to a 2D or 1D box. In these configurations, BEC was predicted not to happen. We were able to show that this conclusion is only an artifact of the usual thermodynamic limit which does not apply to the situation realized in atoms traps where a finite number of atoms is given (instead of a linear density or a surface density).

We have restricted the discussion in this paper to the case of the ideal gas. It is well known that the inclusion of interactions between the particles profoundly changes the nature of the BEC phase transition [4], and is important for the occurrence of a macroscopic phase (i.e., of a broken symmetry). It would be very interesting to study how such interactions would affect the results presented here.

Note added: After submission of this work we learned that Eqs. (6) and (11) were derived independently by Grossmann and Holthaus using the density-of-state approach [20]. These authors have also discussed finite-N effects on BEC in a box potential [21,22]. For the case of the 1D harmonic potential, similar results were obtained by W. J. Mullin (private communication).

We are grateful to William Lichten for a discussion which triggered our interest in this subject, and to Kerson Huang for valuable comments. This work was supported by ONR, NSF, JSEP, and the Sloan Foundation. N.J.v.D. would like to acknowledge financial support from ’’Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’’ and support from NACEE.

[13] A formal expansion of the series in powers of je is possible because the high-j terms are negligible.
[15] The approximation $\exp(-je)(1-\exp(-je))=\exp(-je/2)/je$ is correct in first order in je, and maintains an exponential cutoff for large j.

