The transcriptomic signature of fasting
Sokolovic, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 4

The transcriptomic signature of fasting murine liver

Milka Sokolović ¹, Aleksandar Sokolović ¹, Diederik Wehkamp ², Emiel Ver Loren van Themaat ², Dirk R. de Waart ¹, Lisa A. Gilhuijs-Pederson ², Yuri Nikolsky ³, Antoine H. C. van Kampen ², Theodorus B. M. Hakvoort ¹, Wouter H. Lamers ¹

¹ AMC Liver Centre, Academic Medical Centre, Amsterdam, The Netherlands
² Bioinformatics Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
³ GeneGo, Inc., St. Joseph, MI, USA

submitted
Chapter 4

Abstract

Background

The contribution of individual organs to the whole-body adaptive response to fasting has not been established. Hence, gene-expression profiling, pathway, network and gene-set enrichment analysis and immunohistochemistry were carried out on mouse liver after 0, 12, 24 and 72 hours of fasting.

Results

Liver wet weight had declined 44, 5, 11 and 10% per day after 12, 24, 48 and 72 hours of fasting, respectively. Liver structure and metabolic zonation were preserved. Supervised hierarchical clustering showed separation between the fed, 12-24h-fasted and 72h-fasted conditions. Expression profiling and pathway analysis revealed that genes involved in amino-acid, lipid, carbohydrate and energy metabolism responded most significantly to fasting, that the response peaked at 24 hours and had largely abated by 72 hours. The strong induction of the urea cycle, in combination with increased expression of enzymes of the tricarboxylic-acid cycle and oxidative phosphorylation, indicated a strong stimulation of amino-acid oxidation peaking at 24 hours. At this time point, fatty-acid oxidation and ketone-body formation were also induced. The induction of genes involved in the unfolded-protein response underscored the cell stress due to enhanced energy metabolism. The continuous high expression of enzymes of the urea cycle, malate-aspartate shuttle, and the gluconeogenic enzyme Pepck and the re-appearance of glycogen in the pericentral hepatocytes indicate that amino-acid oxidation yields to glucose and glycogen synthesis during prolonged fasting.

Conclusion

The changes in liver gene expression during fasting indicate that energy production predominates during early fasting and that glucose production and glycogen synthesis become predominant during prolonged fasting.
Background

Fasting is accompanied, at the whole body level, by a decline in circulating glucose, triglycerides, cholesterol, and insulin levels [1]. The coping phase is characterized by a temporary increase in circulating free fatty acids [2] and a decline in protein degradation [3]. Extended fasting is accompanied by an increase in circulating corticosterone levels, a decline in whole-body protein synthesis, an increase in protein degradation and, consequently, an increase in urea production [4-6]. The question that arises from these findings concerns the contribution of individual organs to the whole-body adaptive response to fasting. Our previous study of the effects of fasting on the small intestine [7] suggested, in comparison with that of liver [8] and muscle [9-10], an organ-specific response to fasting. Our own study included both shorter and longer periods of fasting than earlier published studies [8-10]. The aim of the current study was, therefore, to determine the characteristics of adaptive profile in fasting mouse liver, using a genome- wide transcriptomics approach. The present study shows that the response of the liver peaks around 24 hours of food deprivation and has declined in strength towards 72 hours. The major components of the response were fatty-acid β-oxidation and ketone-body synthesis, and oxidative and energy metabolism during the first 24 hours of fasting, and glycogen synthesis and the urea cycle throughout the entire fasting period.

Results

Effects of fasting on liver structure

During the first 12 hours of fasting, mice lost ~12% of their body weight (that is, 24% if expressed on a per-day basis). Thereafter, weight loss remained steady at a rate of ~7% per day, so that mice had lost ~30% of their initial weight after 72 hours of fasting (Figure 1A). Note that we expressed daily differences in the rate of weight loss on a per-day basis to define a common denominator for the 12h- and 24h-fasted animals. Liver wet weight declined more than body weight (Figure 1A), especially during the first 12 hours of fasting, and amounted to 44, 5, 11 and 10% per day after 12, 24, 48 and 72 hours of fasting, respectively. After 72 hours, the liver had, therefore, lost almost 50% of its initial weight. The basic architecture of the liver lobules (Figure 1B, HA) and the zonation of gene expression as studied by the expression of glutamine synthetase and carbamoylphosphate synthetase (Figure 1B, GS and CPS) remained unaffected. Furthermore, we did not observe changes in the number of active caspase3-positive (apoptotic) cells at any of the time points studied (data not shown). These findings demonstrate that the pronounced loss of liver mass results from a 20% reduction in hepatocyte cell diameter.

Effects of fasting on metabolism

Ammonia levels had increased 2.0-, 3.7- and 5.2-fold after 24, 48 and 72 hours of fasting, respectively (P < 0.005; Figure 2A). Glucose and lactate concentrations remained stable until 48h of fasting, but decreased 34 and 43%, respectively (P < 0.05 and 0.005, respectively, Figure 2A) in the next 24 hours. Out of 20 amino acids measured in plasma, only serine, histidine and arginine had changed significantly in concentration after 12 hours of fasting: (-43, -22, and -14%, with P < 0.001, 0.006 and 0.02, respectively; Figure 2B and Supplementary Table 1, Additional file 1). At 24 hours
of fasting, the concentrations of asparagine, taurine, valine, isoleucine and phenylalanine were 20-50% higher, while those of serine, histidine, citrulline, alanine and tyrosine were 10-50% lower (with P-values ranging from < 0.02 to 5·10⁻⁷) than in fed animals. At 48 hours, only asparagine and taurine were 60 and 40% increased, respectively, while serine and glycine were ~50% decreased, all with P-values < 0.05). Asparagine and taurine were still increased at 72 hours (> 70%; P < 0.002), while citrulline (-18%; P < 0.024) and ornithine (−77%; P < 0.0005) declined in concentration.

Figure 1: Macro- and microscopic analysis of the fasting liver. A) Change in whole-body and liver weight during fasting as percentage of fed weight (n ≥ 8). Asterisks label significant changes (P < 0.01). The light and dark grey lines represent the daily percentual change in body and liver weight, respectively, with the percent weight loss per day shown on the secondary y-axis. B) Histology of fed and 72 hour-starved livers (upper and lower panel, respectively). The sections were stained with hematoxylin and azophloxin (HA), and for the presence of glutamine synthetase (GS; pericentral expression) and carbamoylphosphate synthetase (CPS; periportal expression). The figures show that lobular architecture and metabolic zonation are unaffected by fasting. Bars: 0.1 mm.
Fasting liver

Global gene-expression profile in the liver

To gain a comprehensive overview of the physiological response of the liver to fasting, whole-genome measurements were made. Compared to the fed group, 201, 504 and 119 transcripts, including expressed sequence tags and RIKEN sequences, met our boundary condition for significance (≥ 1.4-fold change with P < 0.01) after 12, 24, and 72 hours of fasting, respectively (Figure 3A; for a complete list of more than 1.4-fold up- or downregulated genes, see Additional file 2). The dendrogram generated by supervised hierarchical clustering (Figure 3B) shows a clear separation between fed and fasted conditions. Among the arrays coming from fasted animals, those from 72 hours stand out, while the branches of the two earlier time points are intertwined, indicating that expression profiles are rather similar after 12 and 24 hours of fasting. This is also reflected in the Venn diagrams where the overlap between 12 and 24 hours is larger than the overlap with 72 hours.

Figure 2: Changes in plasma metabolite concentrations during fasting. A) Glucose and lactate (mM, primary Y-axis), and ammonia concentrations (μM, secondary Y-axis) after 0, 12, 24, 48 and 72 hours of fasting. B) Adaptive changes in concentrations of a selection of amino acids during fasting (those without significant change between any two time points were left out). For all the metabolites measured: 8 < n < 12; bars represent SEM and the asterisks identify significant changes (P < 0.05) in comparison to the fed condition.
Global analysis reveals a strong early and an abated late response to fasting

We used GenMAPP and, in particular, MetaCore™ software to deduce the biological processes that change with an increasing duration of fasting from the liver transcriptome data. In MetaCore, the degree of association of the uploaded datasets with predefined metabolic pathways is defined by P-values, with lower P-values being more relevant. The expression of 465 genes that met our thresholds (56%) could be linked to the MetaCore™ suite. Their distribution across time points is shown in Figure 4A. The graphs show the numbers of unique, similar and common genes for all three, and for two initial time points separately, showing that the response to fasting at 24 hours was similar to, but more pronounced than that at 12 hours.

We performed gene-set enrichment analysis in three different functional ontologies using MetaCore™: cellular processes, biological processes and canonical pathways. Based on the Gene Ontology categorization of cellular processes, fasting predominantly affected the metabolic processes, in particular the carboxylic-acid metabolizing processes, lipid and glucose metabolism. The enrichment analysis for biological processes showed, more specifically, that genes involved in amino-acid, lipid, carbohydrate and energy metabolism responded most significantly to fasting (Figure 4B). The graph presents P-values as parameter of the likelihood that coordinate changes in the pathways shown were indeed present at the different time points of fasting. As statistical parameter, the P-value encompasses no variation. The changes in all processes except amino-acid metabolism showed a response that peaked at 24 hours after food withdrawal and declined thereafter. The response during the late phase of fasting was dominated by amino-acid metabolism, although lipid and carbohydrate metabolism remained significantly regulated. The Figure further reveals that the changes in energy metabolism were significant at 24 hours of fasting only. The common denominator of the overall fasting response was, therefore, metabolism of amino acids, carbohydrates, and lipids.
Figure 4: Adaptive changes in metabolic processes in the liver during fasting as analyzed by MetaCore™ software. A) The gene content imported to MetaCore™ is aligned between the time points. The parameters for comparison are ≥ 1.4 fold change and P < 0.01, and the annotation allowed for 56% of such genes to be linked. The unique genes changed at each of the time points are marked as colored bars (orange, blue and red for 12, 24 and 72 hours, respectively). The set of common genes, changed in all three conditions, is shown in blue-white hatching. The middle white box represents the similar genes (present in 2 out of 3 data points). The upper panel represents differentially regulated genes in all three time points of fasting, while the lower one shows uniquely and commonly differentially expressed genes for 12 and 24 hours of fasting. B) Five groups of metabolic processes changed significantly in response to fasting, with the response of all peaking at 24 hours. The Y-axis shows the significance of change, while the X-axis represents duration of fasting. The P-values of the pathways are calculated using the hypergeometric distribution, where the P-value represents the probability of a particular mapping by chance, given the numbers of genes in the set of all genes in pathways, genes in a particular pathway, and genes in the present experiment. The pathways are grouped into processes as defined in MetaCore™ (version 4.3, build 9787). The dotted line represents the 0.05 significance threshold.

Regulated pathways

Since the global analysis does not reveal a direction in the changes and lacks functional detail, we scrutinized the pathways with most pronounced regulation for functional implications. A list of the 10 top-scoring canonical pathways, shown in Table 1, points to gluconeogenesis, urea synthesis, and PPARα-regulated fatty-acid oxidation as the major characteristics in the response of the liver to fasting

Amino-acid catabolism and urea synthesis

Of all the pathways studied in the liver, the adaptive changes in amino-acid metabolism persisted throughout the fasting period (Figure 4B). Of the enzymes in this group, those of the urea cycle were upregulated at all three time points (Figure 5). Among the genes consistently affected were argininosuccinate synthetase 1 (Ass1, Assy; 3.7-, 2.5- and 4.5-fold upregulated) and argininosuccinate lyase (Asl, Arly; 5.0-, 5.8-, and 12-fold upregulated at 12, 24 and 72 hours, respectively. The first and rate-determining enzyme of urea cycle, carbamoylphosphate synthetase (Cps), was not represented on the microarrays, but its expression level, as estimated by qPCR, was increased 3.5-
fold at all 3 time points (manually added to Figure 5). Urea synthesis occurs in periportal hepatocytes, whereas ammonia detoxification via glutamine synthesis occurs pericentrally. Genes for the pericentral enzymes ornithine-aminotransferase (Oat) and proline dehydrogenase (Prodh), which provide glutamate for glutamine synthesis, were upregulated 2.5-, 3.0- and 3.0-fold and 2.1-, 2.5- and 2.0-fold at 12, 24 and 72 hours, respectively. Glutamine synthetase (Glns) itself was, however, not regulated.

Table 1: Top 10 canonical pathways influenced by fasting. Canonical pathways represent a set of about 500 signalling and metabolic maps in the MetaCore suit. All maps are drawn from scratch by GeneGo annotators and manually curated.

<table>
<thead>
<tr>
<th>pathway</th>
<th>pathway group</th>
<th>p-value</th>
<th>genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>glycolysis and gluconeogenesis</td>
<td>carbohydrate metabolism</td>
<td>2.32e-07</td>
<td>9/36</td>
</tr>
<tr>
<td>urea cycle</td>
<td>amino-acid metabolism</td>
<td>2.61e-07</td>
<td>8/27</td>
</tr>
<tr>
<td>PPARG regulation of lipid metabolism</td>
<td>regulation of lipid metabolism</td>
<td>3.57e-07</td>
<td>8/28</td>
</tr>
<tr>
<td>peroxisomal straight-chain FA 8-oxidation</td>
<td>lipid metabolism</td>
<td>2.51e-06</td>
<td>5/10</td>
</tr>
<tr>
<td>mitochondrial long-chain FA 8-oxidation</td>
<td>lipid metabolism</td>
<td>2.74e-06</td>
<td>6/17</td>
</tr>
<tr>
<td>metabolism of sulphur-containing amino acids</td>
<td>amino-acid metabolism</td>
<td>4.02e-06</td>
<td>6/18</td>
</tr>
<tr>
<td>peroxisomal branched-chain FA oxidation</td>
<td>lipid metabolism</td>
<td>8.04e-06</td>
<td>6/20</td>
</tr>
<tr>
<td>taurine metabolism</td>
<td>amino-acid metabolism</td>
<td>1.96e-05</td>
<td>6/23</td>
</tr>
<tr>
<td>mitochondrial unsaturated FA 8-oxidation</td>
<td>lipid metabolism</td>
<td>2.69e-05</td>
<td>5/15</td>
</tr>
<tr>
<td>TCA</td>
<td>amino-acid metabolism</td>
<td>1.25e-04</td>
<td>4/20</td>
</tr>
</tbody>
</table>

Remarkably, the expression of amino-acid catabolizing enzymes was barely affected by fasting. Only the degradation of branched-chain keto-acids (products of branched-chain amino-acid transamination elsewhere) was upregulated, as shown by the upregulation of acetyl-coenzyme A dehydrogenase, medium chain (Acaddm), enoyl-coenzyme A, hydratase/3-hydroxyacyl-coenzyme (Ehhadh), hydroxyacyl-coenzyme A dehydrogenase, short chain (Hadhscl), acetyl-coenzyme A acyltransferase 1 (Acacal), and 3-hydroxy-3-methylglutaryl-coenzyme A lyase (Hmgcl) – all within first the 24 hours (Figure 5). This finding suggests that the adaptations in amino-acid catabolism during fasting mainly occur outside the liver. Since neither glutamate-pyruvate transaminase nor ammonia-inducible liver glutaminase were upregulated, the capacity of the liver to deaminate the amino-carriers alanine and glutamine must have been sufficient.

TCA cycle and electron-transport chain

The strong induction of the urea cycle suggests a strong stimulation of amino-acid oxidation or gluconeogenesis. In agreement with this hypothesis, both the expression of enzymes of the tricarboxylic-acid (TCA) cycle and oxidative phosphorylation were induced in fasted liver, again mainly at 24 hours. Aconitase 2 (Aco2), isocitrate dehydrogenase 3β (NAD+) (Idh3b), oxoglutarate dehydrogenase (Ogdh), dihydrolipoamide S-succinyltransferase (Dlst), fumarate hydratase 1 (Fh1) and malate dehydrogenase 1 (Mdh1) were all upregulated at 24 hours of fasting (1.9-, 1.5-, 3.1-, 2.0-, 1.4- and 1.6-fold, respectively; Figures 5 and 6), indicating an increased capacity of the cycle. Dlst and Fh1 were 2.0 and 1.6 times induced at 12 hours of fasting, while Aco2 expression was also 1.8-fold increased at 72 hours.
Fasting liver

Figure 5: Amino-acid catabolism in fasting liver. The map created in the GenMAPP suite shows a comprehensive overview of amino-acid metabolism in response to fasting. Warm colours (yellow to red) represent downregulation, while cold colours (light blue to dark green) indicate an induction. Gray indicates no significant change. Genes not coupled to reporters on the array are shown in white. Genes represented by more than one sequence on the array are shown in dash-lined boxes, with the level of change depicted by the colored line surrounding the field. Each gene-box is split into 3 units, representing a change in expression after 12, 24 and 72 hours of fasting compared to fed animals.

In agreement with an increased capacity of the TCA cycle, the expression of the genes of the electron-transport chain was strongly stimulated (Figure 7). Four genes belonging to NADH-ubiquinone oxidoreductase complex: NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 10 (Ndufa10), NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 13 (Ndufa13), NADH dehydrogenase [ubiquinone] flavoprotein 1 (Ndufv1) and NADH dehydrogenase [ubiquinone] flavoprotein 2 (Ndufv2), were all approximately 1.6-fold upregulated. Expression of the genes of the ATP synthase complex, ATP synthase subunit α (Atp5a1), ATP synthase δ chain (Atp5d) and ATP synthase lipid-binding protein (Atp5g1), was 1.6-1.9-fold induced at 24 hours. Ubiquinol-cytochrome-c reductase complex core protein 1 (Uqcrcc1) was 2.2-fold upregulated after 24 hours, whereas the energy-dissipating uncoupling protein 2 (Ucp2) was 1.8-fold downregulated at this time point (Figure 8). Taken together, these data indicate that the capacity for ATP synthesis in the liver is strongly upregulated during the first day of food deprivation.
Phosphoenolpyruvate carboxykinase 1 (Pepck1), a key enzyme in the gluconeogenic route, was upregulated 2.0-, 2.5- and 2.7-fold on the microarrays and 3.2-, 3.2, and 2.9-fold in the qPCR mea-
measurements at 12, 24 and 72 hours of fasting, respectively (Figures 5, 6, and Table 2). Cytosolic glutamate oxaloacetate transaminase 1 (Got1) was also strongly upregulated at all three time points (5-, 6-, and 21-fold). In addition, malate dehydrogenase (Mdhh) and mitochondrial glutamate oxaloacetate transaminase (Got2) were induced (1.6- and 1.8-fold respectively). Together, these data suggest an increased capacity of the malate-aspartate shuttle across the mitochondrial membrane, which would accommodate an enhanced carbon flux from the mitochondria.

All other steps that were affected by fasting were shared by the glycolytic and gluconeogenic pathways and were regulated during the first day of fasting only (Figure 6). Phosphoglycerate mutase 1 (Pgama1) was 1.4-fold upregulated at 12 hours of fasting, while glucosephosphate isomerase 1 (Gpi1), aldolase 1A isoform (Aldoa), triosephosphate isomerase 1 (Tpi1), glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and enolase 1α (Eno1) were 1.5-, 1.7-, 1.5-, 1.7-, 2.1-fold upregulated at 24 hours of fasting, respectively. These data indicate that the enhanced capacity of the gluconeogenic pathway would largely depend on enhanced TCA and malate-aspartate cycling and that this adaptive response in gene expression might be restricted to a single day in the mouse.

Liver glycogen accumulation upon prolonged fasting

The near total return to "normalcy" of gene expression at 72 hours (only the genes for urea cycle enzymes, glutamate-synthesizing enzymes, and Pepck1 remained induced) was striking. Because glucose-6-phosphatase expression was not upregulated, we explored the possibility that glucose precursors were channelled into glycogen. As expected, (amylose-sensitive) periodic acid-Schiff (PAS) staining showed the complete disappearance of glycogen from the liver after 12 hours of fasting (Figure 9), but some staining had returned at 24 hours and intense staining was seen in 72-hours fasted liver. Whereas glycogen was localized around the portal veins in fed liver, it was deposited exclusively around the central veins after 72 hours of fasting, with sharp borders towards the empty cells.

Fatty-acid catabolism and ketone-body synthesis

The enhanced expression of fatty-acid catabolizing enzymes was also limited to the initial phase of fasting. The expression of the transcription factor Ppara, a major regulator of fatty-acid oxidation, was 2.1-fold upregulated at 24 hours of fasting (Figure 8). Furthermore, the mitochondrial carnitine/acylcarnitine fatty-acid translocase (Cac or Slc25a20) was 1.6-fold upregulated at 12 hours, while carnitine palmitoyltransferase 2 (Cpt2) was 1.8-fold upregulated at both 12 and 24 hours of fasting. The 4 acyl-coenzyme A dehydrogenases (Acad -v, -l, -m and -sh), involved in oxidation of very long, long-, medium- and short-chain fatty acids, were all upregulated in the first 24 hours of fasting (1.5-2.6 fold). The β-subunit of the trifunctional protein (Hadhb) was 2- and 2.1-fold upregulated at 12 and 24 hours, respectively, while another subunit, hydroxyacyl-coenzyme A dehydrogenase, short chain (Hadhscl) showed increased expression after 24 hours of fasting only, indicating altogether a strong stimulation of fatty-acid oxidation at the gene-expression level during the first day of fasting.
Figure 7: Electron-transport chain.
Experimental data are visualized on a MetaCore map as blue (for down-regulation) and red (upregulation) histograms (‘thermometers’). The height of the histogram corresponds to the relative expression value for a particular gene, with numbers 1, 2 and 3 representing 12, 24 and 72 hours of fasting, respectively. A legend for the MetaCore™ canonical pathways is provided in Supplementary MetaCore legend.

The expression of HMGCoA synthase 2 (Hmgcs2) was also strongly stimulated during the first day of fasting (3.4- and 2.9-fold at 12 and 24 hours respectively; Figure 5), indicating an increased capacity of the synthesis of ketone bodies from acetyl-CoA. This process is further facilitated by increased expression of genes involved in branched-chain keto-acid degradation (Acadm, Hadhsc and Ehhadh; see section on amino-acid catabolism) at 12 and 24 hours. Among the genes involved in fatty-acid synthesis, enoyl coenzyme A hydratase A hydratase domain containing 3 (Echdc3) was 1.6 and 1.7-fold downregulated at 12 and 24 hours, while stearoyl-coenzyme A desaturase 1 (Scd1) showed a 2.6-fold decrease in expression at 72 hours of fasting.

These data underscore the importance of enhanced lipid catabolism in the liver, which, in the mouse, apparently occur during the first day of fasting only.
Oxidative stress and unfolded protein response

The enhanced expression of TCA cycle and oxidative-phosphorylation enzymes often causes oxidative stress. Indeed, cytosolic superoxide dismutase (Sod1) was 2.2-fold upregulated after 24 hours, and the early growth response protein 1 (Egr1), its transcriptional regulator [11], 2.9-fold. Furthermore, catalase (Cat) and stress-regulated mitogen-activated protein kinase 14 (Mapk14) were both 1.4-fold upregulated at this time point. In addition, metallothionein 1 gene, known to be involved in protection against oxidative stress and metal toxicity [12], was intensely upregulated (8.6-, 5.5- and 13.5-fold, at 12, 24 and 72 hours, respectively).

Interestingly, the 3 top-scoring processes obtained from a biological-process enrichment analysis all belonged to the unfolded-protein response (endoplasmic reticulum (ER) stress). To present the relevant data in a single figure, we created a network using the shortest-path algorithm (Figure 10). The resulting network provides links based on the known interaction data between the nodes from the query data set, and also between the nodes that regulate the given genes or metabolites. It shows 8 heat-shock and 6 other proteins, all upregulated 1.5-2.5 fold, indicating upregulation of this stress-response pathway in fasted liver. Downstream of the ER stress pathway, proteasome degradation was also upregulated, but again only after 24 hours of fasting (Figure 11). A list of these and some additional genes regulated in the ER stress and proteasome degradation, with their change level, is shown in Table 3.

Discussion

In the liver, fasting induces a pronounced decline in cell size (to ~50% after 3 days) rather than a loss of cell number. In addition, the liver’s metabolic zonation in upstream, perportal and downstream, pericentral regions remains intact. These findings indicate that the liver can quickly resume its homeostatic functions once feeding resumes. Our microarray data show that the adaptive response of the liver to fasting at the level of gene expression is most pronounced during the early phase, with ammonia detoxification and gluconeogenesis persisting up to 72 hours of fasting. Since the technically similar study of Bauer et al. [8] reported fed enhanced expression of lipid catabolizing and urea-cycle enzymes after 24 and 48h of fasting, the collective data show that the response to fasting in the liver starts already at 12 hours of fasting and becomes maximal between 24 and 48 hours.

The expression of genes involved in lipid metabolism and ketone-body synthesis, many under PPARα coordination [13], were strongly regulated towards fatty-acid oxidation and ketone-body formation. Interestingly, this adaptive response was seen between 12 and 48 hours [8] of fasting only and then faded out. In the rat, this response was recently reported to occur between 3 and 5 days of fasting [14]. Fatty-acid oxidation was accommodated by the identical time frame of the upregulation of the expression of TCA-cycle enzymes and the proteins of the electron-transport chain in response to fasting. The associated oxidative stress and mitochondrial radical formation was apparently sufficiently strong to induce the unfolded-protein (ER stress) response, which, to our knowledge, has not been linked to fasting thus far.
On the opposite page

Figure 8: PPARα regulation of lipid metabolism in fasting. The figure description is the same as in Figure 6.

Figure 10: The unfolded-protein response in fasting. The network was generated and linked with available experimental data in the MetaCore™ suite. Nodes with red or blue circles in top right corner of the network objects, represent up- or down-regulation, respectively, with the shade indicating the intensity of the change. Detailed legend for MC networks is provided in Supplementary MetaCore legend, page 97)

Table 2: Comparison of intestinal and liver *Pepck1* expression in fasting by qRTPCR, expressed in relative units after normalization by 18S expression (n = 6).

<table>
<thead>
<tr>
<th>time (h)</th>
<th>small intestine</th>
<th>liver</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
<td>85</td>
<td>0.21</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>278</td>
<td>0.05</td>
</tr>
<tr>
<td>24</td>
<td>51</td>
<td>277</td>
<td>0.18</td>
</tr>
<tr>
<td>72</td>
<td>128</td>
<td>247</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 3: Genes involved in the protein-folding response and oxidative stress that are regulated by fasting.

<table>
<thead>
<tr>
<th>gene name</th>
<th>gene symbol</th>
<th>12h</th>
<th>24h</th>
<th>72h</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH receptor-interacting protein</td>
<td>Aip</td>
<td>-1.78</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>cyclic AMP-dependent transcription factor ATF-4</td>
<td>Atf4</td>
<td></td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>Calreticulin precursor</td>
<td>CalR</td>
<td></td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>DnaJ homolog subfamily A member 1</td>
<td>Dnaja1</td>
<td></td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>glutaredoxin-1</td>
<td>Gdxr</td>
<td></td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>heat shock protein HSP 90β</td>
<td>Hsp90ab1</td>
<td>2.06</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>endoplasmin precursor</td>
<td>Hsp90b1</td>
<td></td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>78 kDa glucose-regulated protein precursor</td>
<td>Hspa5</td>
<td>2.31</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>heat-shock cognate 71 kDa protein</td>
<td>Hspa8</td>
<td>2.75</td>
<td>2.76</td>
<td></td>
</tr>
<tr>
<td>heat-shock protein β-1</td>
<td>Hspb1</td>
<td></td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>heat-shock protein β-8</td>
<td>Hspb8</td>
<td></td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>60 kDa heat-shock protein, mitochondrial precursor</td>
<td>Hspd1</td>
<td></td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>heat-shock protein 105 kDa</td>
<td>Hsp1</td>
<td></td>
<td>2.37</td>
<td></td>
</tr>
<tr>
<td>ubiquitin C</td>
<td>Ubc</td>
<td>2.86</td>
<td>2.07</td>
<td>4.49</td>
</tr>
<tr>
<td>ubiquitin-conjugating enzyme E2B</td>
<td>Ube2b</td>
<td></td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>protease (prosome, macropain) 26S subunit, ATPase 1</td>
<td>Psmc1</td>
<td></td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>protease (prosome, macropain) 26S subunit, ATPase 4</td>
<td>Psmc4</td>
<td></td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>protease (prosome, macropain) 26S subunit, ATPase 5</td>
<td>Psmc5</td>
<td></td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 4</td>
<td>Psmd4</td>
<td></td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 11</td>
<td>Psmd11</td>
<td></td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 13</td>
<td>Psmd13</td>
<td></td>
<td>2.08</td>
<td></td>
</tr>
</tbody>
</table>
The urea-cycle enzymes distinguish themselves from most other genes in the liver in that they were upregulated in expression throughout the period of fasting that was studied. Furthermore, cytosolic glutamate-oxaloacetate transaminase, which mediates the availability of aspartate to the urea-cycle enzyme argininosuccinate synthetase, was also strongly upregulated at 72 hours. The increased circulating ammonia level after 24 hours and longer of fasting also suggests a high flux through the urea cycle. Similarly, Oat and Prodh, which supply glutamate to glutamine synthetase for glutamine synthesis in pericentral hepatocytes, were strongly upregulated at all time points studied, but glutamine synthetase itself was not regulated (and even downregulated in another study [8]). Since few amino-acid catabolizing enzymes were upregulated (the exception being the metabolism of sulphur-containing amino acids), most amino-groups were probably carried to the liver as alanine or glutamine, although neither glutamate-pyruvate transaminase nor liver glutaminase was upregulated. The coordinate control of ammonia detoxification and the source of ammonia during prolonged fasting therefore deserve attention.

The role of the liver in gluconeogenesis during fasting is well documented [15-17]. However, the expression of enzymes associated with gluconeogenesis was upregulated only during the first day of fasting and was mainly confined to the malate-aspartate shuttle and Pepck1. In fact, apart from Pepck1, the expression of none of the committed steps in gluconeogenesis was regulated. Although it is likely that the enhanced expression of TCA-cycle and malate-aspartate shuttle enzymes, and the enhanced expression of Pepck1 will enhance the flux towards glucose-6-phosphate, it is remarkable that the expression of glucose-6-phosphatase is not regulated. The pronounced accumulation of glycogen in pericentral hepatocytes indeed indicates that pericentral hepatocytes, which do not express glucose-6-phosphatase, channel glucose-6-phosphate towards glycogen. Since all relevant enzymes are also expressed in periportal hepatocytes, which do not accumulate glycogen, we assume that these hepatocytes contain enough glucose-6-phosphatase to produce glucose.

On the pposite page
Figure 11: Proteasome degradation in fasting. The color code of the GenMAPP view is the same as in Figure 4.
Supplementary MetaCore legend – for the pathways and the network created in MetaCore suite shown in the Figures 7, 8 and 10.
Figure 11

MetaCore legend
Interested by the report that intestinal *Pepck1* expression in fasting is no more than 0.5% of that in the liver [18], even though this gene is strongly upregulated by fasting in the intestine as well [7], we compared its expression in these two organs by qPCR in the fed and 3-days fasting condition (Table 2). At 12 hours of fasting, *Pepck1* expression in the gut was indeed only ~5 % of that in liver. However, intestinal *Pepck1* expression increased to 18 and 53% of that in the liver after 24 and 72 hours of fasting, respectively, indicating that PEPCK levels at 72 hours are sufficiently high to support a gluconeogenic flux.

Conclusions

Based on the whole-body energy expenditure, the “sugars-fats-proteins” sequence of energy substrates during fasting was suggested [3, 19]. In our extensive microarray studies of the response to fasting in the gut [7] and liver (present study), we found no support for this intuitively attractive model, even though both organs lost 50% of their initial weight during 3 days of fasting, mostly by reducing the size of the parenchymal cells. Nevertheless, the intestine showed a pronounced peak of adaptive metabolic changes at 12 hours of fasting, while many of the early adaptive changes had abated by 24 hours. Thereafter, the expression of amino-acid catabolizing and gluconeogenic enzymes gradually increased. The liver markedly differed from this response pattern in that its adaptive response peaked at 24-48 hours of fasting, while most adaptive changes had abated by 72 hours. Work in progress indicates that each organ mounts its own specific response to fasting and that some organs, in particular the brain, are spared until the very end.

Methods

Animals and tissues. Livers were harvested from the same mice that were used to study the effects of fasting on the small intestine [7]. Briefly, 6 week-old male FVB mice (Charles River, Maastricht, The Netherlands) were fasted for 0, 12, 24, or 72 hours before sacrifice (N ≥ 8 per group). The animals were kept in metabolic cages to prevent the consumption of bedding and were kept warm with an infrared lamp. Body weight was determined daily. The daily rate of body or organ mass loss was calculated as described [20]. The animals were sacrificed between 9:00 and 10:00 a.m. by cervical dislocation. The liver was isolated quickly, freed from the gall bladder, cut into pieces and either snap-frozen in liquid N\(_2\) and stored at -80°C, or fixed overnight at 4°C in 4 % buffered formaldehyde or a mixture of methanol, acetone, and water (2:2:1 by volume). The study followed the Dutch guidelines for the use of experimental animals and was approved by the AMC Animal Experiments Committee.

RNA isolation and quantification. Total liver RNA was extracted from frozen tissue with TRIzol reagent (Invitrogen, Breda, The Netherlands). The RNA quality was assessed using the RNA 6000 Nano LabChip™ Kit in an Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, USA). Additional mRNA quantification for *Cps* (not present on the microarray) and *Pepck* was performed by qPCR, as described [21]. The gene-specific primer sequences are shown in Supplementary Table 2 (Additional file 1). mRNA concentration was calculated using the LinReg program [22]. The significance of the
qPCR data was assessed by Student’s t-test. The qPCR validation of the changes derived from the microarray read-outs was reported previously [7].

Microarrays. Three microarrays (Mouse Development Oligo Microarrays G4120A; 22K; Agilent) per experimental condition and a robust reference design were used [23]. Per microarray, 20 µg mRNA, pooled from 2 livers, was reverse transcribed with Cy3-labelled dCTP (Perkin Elmer, Boston, USA), using the Agilent Fluorescent Direct Label Kit. Cy5-labeled cDNA, produced from RNA pooled from the livers of 6 fed animals, served as the common reference across all arrays. Hybridized cDNAs were detected with Agilent’s dual-laser microarray-slide scanner and the data retrieved with Agilent’s Feature Extraction software 6.1.1.

Data analysis. The data were processed and analyzed as described [7]. In brief, background-subtracted intensities were calculated using foreground and background median signals, and normalized with the quantile normalization method. An ANOVA model was applied to the common reference channel only, to remove outliers and local artefacts, and detect non-uniform hybridization [24]. Differentially expressed genes were identified with the Split-Factor ANOVA directly by comparing the green (experimental) and red (reference) signals, and indirectly, across-arrays, by comparing the Cy3 signals of starved and fed animals. A consensus between the direct and across-array ANOVA ensures that the final results do not suffer from either dye-gene effects or array-specific noise. Genes that received a concordant significance call in 2 out of 3 microarrays (P < 0.01) from both the direct and across-array split-factor ANOVA were taken into further consideration. Given the high sensitivity of Agilent arrays [25], we opted for 1.4-fold change as inclusion criterion for a gene.

To perform cluster analysis, Pearson correlation was set as distance measure and complete linkage as agglomeration method. The normalized log-ratio (Cy5/Cy3) expression values of the top 500 most differentially expressed genes between fasted and normal fed mice were used to calculate the correlation between samples. R/Bioconductor [26] was used to create the clusters.

Pathway, network and gene-set enrichment analyses were applied system-wide, using the MetaCore™ suit (GeneGo, Inc., St. Joseph, MI, USA) [27, 28]. The significance of changes in expression in pathways or networks is based on the degree of overlap between the user’s dataset and a set of genes corresponding to a network or pathway queried. The problem is cast as the probability that a randomly obtained overlap of a certain size between the user’s set and a network/pathway follows a hypergeometric distribution. Additionally, pathway analysis and visualisation was performed using GenMAPP [29] (2.0 β-version) software (Gladstone Institutes, UCSF, San Francisco, USA). In all applications, P < 0.01 and ≥ 1.4-fold change were used as inclusion criteria.

To assess the significance of the results other than microarray data, ANOVA and Student’s t-test were employed. The error bars in the figures represent the standard error of the mean (SEM).

Histology and immunohistochemistry. Sections were stained with hematoxylin and azophloxine, or immunohistochemically as described [7, 30]. Monoclonal anti-glutamine synthetase (Transduction Laboratories, Lexington, KY) and polyclonal anti-carbamoylphosphate synthetase (CPS, [31]) anti-
bodies were used. Antibody binding was visualized with goat anti-mouse or goat anti-rabbit IgG, both coupled to alkaline phosphatase (Sigma).

Periodic acid-Schiff (PAS) staining was performed to visualize glycogen in the liver. The sections were incubated for 30 minutes in 0.5% periodic acid, followed by incubation in Schiff’s reagent for 30 minutes, and counterstained in haematoxylin for 6 minutes. The identity of glycogen was verified by predigesting a serial section with 0.1% α-amylase for 45 minutes prior to staining.

Biochemical measurements. Blood ammonia levels were determined immediately after collecting blood from the caval vein, using Ammonia Checker II (model AA-4120, Kyoto Daiichi Kagaku Co., Japan) and the corresponding Ammonia test kit II (Arkray, Inc., Japan). For determination of free amino acids, 10 μL of plasma (blood was collected in heparin-containing tubes, and centrifuged for 5 min at 14,000 rpm at 4°C) was mixed with 0.8 mg of lyophilized sulphosalicylic acid, centrifuged, and the supernatant stored at -80 °C. Amino-acid analysis was performed using a gradient reverse-phase HPLC system, with precolumn derivatization with o-phtaldehyde (Pierce) and 3-mercaptopyruvic acid (Sigma), and fluorescence detection [32]. Separation was performed using an Omnisphere 3 column (Varian, Middelburg, The Netherlands).

For glucose and lactate measurements, plasma was acidified with 1 volume 2M (12%) perchloric acid, centrifuged for 15 minutes, and neutralized with 1M MES/2M KOH. Plasma glucose and lactate concentrations were measured enzymatically, using the NOVOstar reader (BMG Labtech GmbH, Offenburg, Germany).

Authors’ contributions

MS carried out the biological part of the study and prepared the manuscript. AS contributed to the biological part of the research. DRdW performed a part of biochemical measurements. DW designed and carried out the bioinformatics analysis of the data, together with LGP and EVLtV. AvK supervised this part of the study. YN supported the data analysis in the MetaCore suite. TH and WL supervised the biological part of the study.

Acknowledgements

This work was supported by the Dutch Ministry of Economic Affairs through the Innovative Oriented Research Program on Genomics (IOP Genomics: IGE01016). EVLtV was supported by the FP6 European Union Project ‘Peroxisome’ LSHG-CT-2004-512018.
Abbreviations

\textbf{Acaa1} – acetyl-coenzyme A acyltransferase 1
\textbf{Acad/-v, -l, -m, -sh} – acetyl-coenzyme A dehydrogenase/very long, long, medium and short chain
\textbf{Acaaddm} – acetyl-coenzyme A dehydrogenase, medium chain
\textbf{Aco2} – aconitase 2
\textbf{Aip} – AH receptor-interacting protein
\textbf{Aldoa} – aldolase 1A isoform
\textbf{ANOVA} – analysis of variance
\textbf{Asl, Arly} – argininosuccinate lyase
\textbf{Ass1, Assy} – argininosuccinate synthetase 1
\textbf{Atf4} – Cyclic AMP-dependent transcription factor ATF-4
\textbf{Atp5a1} – ATP synthase subunit α
\textbf{Atp5d} – ATP synthase δ chain
\textbf{Atp5g1} – ATP synthase lipid-binding protein
\textbf{Cac, Slc25a20} – carnitine/acylcarnitine fatty-acid translocase
\textbf{Calr} – calreticulin precursor
\textbf{Cat} – catalase
\textbf{Cps} – carbamoylphosphate synthetase
\textbf{Cpt2} – carnitine palmitoyltransferase 2
\textbf{Cy3, Cy5} – fluorescent dyes of the cyanine dye family
\textbf{Dlst} – dihydrolipoamide S-succinyltransferase
\textbf{Dnaja1} – DnaJ homolog subfamily A member 1
\textbf{Echdc3} – enoyl coenzyme A hydratase domain containing 3
\textbf{Egr1} – early growth response protein 1
\textbf{Ehhadh} – enoyl-coenzyme A, hydratase/3-hydroxyacyl-coenzyme
\textbf{Eno1} – enolase 1α
\textbf{ER} – endoplasmic reticulum
\textbf{Fh1} – fumarate hydratase 1
\textbf{Fh1} – fumarate hydratase 1
\textbf{Fh1} – fumarate hydratase 1
\textbf{Gapdh} – glyceraldehyde-3-phosphate dehydrogenase
\textbf{Glrx} – glutaredoxin-1
\textbf{Got1} – glutamate-oxaloacetate transaminase cytosolic
\textbf{Got2} – glutamate-oxaloacetate transaminase mitochondrial
\textbf{Gpi1} – glucosephosphate isomerase 1
\textbf{GS, Glns, Glu} – glutamine synthetase
\textbf{HA} – hematoxylin, azophloxin
\textbf{Hadhb} – trifunctional protein, β-subunit
\textbf{Hadhsc} – hydroxyacyl-coenzyme A dehydrogenase, short chain
\textbf{Hmgcl} – 3-hydroxy-3-methylglutaryl-coenzyme A lyase
\textbf{Hmgcs2} – 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2
\textbf{Hsp90ab1} – heat shock protein HSP 90-beta
\textbf{Hsp90b1} – endoplasmin precursor
\textbf{Hspa5} – 78 kDa glucose-regulated protein precursor
Chapter 4

Hspa8 – heat shock cognate 71 kDa protein

Hspb1 – heat-shock protein beta-1

Hspb8 – heat-shock protein beta-8

Hspdv – 160 kDa heat shock protein, mitochondrial precursor

Hsp1 – heat-shock protein 105 kDa

ldh3b – isocitrate dehydrogenase 3β (NAD+)

KOH – potassium hydroxide

Mapk14 – mitogen-activated protein kinase 14

Mdh1 – malate dehydrogenase 1

MES – 2-(N-Morpholino)ethanesulfonic acid

Ndufa10 – NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 10

Ndufv – NADH ehydrogenase [ubiquinone] flavoprotein

Oat – ornithine aminotransferase

Ogdh – oxoglutarate dehydrogenase

PAS – Periodic acid-Schiff

Peck, Pck1 – phosphoenolpyruvate carboxykinase 1

Pgam1 – phosphoglycerate mutase 1

Ppara – peroxisome proliferator-activated receptor, alpha isotype

Prodh – proline dehydrogenase

Psmc – protease (prosome, macropain) 26S subunit, ATPase

Psmd – proteasome (prosome, macropain) 26S subunit, non-ATPase

PVDF – polyvinylidene fluoride

qPCR – quantitative polymerase chain reaction

RNA – ribonucleic acid

Scd1 – stearoyl-Coenzyme A desaturase 1

Sod1 – superoxide dismutase

TCA – tricarboxylic acid cycle

Tpi1 – triosephosphate isomerase 1

UbC – ubiquitin C

Ube2b – ubiquitin-conjugating enzyme E2B

Ucp2 – uncoupling protein 2

Uqcrcl – ubiquinol-cytochrome-c reductase complex core protein 1
Fasting liver

References

Chapter 4

Additional files

Additional file 1

Supplementary tables Supplementary table 1 shows amino-acid concentrations in plasma after 0, 12, 24, 48 and 72 hours of fasting. Supplementary table 2 contains gene-specific primer sequences, product lengths, annealing temperatures, and MgCl2 concentrations.

Additional file 2

Fold changes in liver response to fasting The file contains lists of all the genes significantly regulated in the liver (≥ 1.4 fold) per time point of fasting and can be found linked to the electronic version of the publication.

The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; [33]) and are accessible through GEO Series accession number GSE10653.
Supplementary Table 1: Amino-acid concentrations in fasting plasma. Amino-acid concentrations in plasma after 0, 12, 24, 48 and 72 hours of fasting are expressed in μM. The significance of the change between the groups is shown by P-values, with the significant changes (P < 0.05) printed in bold.

<table>
<thead>
<tr>
<th>amino acid</th>
<th>0h conc. (μM)</th>
<th>12h conc. (μM)</th>
<th>0 vs. 12 P-value</th>
<th>24h conc. (μM)</th>
<th>0 vs. 24 P-value</th>
<th>48h conc. (μM)</th>
<th>0 vs. 48 P-value</th>
<th>72h conc. (μM)</th>
<th>0 vs. 72 P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn</td>
<td>35</td>
<td>46</td>
<td>8.69E-02</td>
<td>43</td>
<td>6.75E-05</td>
<td>56</td>
<td>1.05E-02</td>
<td>60</td>
<td>1.76E-03</td>
</tr>
<tr>
<td>Ser</td>
<td>135</td>
<td>77</td>
<td>8.88E-04</td>
<td>72</td>
<td>7.19E-06</td>
<td>78</td>
<td>9.82E-03</td>
<td>166</td>
<td>3.43E-01</td>
</tr>
<tr>
<td>Gln</td>
<td>553</td>
<td>528</td>
<td>4.48E-01</td>
<td>598</td>
<td>1.14E-01</td>
<td>589</td>
<td>4.46E-01</td>
<td>656</td>
<td>7.29E-02</td>
</tr>
<tr>
<td>His</td>
<td>81</td>
<td>63</td>
<td>6.22E-03</td>
<td>74</td>
<td>2.64E-02</td>
<td>80</td>
<td>9.70E-01</td>
<td>83</td>
<td>8.16E-01</td>
</tr>
<tr>
<td>Gly</td>
<td>87</td>
<td>161</td>
<td>2.48E-01</td>
<td>58</td>
<td>1.95E-01</td>
<td>43</td>
<td>4.66E-02</td>
<td>115</td>
<td>3.59E-01</td>
</tr>
<tr>
<td>Thr</td>
<td>117</td>
<td>108</td>
<td>5.91E-01</td>
<td>114</td>
<td>6.01E-01</td>
<td>141</td>
<td>2.00E-01</td>
<td>146</td>
<td>4.58E-03</td>
</tr>
<tr>
<td>Cit</td>
<td>91</td>
<td>55</td>
<td>7.07E-02</td>
<td>61</td>
<td>4.81E-07</td>
<td>79</td>
<td>2.50E-01</td>
<td>74</td>
<td>2.38E-02</td>
</tr>
<tr>
<td>Arg</td>
<td>99</td>
<td>85</td>
<td>1.55E-02</td>
<td>83</td>
<td>5.92E-02</td>
<td>115</td>
<td>2.62E-01</td>
<td>121</td>
<td>1.39E-01</td>
</tr>
<tr>
<td>Ala</td>
<td>314</td>
<td>255</td>
<td>6.39E-02</td>
<td>232</td>
<td>5.66E-03</td>
<td>285</td>
<td>4.75E-01</td>
<td>295</td>
<td>5.33E-01</td>
</tr>
<tr>
<td>Tau</td>
<td>289</td>
<td>334</td>
<td>1.61E-01</td>
<td>445</td>
<td>3.17E-04</td>
<td>413</td>
<td>2.13E-03</td>
<td>494</td>
<td>1.45E-05</td>
</tr>
<tr>
<td>Tyr</td>
<td>76</td>
<td>68</td>
<td>6.73E-02</td>
<td>69</td>
<td>3.37E-02</td>
<td>77</td>
<td>9.15E-01</td>
<td>77</td>
<td>7.38E-01</td>
</tr>
<tr>
<td>Val</td>
<td>196</td>
<td>189</td>
<td>7.60E-01</td>
<td>232</td>
<td>2.07E-02</td>
<td>235</td>
<td>2.80E-01</td>
<td>220</td>
<td>1.39E-01</td>
</tr>
<tr>
<td>Met</td>
<td>40</td>
<td>35</td>
<td>6.26E-02</td>
<td>41</td>
<td>8.36E-01</td>
<td>41</td>
<td>9.09E-01</td>
<td>40</td>
<td>9.34E-01</td>
</tr>
<tr>
<td>Ile</td>
<td>76</td>
<td>90</td>
<td>3.93E-01</td>
<td>103</td>
<td>2.69E-03</td>
<td>105</td>
<td>6.07E-02</td>
<td>93</td>
<td>7.44E-02</td>
</tr>
<tr>
<td>Phe</td>
<td>78</td>
<td>44</td>
<td>1.19E-01</td>
<td>98</td>
<td>9.43E-04</td>
<td>101</td>
<td>2.90E-01</td>
<td>114</td>
<td>1.72E-04</td>
</tr>
<tr>
<td>Orn</td>
<td>308</td>
<td>353</td>
<td>4.79E-01</td>
<td>.</td>
<td>.</td>
<td>356</td>
<td>7.23E-01</td>
<td>72</td>
<td>4.90E-04</td>
</tr>
</tbody>
</table>

Supplementary Table 2: Gene-specific primer sequences, product lengths and annealing temperatures.

<table>
<thead>
<tr>
<th>gene</th>
<th>primer sequence (5’→ 3’)</th>
<th>product length (bp)</th>
<th>temp (°C)</th>
<th>MgCl₂ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>F: TTCGGAACGACGATGATGAT</td>
<td>132</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>R: CGAACCTCGACTGCTATGCTT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pck1</td>
<td>F: GCGAAGCTCACGCCCCCATC</td>
<td>329</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>R: CTACAGATTGGGCCGCTAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cps</td>
<td>F: TGGGACATCCAGGAAGGAC</td>
<td>253</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>R: CTGCCCTGTAGTGGACGAC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>