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Abstract
Recently, driven by redundancy systems andmatching systems, there has been renewed
interest in models with product form stationary distributions. By a “product form,”
we mean that the stationary distribution can be expressed as a product of terms, each
of which corresponds to a job in the system. Given the recent discovery of many
such systems, it is natural to ask: how broad is this class of systems? In this paper,
we consider extensions and generalizations of the recently-proposed pass-and-swap
queue, which has a product-form stationary distribution. We make three main con-
tributions. First, we identify sufficient conditions under which pass-and-swap queues
can be connected in a closed network, while still preserving the product form. Second,
we identify dimensions along which the pass-and-swap system can be extended while
preserving the product-form stationary distribution. At the same time, we also identify
cases in which generalizing the pass-and-swap queue causes the product-form nature
of the stationary distribution to break. Finally, we identify questions that remain open
and present a road map for future study.

Keywords Order independent queues · Pass-and-swap queues · Product forms ·
Markov chains · Swapping graphs · Swapping limits

1 Introduction

Identifying a closed-form expression for the stationary distribution of the system state
is of paramount importance in the analysis of queueing systems. Determining the sta-
tionary distribution often is the first step in deriving performance metrics of interest,
including the mean or distribution of the number of jobs in system and the response
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time; it is also a key factor in identifying necessary and sufficient conditions for stabil-
ity. In some cases, having a closed-form expression for the stationary distribution has
allowed researchers to establish that seemingly unrelated systems are in fact equivalent
[1]. Many existing closed-form results for performance metrics in queueing systems
stem from a product-form stationary distribution. In this paper, we use the phrase
“product-form stationary distribution” to refer to the fact that the stationary distribu-
tion of the queue state can be expressed as a product of terms, where there is one term
corresponding to each job in the queue. Clearly, the stationary distributions for the
M/M/1 and M/M/k queues exhibit this structure. Yet the class of systems that admit
a product-form stationary distribution is far broader than these simple examples. We
note that alternative interpretations of the phrase “product-form” characterize the net-
workmodels of Jackson andKelly [22–24], queueing systemswith negative customers
[19, 20] and signals [10], and other systems; these notions of product forms are further
away from our work.

In this paper we examine the pass-and-swap queue, or in short the P&S queue,
recently introduced by Comte and Dorsman [12], which represents a fundamentally
new mechanism that yields a product-form stationary distribution. The key feature of
the P&S queue is that it allows for job routing within the queue: that is, the jobs in the
queue no longer necessarily appear in first-come first-served order. Intra-queue routing
occurs via the pass-and-swap mechanism, wherein, upon the service completion of a
job, that job may take the place of a later job in the queue. That job may in turn take the
place of another job that appears even later in the queue; this process continues until
finally some job—not necessarily the one that completed service—is ejected from the
system. Thus, a service completion results not only in the departure of some job from
the system, but also possibly in a reordering of the queue. The P&S queue is so named
because of this mechanism: after leaving its current position in the queue, a job scans
the rest of the queue, passes over some jobs, and eventually swaps positions with some
later job (or leaves the system). Each job belongs to some job class, and whether a job
can take the place of another job in the queue depends on the classes of these jobs.
In particular, the P&S mechanism is governed by a swapping graph, the vertices of
which coincide with the job classes in the system: two jobs are swappable if there is
an edge between the corresponding classes in the swapping graph. As we will see,
the P&S queue generalizes several known product-form systems that have been of
considerable interest in recent literature. In the remainder of this section we describe
several such systems; later, in Sect. 2.1, we discuss in detail how each of these other
systems can be cast as a P&S queue.

1.1 Order independent queues

The Order Independent (OI) queue, first introduced in the seminal work of Berezner
and Krzesinski [7], represents the foundation of much of the recent work on product
forms. In an OI queue, jobs are stored in first-come first-served order, and any job
present in the system may receive service subject to two conditions. First, the service
rate allocated to a job can depend only on the jobs that arrived earlier than it. Second,
the total service rate allocated to the first i jobs in the queue cannot depend on the order
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in which those jobs appear. This definition is quite broad: it allows for multiple jobs
to be in service at the same time, and for the total service rate to depend on both the
number and types of jobs in the system. The M/M/1 and M/M/k queues both satisfy
the OI conditions, as do many other systems, including, for example, the Multiserver
Station with Concurrent Classes of Customers [14] and the Multiserver Center with
HierarchicalConcurrencyConstraints [25]. TheOI queuewas later extended to include
loss queues [8], networks of OI queues with negative customers [28], and OI queues
with abandonment [16]; see also [26] for further details. The P&S queue represents
a direct generalization of the OI queue, as the P&S queue augments the OI service
process with the intra-queue routing mechanism described above. Any system that can
be described as an OI queue is thus also a P&S queue with an empty swapping graph,
and can be further generalized by introducing a non-empty swapping graph.

1.2 Redundancy andmatchingmodels

Within the past decade, there has been considerable interest in two particular appli-
cations: redundancy models and stochastic matching models. Both of these types of
systems consist of multiple servers and multiple classes of jobs and are characterized
by a graph that defines a compatibility structure between job classes and servers. In
a redundancy system, an arriving job joins the queue at all servers with which it is
compatible and waits to be served by any one of those servers. In a stochastic match-
ing model, one may think of jobs and servers more broadly as being “items,” where
an arriving item will wait in the queue until it can be matched with a compatible
item, at which point both items depart from the system. A wealth of papers show
that innumerable variations on these types of models exhibit product-form stationary
distributions [2, 3, 9, 11, 13, 15, 17, 27]; see also [16] for a more detailed overview.
Typically, the analysis presented in these papers applies only to the specific system
under consideration, meaning that while all of these results contribute to the discourse
on product-forms, most do not do so in a systematic and generalizable manner. Fur-
thermore, some of these variations are special cases of the OI queue, while others are
not. For example, the cancel-on-complete variation of redundancy fits within the OI
framework, whereas the cancel-on-start variation, using the state space of Visschers
et al. [29], does not. This indicates that the OI conditions are not sufficiently broad to
capture the full space of systems that admit product-form stationary distributions.

As we have seen, the OI queue is itself a P&S queue; hence, so is the cancel-
on-complete redundancy system. We will see in Sect. 3.2.2 that the cancel-on-start
redundancy system also can be interpreted as a P&S queue by reframing the system
as a closed network of two P&S queues in tandem, in which both “jobs” and “servers”
in the redundancy system are viewed as items present in the P&S queues.

1.3 Tokenmodels

Motivated by a desire to systematically identify the conditions under which a system
will admit a product-form stationary distribution, several recent works have proposed
frameworks that encompass some subset of the above results. Ayesta et al. [6] show
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that the cancel-on-start and cancel-on-complete variations of redundancy systems—
which previously were analyzed independently—can in fact be studied using the same
state space and analytical approach. In effect, the results of Ayesta et al. demonstrate
that, by considering an alternative state space, one can reframe the cancel-on-start
variation as a system that does adhere to the OI conditions. In later work, Ayesta et
al. [5] propose a new token-based model that generalizes both the OI framework and
the Visschers et al. framework [29]. The token-based model allows for the study of
systems that fall within neither category, thereby identifying a new class of systems
that admit a product-form stationary distribution. As we will see in Sect. 3.2, the P&S
queue in turn generalizes the token-based model.

1.4 Our contributions

The fact that the P&Smechanism preserves the product-form stationary distribution—
while also representing a significant generalization of the dynamics governing other
product-form systems—suggests that the pass-and-swap mechanism is a promising
starting point for further innovation. In this paper we aim to expand the discussion of
what is possible in the space of product-form results by exploring possible extensions
to the P&S queue. Our three major contributions are as follows.

First, we present a detailed analysis of closed networks of P&S queues (Sect. 3).We
begin by reviewing existing results from [12] that pertain to a closed network of two
P&S queues in tandem. We provide a comprehensive discussion of how such a closed
network can be used to model many systems of practical interest. We then present
new results on larger and more general closed networks. We find that, while closed
tandems of any even number of P&S queues readily admit a product-form stationary
distribution, the story is more complicated for odd tandems and general topologies.
Our results lay the groundwork for further study in this area.

Second, we identify ways in which the P&S queue can—and cannot—be extended
while preserving the product-form stationary distribution. In Sect. 4 we consider a
setting where the swapping graph is not fixed, but instead is modulated by a exogenous
continuous-timeMarkov chain. We show that this extension also allows for a product-
form stationary distribution in both open and closed P&S systems. In fact, we find
that the stationary distribution of the queue state remains unaffected, revealing that
the stationary distribution is independent of the swapping graph. In Sect. 5 we study
an extension of another key feature of the P&S graph, namely the number of swaps
involved in a pass-and-swap transition. In particular,we introduce a limit on the number
of swaps that can occur during a single transition.We find that in open P&S queues the
stationary distribution no longer has a product form; in contrast, in closed networks
there are conditions under which it does still exhibit a product form.

Finally, we identify several important questions that remain open and present a road
map for future study. Our analysis reveals surprising intricacies that offer new insights
about the conditions required for product forms. Hence, we conclude this paper with
Sect. 6, in which we discuss questions that we leave open for future study and potential
approaches to solving these problems.
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2 Model and preliminaries

In this section we give an overview of several key results that motivate the work of this
paper. We begin with Order Independent (OI) queues [7, 8, 26], which represent an
important class of queues that exhibit a product-form stationary distribution (Sect. 2.2).
We then turn to the P&S queue [12], which extends the OI queue by introducing a
mechanism by which jobs may be routed within the queue upon a service completion
(Sect. 2.3), and provide a brief survey of the main results on the single (open) P&S
queue (Sect. 2.4).

2.1 Model and notation

We consider a system with multiple job classes, where we denote the set of all job
classes byI = {1, 2, . . . , I }. For all i ∈ I, jobs of class i arrive to the systemaccording
to a Poisson process with rate λi . Upon arrival, jobs join a queue. The queue is ordered
by arrival time, so that the job at the front of the queue has been in the system the
longest and the job at the back of the queue is the most recent arrival. We assume that
the queue has an unlimited capacity.

The state of the system is given by c = (c1, . . . , cn), where n is the total number
of jobs present in the system and ci ∈ I is the class of the i-th oldest job. If there are
no jobs present in the system, the state is given by ∅. The state space is then the set
of all finite sequences consisting of elements of I; we note that this set is the Kleene
closure of I, denoted by I∗.

We assume that the system is work-conserving, meaning that the rate at which there
is a departure from the system is strictly positive whenever the system is non-empty.
We also assume that service is allocated in such a way that the evolution of the state of
the system over time exhibits a memoryless property (and thus represents a Markov
process). In particular, we assume throughout this paper that the total available service
rate is allocated among jobs in the system in accordance with theOrder Independence
conditions, detailed in the next section.

2.2 Order independent queues

In an Order Independent queue, or in short an OI queue, the total service rate is
allocated among jobs such that (i) the rate allocated to a particular job depends only
on the set of jobs that are in front of it in the queue (i.e., those jobs that arrived earlier),
and (ii) this rate is independent of the order in which the jobs ahead of it appear in
the queue. Any job that is allocated a nonzero service rate may complete service, at
which time the job departs immediately from the system.

Formally, given a state c = (c1, . . . , cn), let μ(c) or μ(c1, . . . , cn) denote the total
available service rate of the queue when it is in state c. Note that this total rate may
depend on both the number and classes of jobs in the system. Furthermore, we define
Δμ(c1, . . . , cn) := μ(c1, . . . , cn) − μ(c1, . . . , cn−1) to be the service rate allocated
to the final job in position n. The service rate function is now said to satisfy the order
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Fig. 1 A compatibility structure
between job classes and servers,
which, in combination with the
first-come-first-served service
discipline, gives rise to an OI
queue

independence conditions, or in short the OI conditions, when the following definition
applies.

Definition 1 An Order Independent queue is one in which, in all states c ∈ I∗, the
service rate allocation satisfies the following properties:

1. For all i < n, the service rate allocated to the job in position i is given by
Δμ(c1, . . . , ci ).

2. For all permutations σ(c1, . . . , cn) of c = (c1, . . . , cn), μ(σ(c1, . . . , cn)) =
μ(c1, . . . , cn).

3. For all classes c ∈ I, μ(c) > 0.

Property (i) ensures that a job’s service rate depends only on the jobs ahead of
it, as the number and classes of jobs behind position i are disregarded. Furthermore,
properties (i) and (ii) ensure that the order of those jobs is immaterial. Finally, property
(iii) ensures that the system is indeed work-conserving. Even stronger, properties (i)
and (iii) combined ensure that the first job in an OI queue always has a positive service
rate.

Remark 1 The definition of Order Independent queues given in [26] allows for the
service rate to be multiplied by an additional factor that can depend on the number of
jobs in the system. This state-dependent service rate enables one to model, e.g., the
Processor Sharing service discipline using an OI queue.

Example 1 Consider a system with five classes of jobs, so that I = {1, 2, 3, 4, 5},
and three servers, each operating at rate μ = 1. Each job class is compatible with
some subset of the servers, as shown in Fig. 1. At each moment in time, each server
processes the first job in the queue with which it is compatible; multiple servers are
permitted to process the same job at once, in which case the job receives service at the
sum of the servers’ rates.

Suppose that the system is in state (4, 1, 2, 3, 4, 5, 2). In this case, servers 1 and 2
are both processing the class-4 job at the head of the queue, hence this job receives
service at rate Δμ(4) = 2. The class-1 and class-2 jobs immediately behind this job
do not receive any service, so Δμ(4, 1) = Δμ(4, 1, 2) = 0. Server 3 is processing
the class-3 job, which thus receives service at rate Δμ(4, 1, 2, 3) = 1. All remaining
jobs behind this class-3 job receive service at rate 0.

The service rate function imposed by the above system dynamics can readily be
seen to satisfy the OI conditions given in Definition 1. Each server works on the first
compatible job in the queue, meaning that a job can only be “blocked” from receiving
service by jobs that are ahead of it in the queue (property (i)). Furthermore, the total
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rate of service allocated to the jobs in positions 1, . . . , i , μ(c1, . . . , ci ), is simply the
sum of the rates of all servers compatible with any jobs in this set; hence, this rate
depends only on the classes of these jobs and not on their order (property (ii)).

The key result of [7] is that all OI queues exhibit a product-form stationary
distribution. This result is restated in Theorem 1 below.

Theorem 1 Consider an order independent queue with job classes I = {1, . . . , I },
per-class arrival rates λ1, . . . , λI , and service rate function μ(·). Let

G ≡
∑

c∈I∗

n∏

j=1

λc j

μ(c1, . . . , c j )
. (1)

Then the system is stable if and only if G < ∞. If the system is stable, then the queue
is quasi-reversible and the stationary distribution π(·) satisfies:

π(c) = π(∅)

n∏

j=1

λc j

μ(c1, . . . , c j )
, (2)

where π(∅) = 1/G.

The result of Theorem 1 has been extended to OI queues with abandonment [16],
OI loss models (including, e.g., OI queues with a buffer of fixed finite size) [8], and
networks ofOI queues [28]. In the following section, we discuss in detail one particular
extension: the pass-and-swap queue.

2.3 The pass-and-swapmechanism

A Pass-and-Swap queue, or in short a P&S queue, follows the service allocation
rules of the OI queue. However, one key assumption of the OI queue is relaxed: we no
longer require the job that completes service to be the job that departs from the system.
Instead, a different job may depart; this job is determined based on the pass-and-swap
mechanism.

In order to define the pass-and-swapmechanism,wemust first introduce an auxiliary
graph called the swapping graph. The swapping graph includes a vertex for each job
class in the system andmay include an undirected edge between any pair of job classes.
We denote an edge between vertex i and vertex j (i.e., job classes i and j) by (i, j).
Note that self-loops are also permissible; a self-loop from vertex (job class) i to itself
is denoted by (i, i). The interpretation of an edge in the swapping graph is as follows:
upon service completion of a class-i job, the class-i job may take the place of a class- j
job in the queue if and only if edge (i, j) exists in the swapping graph. In this case,
we say that classes i and j are swappable.

Example 2 Consider the same system as described in Example 1, which consists of
five job classes and three servers with the compatibility structure depicted in Fig. 1.We
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Fig. 2 The swapping graph and state transition described in Examples 2 and 3

now introduce to this system the swapping graph shown in Fig. 2a. The swapping graph
has vertex set V = {1, 2, 3, 4, 5}, where each vertex corresponds to a job class, and
edge set E = {(1, 3), (1, 5), (2, 4), (3, 4), (4, 5)}. This indicates that, for example,
when a class-1 job completes service it may take the place of either a class-3 job or a
class-5 job in the queue.

We are now ready to define the pass-and-swap mechanism, which is triggered by
a service completion. In this mechanism, the job that completes service does not
immediately depart from the system, but instead scans the queue, beginning at its own
position and moving backwards in the queue. As soon as it finds the first job with a
class that is swappable with its own, it takes the place of this job, which is ejected
from the queue. The ejected job in turn scans backwards in the queue, taking the place
of and ejecting the first job with which it is swappable. This process continues until
an ejected job finds no swappable job in the remainder of the queue; at this point, this
final ejected job departs from the system. In the remainder of this paper, we will also
refer to the combination of a service completion and the resulting execution of the
pass-and-swap mechanism as a pass-and-swap transition. First, however, we illustrate
the pass-and-swap mechanism through an example.

Example 3 Consider again the system with the job-server compatibility graph shown
in Fig. 1 and the swapping graph shown in Fig. 2a. Suppose that the system is in state
(4, 1, 2, 3, 4, 5, 2); as we have seen in Example 1, this means that the class-4 job at the
head of the queue is being processed at rate 2 and the class-3 job is being processed
at rate 1.

Figure 2b shows the transition that occurs when the class-4 job completes service.
At this point, the class-4 job scans the queue to find the first job with which it is
swappable, according to the swapping graph; this is the class-2 job. The class-4 job
then takes the place of the class-2 job, which in turn begins to scan backwards in
the queue in search of a job with which it is swappable. The first such job is the
class-4 job in position 5 of the queue; hence the class-2 job takes the place of this
job. This process continues, resulting in the class-4 job taking the place of the class-5
job immediately behind it. At this point, there are no jobs behind the class-5 job with
which it is compatible, so the class-5 job departs from the system. The resulting state
is (1, 4, 3, 2, 4, 2).
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2.4 The open pass-and-swap queue

The main result of [12] is that the P&S queue admits the same product-form stationary
distribution as the original OI queue. Many of our results in the sections that follow
involve extending the proof of Theorem 2 to incorporate generalizations of the P&S
queue. In other cases, we will identify scenarios in which the product-form no longer
holds. Throughout, it will be instructive to refer back to the proof of Theorem 2, which
we restate in its entirety in Appendix A.

Theorem 2 (Reproduced from Theorem 2 in [12]) Consider a P&S queue with job
classes I = {1, . . . , I }, per-class arrival rates λ1, . . . , λI , and service rate function
μ(·). Let

G ≡
∑

c∈I∗

n∏

j=1

λc j

μ(c1, . . . , c j )
. (3)

Then the system is stable if and only if G < ∞. If the system is stable, then the queue
is quasi-reversible and the stationary distribution π(·) satisfies:

π(c) = π(∅)

n∏

j=1

λc j

μ(c1, . . . , c j )
, (4)

where π(∅) = 1/G.

The proof of Theorem 2 involves establishing a set of partial balance equations that
capture the dynamics of the system, then showing that the form given in (4) satisfies
those equations. We will state the partial balance equations here because their form—
and the notation used to define them—will be useful in the sections that follow; we
defer the verification of the partial balance equations to Appendix A.

Before we give the partial balance equations, it will be helpful to define some
additional notation. For any state c = (c1, . . . , cn) ∈ I∗ and any positions p, q ∈
{1, . . . , n} with p ≤ q, let cp,...,q = (cp, . . . , cq); if p > q we define cp,...,q ≡ ∅.

For all states c ∈ I∗ wewill need to identify the set of states d such that it is possible
to move from state d into state c due to a departure of a class-i job. Let u denote the
maximum number of jobs that can be involved in the pass-and-swap transition that
results in entering state c; note that this number u includes the class-i job that departs
from the system. Furthermore, we denote by Ii the set of job classes that are swappable
with job class i . Then, let q0, q1, . . . , qu denote the sequence of positions that can be
involved with the transition, where

qv =

⎧
⎪⎨

⎪⎩

n + 1 v = 0

max{q ≤ qv−1 − 1 : cq ∈ Iiv−1} 0 < v < u

0 v = u,

where u = argminv{{q ≤ qv−1 − 1 : cq ∈ Iiv−1} = ∅}.
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We find that we can enter state c due to a departure of a class-i job from any state
d of the form:

d = c1,...,p−1, iv, cp,...,qv−1, iv−1, cqv+1,...,qv−1−1, . . . , cq3+1,...,q2−1, i1,

cq2+1,...,q1−1, i0, cq1+1,...,n, (5)

where v ∈ {0, . . . , u − 1} denotes the number of jobs that are involved with the
transition, and p ∈ {qv+1+1, qv+1+2, . . . , qv} denotes the position of the job whose
service completion initiated the pass-and-swap transition. Finally, we let δp(d) =
(c, i) if, starting in state d, a service completion at position p causes the system to
transition to state c, with a class-i job departing.

Example 4 Continuing with our running example, we now consider the state c =
(4, 1, 2, 3, 4, 5, 2) and i = i0 = 3; we seek to identify the states d from which we can
enter state c due to the departure of a class-3 job. Due to the swapping graph shown
in Fig. 2a, we have I3 = {1, 4}. By the definition of qv given above, we have q0 = 8.
We then have q1 = max{q ≤ q0 − 1 = 7 : cq ∈ I3 = {1, 4}}. That is, q1 is the
last position in the queue that contains either a class-1 or a class-4 job, thus q1 = 5
and i1 = 4. Continuing in this manner, q2 is the last position before position 5 that
contains a class-2, 3, or 5 job (because I4 = {2, 3, 5}; we thus have q2 = 4 and i2 = 3.
By similar reasoning, we obtain q3 = 2 and i3 = 1. Finally, there are no jobs earlier
than position 2 that are in I1 = {3, 5}, so we conclude that u = 3 is the maximum
number of swaps that can occur in a transition that results in state c due to a class-3
departure, and that (q3, q2, q1) = (2, 4, 5) gives the sequence of positions that could
be involved in such a transition.

Following equation (5), the possible states d from which we can enter state c with
a class-3 job departing from the system and for which v = 3 have the form:

d = c1,...,p−1, 1, cp,...,1, 3, c3, 4, 3, c6,...,7.

There are two states satisfying this form, namely states d ′ = (4, 1, 3, 2, 4, 3, 5, 2) and
d ′′ = (1, 4, 3, 2, 4, 3, 5, 2). In the latter case, one can easily verify that the service
completion of the class-1 job will trigger a pass-and-swap transition that indeed results
in state (4, 1, 2, 3, 4, 5, 2), with a class-3 job departing from the system. In the former
case, the class-1 job does not receive any service due to the job-server compatibility
structure described in Example 1; in this case, while the form of state d ′ allows for
the possibility of the desired transition, this transition in fact will never occur.

One can similarly enumerate the possible states d from which we can enter state c
with a class-3 job departing from the system for v = 0, 1, and 2.

The partial balance equations used to show the result of Theorem 2 are as follows:

– For states c ∈ I∗\∅, the flow out of state c due to a service completion equals the
flow into state c due to a job arrival:

π(c)μ(c) = π(c1, . . . , cn−1)λcn . (6)
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– For states c ∈ I∗ and for each i ∈ I, the flow out of state c due to a class-i arrival
equals the flow into state c due to a class-i departure:

π(c)λi =
∑

d∈I∗

n+1∑

p=1
δp(d)=(c,i)

π(d)Δμ(d1, . . . , dp). (7)

3 Closed networks of pass-and-swap queues

We now turn to closed networks of P&S queues. In Sect. 3.1 we present the model
and briefly survey some results from [12], which will provide a starting point for the
generalizations and counterexamples that we present in the sections that follow. In
Sect. 3.2, we illustrate how a closed tandem of two P&S queues can be used to model
many systems for which a product-form stationary distribution previously has been
established, thereby motivating the two-queue closed tandem as a useful starting point
for further study. Even though the two-queue network suffices for many applications,
in Sect. 3.3 we extend the results of [12] to a many-queue network.

3.1 Closed network of two pass-and-swap queues in tandem

We consider a closed network consisting of two P&S queues in tandem, adopting the
model and notation in Sect. 5.2 of [12]. In this setting both queues adhere to the same
swapping graph, and a job that departs from one queue immediately joins the end of
the other queue.

There is no external arrival process and there are no departures from the network as a
whole; jobs simply move between the two queues. Each queue may operate according
to its own service rate function; this function must satisfy the OI conditions given in
Definition 1. The service rate function of the upper queue is given by μ(·), while that
of the lower queue is given by ν(·). The state of the upper (respectively, lower) queue is
denoted by c = (c1, . . . , cn) (respectively, d = (d1, . . . , dm)), where n (respectively,
m) denotes the number of jobs in the queue. We refer to the state of the system as a
whole by (c; d). Let |c| = (n1, . . . , nI ) (respectively, |d| = (m1, . . . ,mI )), where
ni (mi ) denotes the number of class-i jobs in the upper (lower) queue, and define the
macrostate of the system as � = |c| + |d| = (�1, . . . , �I ). Observe that, because the
system is closed, the macrostate � is constant over time.

Example 5 Fig. 3 shows an example of a closed network consisting of two pass-and-
swap queues in tandem. Both of the queues adhere to the swapping graph depicted
in Fig. 2a. The initial state is ((5, 1, 4, 3, 2); ∅) as depicted in Fig. 3a. Suppose that
the class-5 job at the head of the upper queue completes service. This triggers a
pass-and-swap transition in which the class-5 job swaps with the class-1 job, which
in turn swaps with the class-3 job. The class-3 job then leaves the upper queue and
immediately joins the lower queue. The new system state is thus ((5, 4, 1, 2); (3)) (see
Fig. 3b). Now suppose there is another service completion at the head of the upper
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Fig. 3 The evolution of a closed network of two P&S queues, as described in Example 5

queue; that is, the class-5 job again completes service. This time, a pass-and-swap
transition occurs in which the class-5 job swaps with the class-4 job, which in turn
swaps with the class-2 job, which leaves the upper queue and joins the back of the
lower queue. The new system state is thus ((5, 1, 4); (3, 2)) (see Fig. 3c). Observe that,
in all states depicted in Fig. 3, the class-5 job precedes the class-1 job in the upper
queue. It is not hard to see that, by the virtue of both queues adhering to the swapping
graph in Fig. 2a, no matter the order of the service completions in the sequel, this
remains the case whenever both the class-5 job and the class-1 job are in the upper
queue. Conversely, when both jobs will reside in the lower queue, the class-1 job will
always be closer to the front of the lower queue than the class-5 job.

Example 5 draws attention to a key feature of the closed tandem of pass-and-
swap queues: in general, there may be certain states that are not reachable given the
initial state and the swapping graph. This is due to the placement order imposed
by the initial state. A placement order can be interpreted as a partial order of job
classes. In particular, this partial order is determined by assigning an orientation to
each edge in the swapping graph to obtain a directed acyclic graph (DAG); we call
this DAG a placement graph. For two job classes i and j , we write a i ≺A j if there
is a directed path from i to j in placement graph A. We say that the network state
(c; d) = ((c1, . . . , cn); (d1, . . . , dm)) adheres to a placement order A if and only if
(1) c j ⊀A ci and dk ⊀A dl for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ m, and (2) d j ⊀A ci
for any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Proposition 4 in [12] tells us that when
the initial network state adheres to the placement order A, then any state reached by
applying the pass-and-swap mechanism to either of the two queues also adheres to
this placement order. Furthermore, under certain assumptions, Proposition 5 in [12]
implies that the set of states that adhere to the same placement order form a closed
communicating class in the associated Markov chain. In the sequel, we will use ΣA

to denote the set of all states (c; d) that adhere to a given placement order A.
Observe that in Example 5, the initial state and the subsequent states in Fig. 3, as

well as any other states that may follow, adhere to the placement order A depicted in
Fig. 4.

We close this section by giving the stationary distribution of the closed tandem of
two pass-and-swap queues, as derived in [12], and a related lemma. Several of our
results in the sections that follow build upon the proof of Theorem 3, which is deferred
to Appendix B.
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Fig. 4 The directed acyclic
placement graph depicting the
placement order of the network
states in Example 5

Lemma 1 [12, Propositions 2 and 4] In a closed single P&S queue or a closed tandem
of two P&S queues, it holds that if the initial state adheres to a placement order A,
then any state reached by applying the P&S mechanism after any service completion
also adheres to placement order A.

Theorem 3 [12, Theorem 5] Consider a closed network consisting of two pass-and-
swap queues in tandem, and assume that the Markov process associated with the state
space ΣA is irreducible for a given placement order A. Let Φ(c) and Λ(d) denote
respectively the balance functions for the upper and lower queues. Then, for all states
(c; d) ∈ ΣA, the stationary probability that the system is in state (c; d) is given by:

π(c; d) = 1

G
Φ(c)Λ(d), (8)

where G is a normalization constant given by:

G =
∑

(c;d)∈ΣA

Φ(c)Λ(d).

3.2 Applications of pass-and-swap queues

In the remainder of this paper, when considering extensions to the P&S queue in closed
networks we will generally restrict attention to closed tandems of two P&S queues as
regarded in the previous section. The primary rationale behind this focus is that the
closed tandem of two P&S queues can be used to model many systems that are already
known to have product-form stationary distributions. Hence, identifying extensions
for the closed tandem of two P&S queues also yields possible extensions for these
related product-form systems and the applications that they model. Below, we provide
an overview of how several existing systems can be interpreted as P&S queues.

3.2.1 OI queues with rejections

In Sects. 2.2 and 2.4, we assume that the OI queue and the P&S queue have Poisson
arrival processes. The product-form nature of the stationary distribution is in some
cases retained when relaxing this assumption. For example, the OI queue continues to
exhibit a product form when arrivals are rejected according the so-called truncation
property [8]. In particular, let C comprise the set of states c = (c1, . . . , cn) such that
an arriving class-i job is accepted when the system is in a state c ∈ C and rejected
otherwise, and assume that the truncation property holds:
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(i) When (c1, . . . , cn) ∈ C, it holds for any permutation c′ of (c1, . . . , cn) that c′ ∈ C.
(ii) When (c1, . . . , cn) ∈ C, we also have that (c1, . . . , cn−1) ∈ C.

The truncation property implies that if a job would be accepted with a given set of
jobs in the queue, it will still be accepted if any job is removed from that set.

The OI queue with rejections can be modeled as a closed tandem of P&S queues,
where the swapping graph is assumed to have no edges. In this view, the “upper”
queue represents the OI queue with job rejections, while the “lower” queue represents
the arrival process, as follows. We define the service process at the upper queue to be
the same as that of the OI queue with rejections. When a job departs from the upper
queue (due to a service completion), it joins the back of the lower queue. Similarly, the
job departures from the lower queue form the arrivals to the upper queue, and hence
govern the “net arrival stream” to the OI queue with rejections.

Recall that �i denotes the number of class-i jobs present in the closed network of
P&S queues. For each class i ∈ I, we will set �i = max{|c|i : c ∈ C}; that is, the
number of class-i jobs present in the closed tandem is equal to the maximum number
of class-i jobs that can be present in the OI queue with rejections. In this way, a class-i
rejection from the OI queue because there are already �i class-i jobs present is now
represented in the closed tandem by the scenario where all �i class-i jobs are present
in the upper queue. In this case there are no class-i jobs in the lower queue, hence,
a service completion in the lower queue cannot result in the arrival of an additional
class-i job to the upper queue.

Observe that the lower queue contains exactly those jobs that could be accepted by
the OI queue, given the state of the upper queue. To model the arrival process to the
OI queue with rejections, we set the service process at the lower queue as follows.
For all i ∈ I, the service completion rate of the class-i job closest to the front of the
queue is λi , and all other class-i jobs in the lower queue receive no service. Thus,
Δνi (d1, . . . , di ) = λdi1{di /∈∩i−1

j=1d j }. These service rates are easily verified to satisfy

the order-independent conditions given in Definition 1, and are tantamount to each
class i departing from the lower queue according to a Poisson process if and only if
class-i jobs can be accepted to the OI queue whose state matches that of the upper
queue. Indeed, the truncation property given above is equivalent to the dynamics of
this tandem. Condition (i) is equivalent to the service process at the lower queue being
independent of the order of jobs in the upper queue. Condition (ii) is a consequence of
the fact that if the upper queue can have state (c1, . . . , cn), then it also can have state
(c1, . . . cn−1) with cn in the lower queue.

Having established a mapping from the OI queue with rejections to the closed
tandem of two P&S queues, we can now apply Theorem 3 to obtain the stationary
distribution of the OI queue with rejections:

π((c1, . . . , cn); (d1, . . . dm)) = 1

G

n∏

i=1

1

μ(c1, . . . , ci )

m∏

j=1

1
∑ j

k=1 λdk1{di /∈∩i−1
j=1d j }

.
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By aggregating over all permutations of d = (d1, . . . , dm), one recovers the
expression derived in [8, Theorem 1] for the OI queue with rejections:

π((c1, . . . , cn)) = 1

GOI

n∏

i=1

λci

μ(c1, . . . , ci )
,

where GOI is a normalizing constant.

Example 6 Regard the closed tandem in Example 5, where the service rate function in
the lower queue is given by νi (d1, . . . , di ) = λi1{di /∈∩i−1

j=1d j }. Then, the upper queue
behaves stochastically the same as an open OI queue with five job classes with arrival
rates λi and service rate functionμ(·), where jobs of any given class are rejected when
there is already a job of the same class in the queue.

3.2.2 The noncollaborative service model with the ALIS policy

Wenext turn to the redundancy systemwith cancel-on-start service,which is equivalent
to the so-called noncollaborative model [16] and also has been studied in the context
of manufacturing and service systems, e.g. [29]. In this model, there are multiple
machines M1, . . . , MJ and multiple job classes k = 1, . . . K . Define C(Mj ) to be
the set of job classes that can be handled by machine Mj . When a job arrives, if it
finds multiple idle compatible servers it must be assigned to exactly one of them. We
consider the assign-longest-idle-server policy (ALIS), which was first studied in [3],
but we will present it with a slightly different state descriptor and again add a rejection
mechanism.

Each machine Mj , j = 1, . . . , J provides service at rate μ j and is able to serve
jobs whose classes are in the set C(Mj ). Class-k jobs arrive according to a Poisson
process with rate λk . The system is permitted to contain at mostKk class-k jobs; hence,
an arriving class-k job is accepted only if there are fewer than Kk jobs present. Once
the arriving job is accepted, it checks whether there is any idle machine Mj available
such that k ∈ C(Mj ). If so, it immediately enters service on whichever such machine
has been idle the longest. If there are no such machines, the class-k job waits in the
queue. When a machine Mj completes service, it begins serving the compatible job
that has been waiting the longest. If there are no such jobs, the machine becomes idle.

The state descriptor includes information about both the jobs present in the system
as well as the status of the machines. We use Mj to denote the corresponding machine,
and we use fk to denote a job of class k. The state of the system can now be described
by two-queue states. The main queue contains all busy machines and all jobs waiting
for service, where the machines and jobs are collectively recorded in arrival order
(for machines, we use the arrival time of the job currently in service). The auxiliary
queue contains all idle machines and class-specific “slots” corresponding to jobs that
would be accepted to the main queue given its current state; the machines and jobs are
collectively ordered based on the order in which the machines became idle and the job
slots became available. Note that the former must indeed be recorded to implement
the ALIS mechanism described above.

We now illustrate the above state description and its evolution via an example.

123



220 Queueing Systems (2024) 107:205–256

Fig. 5 The tandem of P&S queues modeling Example 7

Example 7 Consider a system with three machines, M1, M2 and M3, and two different
job classes, 1 and 2. Jobs of class 1 can be served by M1 and M2, while jobs of class
2 are compatible with M2 and M3: C(M1) = {1}, C(M2) = {1, 2} and C(M3) = {2}.
Furthermore, the system can at most hold K1 = K2 = 2 waiting jobs of each class
(independent of how many jobs of each class are in service).

Figure 5 shows a possible state in this system. The main queue is depicted as the
upper queue, and the auxiliary queue is the lower queue. In the initial state shown in
Fig. 5a, the main (upper) queue has state (M2, M1, f1, f1). This indicates that both
servers M2 and M1 are busy processing jobs, and that the job in service at M2 arrived
to the system before the job in service at M1; the state does not disclose the classes of
the jobs in service. The state does disclose the classes of the waiting jobs: in this case,
both waiting jobs are of class 1, and both arrived after those jobs that are in service
on M1 and M2. The auxiliary (lower) queue has state ( f2, f2, M3), indicating that
machine M3 is idle and up to two class-2 jobs could be accepted to the upper queue.

Suppose that M2 now completes service; the state that results from this service
completion is shown in Fig. 5b. In particular, the main queue enters state (M1, M2, f1)
because the longest-waiting class-1 job enters service onmachineM2. This means that
a slot opens up in the queue for an additional class-1 job, as indicated by the presence
of f1 in the auxiliary queue. Observe that, in the main queue, f1 can never precede
M1 or M2 due to the FCFS service order: it cannot be the case that M1 or M2, both of
which are compatible with job class 1, would skip over the f1 job to begin serving a
job that arrived later. Similarly, M3 (or, indeed, M2) cannot precede f2 in the auxiliary
queue, as this would indicate that the machine started idling while a compatible job
was still present in the main queue.

Now suppose that a class-2 job arrives to the system; the resulting state is shown
in Fig. 5c. Because M3 is the longest-idling machine that is compatible with class 2,
the arriving job will immediately enter service on M3. Meanwhile, the waiting slot for
a class-2 job remains available. The auxiliary queue state thus becomes ( f2, f2, f1),
whileM3 moves to the back of the main queue. Note that ifM2 andM3 were already in
themain queue when a class-2 job arrived, there would be no idle compatible machine,
so the arriving job would claim the waiting class-2 job slot, resulting in f2 moving to
the back of the main queue.

Observe that the above example, and, in general, the noncollaborative ALIS system
with job rejections, can be interpreted as a closed tandemofP&Squeues. The swapping
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Fig. 6 The placement graph
belonging to the closed tandem
of P&S queues in Fig. 5

graph is a bipartite graph G = (V , E) equivalent to the compatibility graph in the
noncollaborative system. In particular, V = VM ∪ V f , where VM = {M1, . . . , MJ } is
the set of all machines and V f = { f1, . . . , fK } is the set of all jobs (slots). The edge set
E reflects the compatibilities between machines and job classes: there exists an edge
between M ∈ VM and fi ∈ V f if and only if i ∈ C(M). Figure6 depicts the swapping
graph, as well as the orientation representing the placement order, associated with
Example 7. Observe that, consistent with Example 7, the placement order is such that
in the upper queue machines always precede the jobs of compatible classes, while in
the lower queue the idling machines always succeed available job slots of compatible
classes.

The closed tandem of P&S queues that models the noncollaborative ALIS system
contains J + ∑K

i=1Kk “jobs”: J of these are the machines M1, . . . , MJ , and the
remainder represent, for each class k = 1, . . . , K , the Kk waiting class-k job slots
labeled fk . The service rate functionμ(·) in the upper queue is such that Mi completes
at rate μi , and the service rate allocated to any f -job (representing a waiting job) is
zero. A transition in the upper queue where a machine Mi takes the place of a waiting
class- j job f j represents the completion of a service by machine Mi such that Mi

begins serving the waiting class- j job, and the class- j job slot becomes available
(i.e., f j moves to the lower queue). If machine Mi completes service and finds no
compatible waiting jobs in the upper queue, then no swaps will occur and Mi begins
an idle period in the lower queue.

At the same time, the service rate function ν(·) in the lower queue is such that, for
each job class j , the first job slot f j to appear in the queue receives service at rate
λ j , while all machines Mi and all f -jobs that are not the first of their class receive no
service. A transition in the lower queue where a class- j job slot f j takes the place of
a machine Mi represents the arrival of a class- j job that immediately begins service
on machine Mi , so that Mi moves to the upper queue and the class- j job slot remains
available for class- j arrivals.

Having established that the noncollaborative service model with the ALIS mech-
anism and job rejections can be modeled as a closed tandem of P&S queues, we can
apply Theorem 3 to obtain the product-form stationary distribution for this model.
Indeed, Theorem 3 yields

π((c1, . . . , cn); (d1, . . . , dm)) = 1

G

n∏

j=1

1∑
i∈{1,..., j}:ci∈Vm μq(ci )
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m∏

k=1

1∑
i∈{1,...,k}:ci∈V f

λq(ci )
,

where q(Mj ) = j and q( fk) = k for all machine types j = 1, . . . , J and job classes
k = 1, . . . , K . This result is consistent with, e.g., [3, Theorem 2.1] and [16, Theorem
3.9].

Remark 2 It is worth noting that in [12], it was shown that the closed network of two
pass-and-swap queues in tandem is able to model a redundancy system with a so-
called cancel-on-commit regime. This redundancy system is a generalization of the
noncollaborative model with an ALIS-regime, where multiple jobs may be committed
to a single machine.

3.2.3 Token-based central queues with order-independent service rates

In [5], a token-based central queueing model is considered that captures redundancy
models with both cancel-on-start and cancel-on-complete service, as well as sev-
eral matching models. In essence, the model considered in [5] coincides with the
non-collaborative model, but allows for a more general service rate function. In par-
ticular, any machine Mi , which in [5] is called a token, does not necessarily provide
service at constant machine-specific rate μi , but instead, the machines (or tokens)
provide service at order-independent rates. In other words, in the terminology of
the non-collaborative service model, when the main queue is in state (c1, . . . , cn)
it need not be the case that Δμ(c1, . . . , ci ) = μq(ci ) for all ci that represent machines.
Instead, any order-independent service rate function μ(c1, . . . , cn) is allowed, as long
as Δμ(c1, . . . , ci ) = 0 whenever ci represents a waiting job.

P&S queues allow for any service rate function μ(c1, . . . , cn) that satisfies the OI
conditions given in Definition 1, hence the token-based central queue model also can
bemodeled using a closed tandem of two P&S queues. This follows the samemapping
given in Sect. 3.2.2 for the noncollaborative model, where now we simply generalize
the service rate function in the upper queue accordingly.

It isworth noting that the results in [5] assume adifferentmachine/token-assignment
policy than ALIS (this alternative policy is called random-assignment-to-idle-servers
(RAIS) in [16]) and incorporate no job rejections. As a result, our interpretation of the
token-based central queuemodel as a P&S system extends the results of [5] by incorpo-
rating the ALIS mechanism (an arriving job is assigned the longest idling compatible
token) and job rejections. Indeed, using similar notation as for the noncollaborative
service model, the stationary distribution for this model is given by

π((c1, . . . , cn); (d1, . . . , dm)) = 1

G

n∏

j=1

1

μ(c1, . . . , c j )

m∏

k=1

1∑
i∈{1,...,k}:ci∈V f

λq(ci )
.

Remark 3 In the noncollaborative service model and token-based central queue above,
we have incorporated job rejections. Job rejections allow the number of jobs in the
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closed tandem to remain finite: for every waiting class-k job allowed in the system,
there is a class- fk job in the closed tandem. In principle, in a system without job
rejections, an infinite number of jobs in the closed tandemwould be required.However,
the model without job rejections can be approximated arbitrarily closely by setting the
Kk-limits large enough that the effect of state space truncation becomes negligible.

3.3 Closed networks of many pass-and-swap queues in tandem

Despite the numerous applications for the two-queue closed network, it is natural to ask
whether closed networks with a larger number of queues or more general topologies
still yield a product-form solution.Whilewe conjecture that the answer to this question
is affirmative in general, establishing a product-form solution for arbitrary network
topologies is not straightforward. In this section, we focus on closed networks of many
pass-and-swap queues in tandem. Our analysis will establish the product-form nature
of the stationary distribution when the number of queues is even; we will see that the
case where the number of queues is odd is more complicated.

Consider a closed network of K pass-and-swap queues in tandem, all with the
same swapping graph. Queue i has service rate function μ(i)(c(i)), where c(i) =
(c(i)

1 , . . . , c(i)
n(i) ) is the state of queue i , i = 1, . . . , K . The number n(i) thus reflects

the number of jobs present in queue i . The complete state of the network is given by
�c = (c(1); . . . ; c(K )). For i = 1, . . . , K , the macrostate of queue i is given by |c(i)|.
Furthermore, we define, with a slight abuse of notation, the network macrostate |�c| to
be the elementwise sum of the macrostates associated with each queue.

We assume that the queues are connected in tandem. That is, jobs departing from
queue i join the back of queue (i mod K )+1. Equivalently, jobs arrive at the back of
queue i when they depart queue g(i) := (i − 1) + K1{i=1}. Furthermore, we assume
that the system starts in a certain network state �cstart . Due to the closed nature of the
system, the network macrostate is at all times given by |�cstart |. We let Σstart denote
the recurrent set of states that the network can reach when starting in state �cstart . This
set may be non-trivial to determine. For example, in case of K = 2, we have already
seen that Σstart may not necessarily consist simply of all states in I∗ × I∗ for which
the associated network macrostate equals |�cstart |, cf. Sect. 3.1.

To further specify the relationship between departures from one queue and arrivals
to the next, it will be helpful to define the set Σi,�c. We say that a queue state c′ ∈ Σi,�c
if and only if the network state �c can be reached by having a service completion in
queue g(i), before which queue g(i)was in state c′. This is formalized in the following
definition.

Definition 2 For any queue i ∈ {1, . . . , K } and network state �c ∈ Σstart , the set of
queue microstates Σi,�c ⊂ I∗ corresponding to queue i is defined such that c′ ∈ Σi,�c
if and only if the following three properties are satisfied:

1. the macrostate of c′ satisfies |c′| = |c(g(i))| + e(c(i)
n(i) ), where e( j) is an I -

dimensional vector in which the j-th element is 1 and all other elements are
0,
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2. the set of recurrent network states Σstart contains the network state(
c(1); . . . ; c′; (c(i)

1 , . . . , c(i)
n(i)−1

); . . . ; c(K )
)
when i > 1, or the network state

(
(c(1)

1 , . . . , c(1)
n(1)−1

); c(2); . . . ; c(K−1); c′
)
when i = 1, and

3. there exists at least one p ∈ {1, . . . , ng(i) + 1} so that δp(c′) =
(
c(g(i)), c(i)

n(i)

)
.

Theorem 4, which establishes a product-form stationary distribution for a closed
tandem network of K pass-and-swap queues, requires the following assumption:

Assumption 1 The following statements are equivalent for any queue state c′ ∈ I∗,
any queue i in the closed tandem, and network state �c ∈ Σstart :

1. c′ ∈ Σi,�c.
2. If c′ is the queue state of an open pass-and-swap queue with the same swapping

graph as that of queue g(i) in the closed network, then the open queue can directly
reach state c(g(i)) from state c′ by a service completion, where a job of class c(i)

n(i)

departs the queue.

Having stated this assumption, we are now ready to present the main result of this
section.

Theorem 4 Consider a closed tandem network with K pass-and-swap queues for
which Assumption 1 holds, and suppose that Σstart is an irreducible class of network
states. Then, for all �c ∈ Σstart , the stationary distribution is given by

π(c(1); . . . ; c(K )) = 1

G

K∏

i=1

Φ(i)(c(i)), (9)

where Φ(i)(c(i)) = ∏n(i)

j=1
1

μ(i)(c(i)
1 ,...,c(i)

j )
and G is a normalization constant such that

∑
�c∈Σstart

π(�c) = 1.

Proof We will begin by establishing K sets of balance equations. That is, for i =
1, . . . K , we equalize the flow out of state �c = (c(1); . . . ; c(K )) due to a service
completion at queue i with the flow into state �c = (c(1), . . . , c(K )) due to a job arrival
at queue i . Note that such a job arrival coincides with a service completion at queue
g(i) = (i − 1) + K1{i=1}. This leads to the following K partial balance equations:
for i = 1, . . . , K ,

π(c(1); . . . ; c(K ))μ(i)(c(i))

=
∑

c′∈Σi,�c

n(g(i))+1∑

p=1

δp(c′)=(c(g(i)),c(i)
n(i) )

π
(
c(1); . . . ; c′; (c(i)1 ; . . . ; c(i)

n(i)−1
), . . . ; c(K )

)
Δμ(g(i))(c′1, . . . , c′p).

(10)
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We will now show that (9) satisfies (10) for all i = 1, . . . , K . First, by substituting
(9) in (10), noting that Φ(c(i))μ(i)(c(i)) = Φ(c(i)

1 , . . . , c(i)
n(i)−1

) and simplifying the
result, we obtain the equation

Φ(g(i))(c(g(i))) =
∑

c′∈Σi,�c

n(g(i))+1∑

p=1
δp(c′)=(c(g(i)),c(i)

n(i) )

Φ(g(i))(c′)Δμ(g(i))(c′
1, . . . , c

′
p). (11)

It is left to show that this equation holds. Applying (29) (which is shown in the
proof of Theorem 2, or equivalently in [12, Eq. below (19)]) to the balance function
Φ(g(i))(·), the state c(g(i)) and the job class i = c(i)

n(i) , we obtain

Φ(g(i))(c(g(i))) =
∑

c′∈I∗

n(i)+1∑

p=1
δp(c′)=(c(g(i)),c(i)

n(i) )

Φ(g(i))(c′)Δμ(g(i))(c′
1, . . . , c

′
p). (12)

Due to the definition of δp(c′) and Assumption 1, we know that states c′ ∈ I∗\Σi,�c
bring a zero contribution to the outer sum in the right-hand side of (12). As such,
Equation (12), which was already known to hold true, reduces to (11), completing the
proof. ��

3.3.1 Verifying assumption 1

Theorem 4 proves that a product-form solution holds under Assumption 1. Showing
that this assumption indeed holds in general, however, is non-trivial. In this section,
we verify the assumption when the number of queues K is even, provided that the
service rate functions are such that, at any point in time, any job in the system can
complete service. We also discuss why the assumption is harder to verify when K is
odd. In the remainder of this section, we assume without loss of generality that each
job in the system is of a unique type, cf. Remark 4.

In the following discussion, it will prove worthwhile to extend the notion of a
placement order A that we introduced in Sect. 3.1 to a larger number of queues. Recall
that the placement order is a partial ordering ≺A on the job classes, so that for two job
classes i and j , it holds that i ≺A j whenever there exists a directed path from i to
j in the placement graph A, which is a directed acyclic graph based on the swapping
graph of the queues.

Definition 3 Consider the state �c =
((

c(1)
1 , . . . , c(1)

n(1)

)
; . . . ;

(
c(K )
1 , . . . , c(K )

n(K )

))
. We

say that this state adheres to the placement order A whenever

(i) c(k)
j ⊀A c(k)

i for 1 ≤ i < j ≤ n(k) and odd k ∈ {1, . . . , K },
(ii) c(k)

i ⊀A c(k)
j for 1 ≤ i < j ≤ n(k) and even k ∈ {1, . . . , K }, and

(iii) c(l)
j ⊀A c(k)

i for i ∈ {1, . . . , n(k)}, j ∈ {1, . . . , n(l)} and 1 ≤ k < l ≤ K .
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To show that Assumption 1 holds for any even K , we will make use of two propo-
sitions. The first states that no matter how the network state evolves, its placement
order remains the same.

Proposition 1 Suppose that K is even. If the initial network state adheres to the place-
ment order A, then any subsequent state reached by applying the pass-and-swap
mechanism in any of the queues also adheres to the placement order A.

Proof We follow the same proof approach as the proof of [12, Proposition 4] for the
case K = 2.

Due to symmetry, it suffices to show that the placement order is maintained after a
service completion and subsequent application of the pass-and-swapmechanism at the
first queue. That is, we consider a transition from state �c = (c(1); c(2); c(3); . . . ; c(K ))

to state �d = (d(1); d(2); c(3); . . . ; c(K )) due to a service completion at the first queue,
and we show that if �c adheres to placement order A, then �d also adheres to placement
order A. Our approach will be to establish that the three properties of Definition 3 hold
for state �d , provided that the original state �c satisfies all three properties.

We begin with the first two properties. Observe that for k ≥ 3 the queue state c(k)

does not change throughout the transition, hence properties (i) and (ii) immediately
apply for k > 3. For k = 1, [12, Proposition 2] proves that if c(1) satisfies property (i),
and the pass-and-swap mechanism is triggered by the service completion of the job at
position p ∈ {1, . . . , n(1)}, then the queue state (d(1)

1 , . . . , d(1)
n(1)−1

, c(1)
p ) also satisfies

property (i). It is hence immediate that d(1) = (d(1)
1 , . . . , d(1)

n(1)−1
) also satisfies property

(i). The fact that d(2) =
(
c(2)
1 , . . . , c(2)

n(2) , c
(1)
p

)
satisfies property (ii) follows from the

fact that �c itself satisfies Definition 3.
It remains to check the third property for state �d. Because d(1) only contains jobs

that are also present in the queue state c(1), property (iii) for state �d and k = 1 follows
from the fact that property (iii) holds for the original state �c and k = 1. Similarly,
because d(2) only consists of jobs that are present in c(1) and c(2), property (iii) for �d
and k = 2 follows from the fact that property (iii) also holds for the original state �c
and k = 1, 2. Finally, the fact that property (iii) holds for k ≥ 3 is trivial by noting
that c(k) for k ≥ 3 does not change throughout the application of the pass-and-swap
mechanism. ��

We will also require that all network states that correspond to a given placement
order form a single closed communicating class of the Markov process.

Proposition 2 Assume that K is even, and that, for any queue state c ∈ I∗, it holds
that Δμ(k)(c) > 0 for any k ∈ {1, . . . , K }; that is, any job at any queue can complete
service at any given point in time. Then, all network states �c that adhere to the same
placement order and have the same network macrostate form a single closed commu-
nicating class of the Markov process associated with the network state of the closed
tandem network of pass-and-swap queues.

Proof To prove this proposition, we follow the lines of the proof of [12, Proposition
5]. Given Proposition 1, it suffices to show that, for all states �c = (c(1); . . . , c(K ))
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and �d = (d(1); . . . , d(K )) that adhere to the same placement order, say A, and satisfy
|�c| = | �d|, state �d can be reached from state �c with positive probability. We will show
this by construction; specifically, we will identify a path of transitions from �c to �d.
Let n(i) and m(i) denote the number of jobs present in queue i in states �c and �d,
respectively.
Step 1: There is a path from state �c to state ĉ, where

ĉ =
((

c(1)1 , . . . , c(1)
n(1) , c

(2)
n(2) , . . . , c

(2)
1 , . . . , c(K−1)

1 , . . . , c(K−1)
n(K−1) , c

(K )

n(K ) , . . . , c
(K )
1

)
; ∅; ∅; . . . ; ∅

)
.

The desired path is given as follows. As long as there are jobs in queue 2, we let
the job at the back of queue 2 complete service, so that it moves to the back of queue
3; observe that this is possible due to our assumption that Δμ(k)(c) > 0 for all queues
k and states c. We repeat this for n(2) service completions, all of the job at the back
of queue 2; at the end of this process queue 2 is empty. We then have n(2) service
completions at queue 3, again all of the job at the back of the queue. At this point, all
of the jobs that were originally in queue 2 are now in queue 4. We repeat this process
in turn for queues 4, 5, . . . , K . Because K is even, this leads to the state

((
c(1)
1 , . . . , c(1)

n(1)
, c(2)

n(2)
, . . . , c(2)

1

)
; ∅; c(3); . . . ; c(K )

)
.

We now repeat the above procedure for queues 3, . . . , K , in that order. This leads to
the state ĉ as defined above. In particular, all jobs are present in the first queue, and
queues 2, . . . , K are empty. Proposition 1 guarantees that state ĉ adheres to placement
order A, as we only used valid pass-and-swap transitions.
Step 2: There is a path from state ĉ to state d̂, where

d̂ =
((

d(1)
1 , . . . , d(1)

m(1) , d
(2)
m(2) , . . . , d

(2)
1 , . . . , d(K−1)

1 , . . . , d(K−1)
m(K−1) , d

(K )

m(K ) , . . . , d
(K )
1

)
; ∅; ∅; . . . ; ∅

)
.

Observe that in both of states ĉ and d̂, all of the jobs are in queue 1. We will now
briefly consider a closed network with a single queue, and relate the states ĉ(1) and
d̂(1) in this single-queue network. Due to property (i) in Definition 3, the queue state
ĉ(1) adheres to placement order A in the sense of [12, Section 5.1]. Proposition 3 of
[12] now implies that, in the single-queue closed network, any other queue state that
also satisfies placement order A and that has the same macrostate |ĉ(1)| is reachable
from state ĉ(1). In particular, state d̂(1) is reachable from ĉ(1), where we can use an
argument analogous to that given in step 1 above to show that state d̂(1) adheres to
placement order A.

We are now ready to return to our original K -queue network. By applying Proposi-
tion 3 of [12] to the first queue, we can reason that one can reach the network state d̂.
In particular, we will invoke the transitions implied by [12, Proposition 3], with one
modification due to the fact that, in our network with K > 1, a job x that completes
service in queue 1 joins the back of queue 2, rather than being returned to the back of

123



228 Queueing Systems (2024) 107:205–256

queue 1. Hence, we introduce a sequence of service completions of job x at queues
2, . . . , K in that order, so that job x joins the back of queue 1 again. In this way, the
first queue evolves in the same way as in the closed single-queue network. The fact
that one can reach d̂(1) from state ĉ(1) in the single-queue network therefore implies
that one can reach state d̂ from state ĉ in the K -queue network.
Step 3: There is a path from state d̂ to state �d.

It is rather straightforward to see how, finally, we can reach state �d from state d̂.
We begin with m(K ) service completions at queue 1, where in each case the last job

in the queue departs. At this point, the state of queue 2 is
(
d(K )
1 , . . . , d(K )

m(K )

)
. We then

have m(K ) service completions at queue 2, each of the last job in the queue; after this

sequence of transitions queue 2 is empty and the state of queue 3 is
(
d(K )

m(K ) , . . . , d
(K )
1

)
.

We repeat this process K − 3 more times, at queues 3, . . . , K − 1 successively, after

which the state of queue K is d(K ) =
(
d(K )
1 , . . . , d(K )

m(K )

)
, as desired.

We now follow a similar procedure to establish the desired queue state, d(K−1), at
queue K − 1; this process consists of m(K−1) service completions of the last job in
queue 1, then queue 2, and so on through queue K − 2. Continuing in this vein, one
can construct the desired queue states of queues K − 2, K − 3, . . . , 2, after which

queue 1 also has the desired state d(1) =
(
d(1)
1 , . . . , d(1)

m(1)

)
.

We have now shown that �d is reachable from �c by a certain sequence of transitions,
each of which occurs with positive probability due to the assumption that any job
in any queue can complete service at any given point in time. The proposition now
follows. ��

Now that we have seen these two propositions, we can finally establish in the
following lemma the fact that for even K , Theorem 4 may take effect.

Lemma 2 Under the conditions of Proposition 2, Assumption 1 holds and Theorem 4
takes effect.

Proof The first statement of Assumption 1 generally implies the second. Namely, by
the third property of Definition 2, c′ ∈ Σi,c implies δp(c′) = (cg(i), c(i)

n(i) ). This in turn
immediately leads to the second statement of 1 due to the definition of δp(c′).

It remains to be seen that the second statement of Assumption 1 also implies the
first, or rather, that the second statement of Assumption 1 implies the three properties
of Definition 2. The first of these properties is again rather straightforward: an open
queue can directly reach state c(g(i)) from state c′ by having a job of class c(i)

n(i) depart

the queue, hence state c′ consists of all jobs that are present in state c(g(i)), plus a job
of class c(i)

n(i) . This is tantamount to the first property. By definition of δp(c′), the third
property is also easily established.

Finally, we will establish the second property of Definition 2, and it is here that
Propositions 1 and 2 come into play. Supposewithout loss of generality that the starting
state of the network adheres to placement order A. Together, Propositions 1 and 2 tell
us that Σstart = ΣA, where ΣA is the set of all network states that share the same
macrostate as �cstart and adhere to placement order A. This means that we must have
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�c ∈ ΣA. The second statement of Assumption 1 implies that the network can transition

to state �c from state �cprev :=
(
c(1); . . . ; c′;

(
c(i)
1 , . . . , c(i)

n(i)−1

)
; . . . ; c(K )

)
when i > 1

(or from �cprev :=
((

c(1)
1 , . . . , c(1)

n(1)−1

)
; c(2); . . . ; c(K−1); c′

)
when i = 1) by having

a particular job complete service in queue g(i). Indeed, such a transition is governed
by the pass-and-swap mechanism, which behaves identically in the open queue and
in the closed network. It now follows from Proposition 1 that the network state �cprev
must also adhere to placement order A. We can see this by contradiction: if �cprev
adhered to some other placement order A′ �= A, then due to Proposition 1 state �c also
would adhere to placement order A′, contradicting the previously established fact that
�c ∈ ΣA. In summary, we have �cprev ∈ ΣA = Σstart , implying the second property
of Definition 2, completing the proof. ��

We now briefly turn to the case of odd K and consider why it is harder to establish
that Assumption 1 holds in this case. While we make no claim that a product-form
cannot be established in case K is odd, or, in particular, that Assumption 1 does not
hold for odd K , verifying this assumption is considerably more difficult in this case.
First, we note that we have not established that an even K is a sufficient condition for
Assumption 1 to hold, as we impose the additional requirement that any job present
can complete service at any point in time. Furthermore, our argument for even K
hinges on the fact that we can show Σstart = ΣA. On the other hand, the notion of a
placement order fails for odd K , meaning that there is no straightforward equivalent
of Propositions 1 and 2. The same problem arises when one generalizes the network
topology to something other than a tandem structure. In these cases, different methods
will be necessary to identify the set Σstart ; we leave this for future work.

Remark 4 In this section, we assumed that each job in the closed system is unique
without loss of generality. Absent this assumption, one may encounter situations with
an even number of queues where the system state does not adhere to any placement
order. For example, if the state of the first queue is (1, 2, 1), and an edge between job
classes 1 and 2 exists in the swapping graph, then neither orientation of this edge will
satisfy property (ii) in Definition 3.

Fortunately, this issue can be resolved by considering the isomorphic queue, which
is a system with equivalent dynamics that introduces a unique job class for every job
in the system. We defer a detailed description of the isomorphic queue to Remark 9.

4 Swapping graphs

Consider a ride-sharing system in which customers arrive to the system and request
a ride from their current location to a specified destination. At any moment in time
there is some set of available drivers; when a customer requests a ride she is assigned
to a waiting driver. There may be compatibility restrictions that limit the drivers to
whom this rider can be assigned; for example, a customer consisting of a group of
people can only be assigned to a driver with a sufficiently large vehicle, a customer
who is traveling a long distance can only be assigned to a driver who is willing to take
a long trip, and so on. This ride-sharing model can be thought of as a noncollaborative
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system as described in Sect. 3.2.2, and hence can be modeling using a closed tandem
of two P&S queues, yielding a product-form stationary distribution.

A notable feature of ride-sharing services is that the set of drivers need not be fixed
over time. Indeed, typically drivers will enter and leave the system over time; hence,
there may be periods of time when there are, e.g., very few drivers willing to take
long trips, and other periods of time when there are many such drivers. Unfortunately,
the P&S queue as described in [12] is not sufficiently general to model changes in
the composition of the driver pool. This is because [12] imposes the restriction that
the same swapping graph is utilized throughout the entire lifetime of the system. In
contrast, drivers coming and going can be interpreted as the driver-rider compatibility
graph—and hence, in the P&S system, the swapping graph—evolving over time.

The application of time-varying compatibility graphs motivates us to ask whether it
is possible to relax the restriction that the swapping graph remain fixed without sacri-
ficing the product-form nature of the stationary distribution. We begin by considering
open systems (Sect. 4.1) and then proceed to closed systems (Sect. 4.2).

4.1 Open systems

We introduce a Markov-modulated process that evolves independently of the queue
state of the system; the swapping graph that is used when a service completion occurs
at time t is determined by the state of this modulating process at time t . Specifi-
cally, let {X(t) : t ≥ 0} be a continuous-time Markov chain with state space S.
Its generator matrix Q = (qi, j )i, j∈S is specified by its elements qi, j ≥ 0, where
qi,i = −∑

j∈S\i qi, j . We also introduce ρ(b) = limt→∞ P(X(t) = b) for b ∈ S.
Each state b has an associated swapping graph G(b); pass-and-swap transitions occur
according to the swapping graph G(b) whenever X(t) = b.

The introduction of the modulating process necessitates an expansion of the state
space used to describe the complete system. As specified before, the state space under-
lying a traditional P&S queue is the Kleene closure I∗ of the finite set I of customer
classes. Upon introducing the modulating process, the system state now not only
includes the queue composition, but also the state of the modulating Markov chain.
Therefore, the state space of the complete system now is I∗×S. Equivalently, the state
of the system is now represented by (c; b), where c = (c1, . . . , cn) ∈ I∗ represents
the queue composition and b ∈ S represents the state of the modulating process.

We are now ready to derive the stationary distribution of the P&S queue with a
Markov-modulated swapping graph.

Theorem 5 The stationary distribution σ(c; b) of the modulated system is given by

σ(c; b) = π(c)ρ(b), (13)

where π(c) is the stationary probability of state c in the unmodulated system.

Proof We will modify the balance equations (6) and (7) used in the proof of The-
orem 2 to account for the state of the modulating chain as well as the queue state.
Let σ(c1, . . . , cn; b) be the stationary distribution of the modulated system, with
c = (c1, . . . , cn) ∈ I∗ and b ∈ S.We consider the following partial balance equations:
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1. For all states (c; b) such that c ∈ I∗\∅, b ∈ S, the rate out of state (c, b) due to a
departure is equal to the rate into state (c, b) due to an arrival:

σ(c; b)μ(c) = σ(c1, . . . , cn−1; b)λcn . (14)

2. For all job classes i ∈ I and for all states (c; b) such that c ∈ I∗, b ∈ S, the rate
out of state (c; b) due to the arrival of a class-i job is equal to the rate into state
(c; b) due to the departure of a class-i job:

σ(c; b)λi =
∑

d∈I∗

n+1∑

p=1
δp(d,b)=(c,i)

σ (d; b)Δμ(d1, . . . , dp). (15)

Note that we now write δp(d, b) where previously we wrote δp(d). This function
still returns (c, i) if, given that the system is in state (d; b), a service completion
of a job at position p will trigger a transition to state c with a job of class i
departing the system. It is however worth noting that the sequence of swaps that
occur upon a service completion now also depends on themodulating state b; recall
that b determines the swapping graphG(b), according to which the pass-and-swap
transition is made.

3. For all states (c; b) such that c ∈ I, b ∈ S, the rate out of state (c; b) due to a
transition in the modulating chain is equal to the rate into state (c; b) due to a
transition in the modulating chain:

σ(c; b)
∑

b′∈S\{b}
qb,b′ =

∑

b′∈S\{b}
σ(c; b′)qb′,b. (16)

Observe that summing equation (14) over all b ∈ S, equation (15) over all i ∈
I, b ∈ S, and equation (16) over all b ∈ S yields the global balance equations for the
modulated system. Hence, the distribution σ(c; b) that satisfies equations (14)-(16)
represents the stationary distribution of the modulated system.

We will now show that (13) satisfies the partial balance equations (14)-(16).
The fact that it satisfies equation (14) is trivial. To see that equation (15)
holds, recall from the original pass-and-swap result in [12] that π(c)λi =∑

d∈I∗
∑n+1

p=1;δp(d)=(c,i) π(d)Δμ(d1, . . . , dp). Because this equation holds for any
δp(d), it must also hold for δp(d, b) for any fixed b because the swapping graph (and
thus also this function) remains unaltered over the course of a pass-and-swap transition.
Finally, equation (16) holds because, recalling that ρ(·) is given to be the station-
ary distribution of the underlying modulating chain, we have ρ(b)

∑
b′∈S\{b} qb,b′ =∑

b′∈S\{b} ρ(c; b′)qb′,b. ��
Remark 5 FromTheorem 5, it follows that the stationary distribution of the queue state
is given by the distributionπ(·), because∑

b∈S σ(c; b) = ∑
b∈S π(c)ρ(b) = π(c) for

any c ∈ I∗. This shows a remarkable independence between the stationary distribution
of the state of the queue and the dynamics of the swapping graph.
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Remark 6 Suppose that the swapping graph instead is chosen i.i.d. upon every service
completion. From Theorem 5 and the previous remark, it immediately follows that,
in this case, the queue content also has stationary distribution π(·). This result can be
derived by choosing themodulating chain such that there is one state in themodulating
chain corresponding to each possible swapping graph, and by choosing the stationary
distribution of the modulating chain the same as the distribution according to which
the swapping graph is chosen every transition. Then, we let the modulating chain run
on a time scale that is infinitely faster than the time scale of the queue content, after
which the claim follows.

4.2 Closed systems

We now consider closed networks of two P&S queues in tandem, as described in
Sect. 3.1; similar results can be obtained for the single closed P&S queue. As was
the case in the open system, we show in this section that these networks exhibit a
product-form stationary distribution when the swapping graph is chosen according to
an exogenous Markov modulated process. In particular, we show that the stationary
distribution still exhibits a product form when the swapping graphs of both queues in
the closed tandem are the same at all points in time, but are not necessarily constant.
That is, we again assume that the swapping graph at both queues at time t is given
by G(X(t)), where {X(t) : t ≥ 0} is a continuous-time Markov chain with state S
and generator matrix Q = (qi, j )i, j∈S with stationary distribution ρ(·). We denote
the complete state of the system by (c; d; b), where, as in Sect. 3, c and d denote
respectively the states of the upper and lower queues, and b denotes the state of the
modulating process. The following theorem now establishes the product-form nature
of the stationary distribution of the complete system.

Theorem 6 For all states (c; d; b) ∈ ΣA × S, the stationary distribution σ(c; d; b)
of the modulated closed system is given by:

σ(c; d; b) = π(c; d)ρ(b), (17)

where π(c; d) is the stationary distribution of state (c; d) in the unmodulated system;
cf. Theorem 3.

Proof We will modify the balance equations used in the proof of Theorem 3 (see
Appendix B) to account for the state of the modulating chain as well as the queue
states. We consider the following partial balance equations:

1. For all states (c; d; b) ∈ ΣA × S such that c �= ∅, the flow out of the state due
to a service completion at the upper queue equals the flow into the state due to a
service completion at the lower queue:

σ(c; d; b)μ(c) =
∑

d ′∈D|d|+ecn

m+1∑

p=1
δp(d ′)=(d,cn)

σ (c1, . . . , cn−1; d ′; b)Δν(d ′
1, . . . , d

′
p).

(18)
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2. Similarly, for all states (c; d; b) ∈ ΣA × S such that d �= ∅, the flow out of the
state due to a service completion at the lower queue equals the flow into the state
due to a service completion at the upper queue:

σ(c; d; b)ν(d) =
∑

c′∈C|c|+edm

n+1∑

p=1
δp(c′;b)=(c,dm)

σ (c′; d1, . . . , dm−1; b)Δμ(c′
1, . . . , c

′
p).

(19)
3. For all states (c; d; b) ∈ ΣA × S, the rate out of state (c; d; b) due to a transition

in the modulating chain is equal to the rate into state (c; d; b) due to a transition
in the modulating chain:

σ(c; d; b)
∑

b′∈S\{b}
qb,b′ =

∑

b′∈S\{b}
σ(c; d; b′)qb′,b. (20)

We will now show that (17) satisfies the partial balance equations (18)-(20). One can
see immediately that (17) satisfies (18) if and only if

π(c; d)μ(c) =
∑

d ′∈D|d|+ecn

m+1∑

p=1
δp(d ′)=(d,cn)

π(c1, . . . , cn−1; d ′)Δν(d ′
1, . . . , d

′
p).

This is exactly equation (37), which was shown to hold in the proof of Theorem 3.
That the partial balance equation (19) holds follows by a symmetric argument. Finally,
equation (20) holds because ρ(b)

∑
b′∈S\{b} qb,b′ = ∑

b′∈S\{b} ρ(b′)qb′,b, as ρ(b) is
the stationary distribution of the modulating Markov process. ��

5 Limits on the number of swaps

Amajor open question in the study of redundancy systems is how the scheduling policy
affects performance. While [4] presents a conjecture that the stationary distribution of
the cancel-on-complete redundancy system coincides under FCFS and random order
of service (ROS) scheduling, [18] provides numerical evidence suggesting that this
conjecture is false; to date, the question is unresolved. The challenge lies in the fact
that, while the stationary distribution under FCFS is known [17], there is no existing
closed-form analysis for ROS.

One could imagine studying the system under ROS by framing the ROS policy in
terms of the P&S mechanism. To see how to do this, we will start by considering an
M/M/1 with a single job class. Under ROS, if there are n jobs in the system then, upon
a service completion, all jobs are equally likely to depart, each with probability 1/n.
To model this using a P&S queue, we will use a complete swapping graph (i.e., the
swapping graph has a self-loop from the one job class to itself). In order for the job in
position i to depart, it must be the case that the P&S transition terminates after i − 1
swaps. Unfortunately, the standard P&S mechanism cannot capture this behavior, as
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it will terminate after n − 1 swaps when there are n jobs in the system. Instead, we
will introduce a randomly-chosen, state-dependent limit on the number of swaps that
can occur as part of a P&S transition. In particular, when there are n jobs in the system
we set the swapping limit to i with probability 1/n, for all 0 ≤ i ≤ n − 1.

In the redundancy system, upon a service completion all jobs that are compatible
with the completing server—not necessarily all jobs in the system—are equally likely
to depart. Hence, in order tomodel ROS in the redundancy system, the state-dependent
swapping limit that one needs to impose becomes more complicated. This limit now
needs to depend not only on the total number of jobs in the system, but also on
the number of jobs in the system that are compatible with the completing server.
Nonetheless, we can still cast the redundancy system under ROS as a P&S queue with
randomly-chosen, state-dependent limits on the number of swaps. A proof that one
can impose such swapping limits in the P&S queue without changing the stationary
distribution would thus constitute a proof that the redundancy system admits the same
stationary distribution under ROS and under FCFS.

The above application motivates us to introduce the notion of a swapping limit w.
We modify the original pass-and-swap mechanism as follows: As usual, a job service
completion triggers the start of a pass-and-swap transition. Unlike in the original pass-
and-swap queue, now this transition is permitted to involve at most w swaps. That is,
the w-th job to be ejected from its original position must depart from the system, even
if there are jobs in the remainder of the queue with which this job is eligible to swap
according to the swapping graph.

We note two special cases. The case w = 0 corresponds to an OI queue because,
when w = 0, a job that completes service will immediately depart from the system
without swapping positionswith any other job. Similarly, the casew = ∞ corresponds
to the standard P&S queue, as this setting induces no actual swapping limit.

Example 8 Consider a P&S queue consisting of three job classes, namely 0, 1, and 2,
where the vertex set of the swapping graph is V = {0, 1, 2} and the edge set of the
swapping graph is E = {(0, 1), (1, 2)} (i.e., the swapping graph is a path on three
vertices). Let the service discipline be first-come first-served, so that the first job in
the queue receives service at rate μ, and all other jobs receive no service (i.e., rate 0).
We consider three different swapping limits.

– w = 1. In this case only a single swap may be performed after a job completes
service. Thus, when the job at the head of the queue completes service, the first job
in the queue with which it is swappable, if any, will depart from the system. For
example, when the queue is in state c = (0, 0, 2, 1, 0, 2, 1) and the class-0 job at
the head of the queue completes service, the first class-1 job will depart from the
system, resulting in state (0, 2, 0, 0, 2, 1). Note that the pass-and-swap transition
terminates at this point, even though there are other jobs in the remainder of this
queue that are swappable with class-1.

– w = 2. Suppose again that the queue begins in state c = (0, 0, 2, 1, 0, 2, 1). When
the class-0 job at the head of the queue completes service, it will swap with the
first class-1 job as in the case where w = 1. Now, one more swap is permitted, so
the class-1 job will in turn swap with the class-2 job behind it. At this point the
swapping limit has been reached, so this class-2 job will depart from the system
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(even though it is swappable with the class-1 job at the back of the queue). The
new state is thus (0, 2, 0, 0, 1, 1).

– w > 2. Here the swapping limit no longer plays a role, as the unconstrained pass-
and-swap transition involves only three swaps. In this case, the class-2 job does
swap with the final class-1 job, which then departs from the system, resulting in
state (0, 2, 0, 0, 1, 2).

Swapping limits are a particularly intriguing area of study because, aswewill see, in
some cases the introduction of a swapping limit preserves the product-form stationary
distribution, while in other cases it does not. In particular, in Sect. 5.1 we will show
that open (networks of) pass-and-swap queues with a finite, non-degenerate swapping
limit do not admit product form stationary distributions in general. On the other hand,
we find in Sect. 5.2 that in closed networks product-form solutions are still feasible in
some cases.

5.1 Open systems

In this section we will show that introducing a swapping limit in an open system
renders the product-form solution infeasible. In particular, we will identify the step in
the argument atwhich the partial balance approach fails.Weprovide a counterexample,
based on Example 8, to illustrate the problem.

Counterexample 1 The system described in Example 8 with w = 1 does not admit a
product-form stationary distribution.

Proof In general, if the open system were to admit a product-form stationary distri-
bution, then the following partial balance equations would be satisfied for all possible
states c ∈ I∗:
– When c �= ∅, the flow out of state c due to a service completion equals the flow
into state c due to a job arrival:

π(c)μ(c) = π(c1, . . . , cn−1)λcn . (21)

– For each i ∈ I, the flow out of state c due to a class-i arrival equals the flow into
state c due to a class-i departure:

π(c)λi =
∑

d∈I∗

n+1∑

p=1
δp,w(d)=(c,i)

π(d)Δμ(d1, . . . , dp). (22)

Note that these equations are the same as (6) and (7), except for the function
δp,w(d) in the second equation. Akin to the “original” function δp(d), the function
δp,w(d) = (c, i) if, observing the swapping limit w, a service completion of the job
in position p in state d leads to the state c, with a job of class i leaving the system.
The difference with the original function δp(d) is that δp,w(d) observes the swapping
limit w.
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We now turn to Example 8 with w = 1 and show that there exist states c ∈ I∗ for
which the second partial balance equation does not necessarily hold. As before, let n
denote the number of jobs present in the system in state c. For any state c, the rate of
leaving c due to a class-i arrival is equal toπ(c)λi . Becausewe assume that the queue is
stable, we have that π(c) > 0 for any state c, making the left-hand side of the second
partial balance equation positive. We proceed to inspect the right-hand side of this
equation, focusing on the case i = 0. In this particular example Δμ(d1, . . . , dp) = 0
for p > 1, hence any contribution to the right-hand side of the equation occurs when
p = 1. Therefore, we only need to identify the states d for which δ1,1(d) = (c, 0).
For a class-0 job to depart the system, there must be a job of a swappable class (i.e.,
a class-1 job) at the head of the queue in state d. Moreover, the first class-0 job in the
queue must be the first job in the queue that is not of class 1. Hence, the system state
d prior to entering state c must be of the following form, for some j ≥ 0:

(1, ( j class-1 jobs), 0, (n − j − 2 jobs of any class)).

However, given this form of state d, we conclude that state c must be of the following
form:

(( j + 1 class-1 jobs), (n − j − 2 jobs of any class)).

Clearly, there exist states c that do not satisfy this form. This is enough to conclude
that the partial balance equations will not hold for all states c: for any given state c, it
is always possible to leave the state due to the arrival of any class (i.e., the left-hand
side of (22) is positive), but there may exist a class i such that it is not possible to enter
state c due to a class-i departure (i.e., the right-hand side of (22) is 0). ��

While the above discussion refers to a specific example, one can readily see that
the problem that arises in Counterexample 1 will also occur in practically all non-
degenerate cases. In particular, any state in I∗ is reachable due to the general arrival
process and the openness of the system.Thismakes it possible for situations like the one
described above to occur, leaving the partial balance equations (21) and (22) without
a solution and hence rendering a product-form stationary distribution infeasible.

The above counterexample sheds light on a necessary condition for partial balance
to hold: it must be possible to enter any state c due to the departure of any job class.
This condition may seem immediately apparent, as violating this condition eliminates
the possibility that the system is reversible. However, explicitly stating this condition
is useful in that it allows us to identify more easily cases in which partial balance, and,
hence, a product-form stationary distribution, is out of reach.

Remark 7 One might wonder at this point whether it is possible to eliminate the prob-
lem identified above by introducing a probabilistically chosen swapping limit such
that, upon each service completion, the swapping limit w = i with probability ωi ,
0 ≤ i < n. Introducing the possibility that w = 0, in particular, means that one can
always enter state c from state (i, c) due to a class-i departure, thereby eliminating
the immediate problem present in Counterexample 1.
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Unfortunately, the probabilistically-chosen swapping limit does not suffice to
recover the product-form stationary distribution. Consider the balance equation that
arises in this setting that equates the flow out of state c due to a class-i arrival with the
flow into state c due to a class-i departure; this is analogous to Equation (22), and is
given by the following:

π(c)λi =
n−1∑

w=0

ωw

∑

d∈I∗

n+1∑

p=1
δp,w(d)=(c,i)

π(d)Δμ(d1, . . . , dp).

Now consider again the scenario given in Example 8, and focus on the case i = 0.
Recalling that in this example we allocate service rate μ to the first job in the system
and rate 0 to all other jobs, we obtain:

π(c)λ0 =
n−1∑

w=0

ωw

∑

d∈I∗:
δ1,w(d)=(c,0)

π(d)μ.

Observe that our swapping graph—the path on class nodes {0, 1, 2}—is such that
a class-0 job cannot depart from the system at the end of a transition with w > 0
swaps unless there is a class-1 job present in the system. Consider, for example, state
c = (1, 1). We can enter this state due to a class-0 departure in the following ways:

– The previous state was (0, 1, 1) and the swapping limit was chosen to be w = 0.
– The previous state was (1, 0, 1), and the swapping limit was chosen to be w = 1.
– The previous state was (1, 1, 0), and the swapping limit was chosen to be w = 1
or w = 2.

The resulting partial balance equation for state c = (1, 1) is thus

π(1, 1)λ0 = π(0, 1, 1)μω0 + π(1, 0, 1)μω1 + π(1, 1, 0)μ(ω1 + ω2).

At this point, one can see without too much difficulty that the form given in (4)
satisfies this balance equation if and only if ω1 = 0, which corresponds to a setting in
which either no swaps are permitted (w = 0) or there is effectively no swapping limit
(w = 2 = n).

5.2 Closed tandems

We now turn to the case of a closed network of two P&S queues in tandem with fixed
swapping limits. We consider the same system structure as in [12] (see Sect. 3.1); the
difference is that we now impose a limit on the number of swaps per transition. We
assume that this limit, which we again refer to as w, is the same for both queues in the
network.

Surprisingly, this case is considerably more intricate than the open queue. The
argument that we make for the open queue in Counterexample 1 no longer applies:
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due to the absence of an external arrival process, it is not necessarily possible to reach
all conceivable queue states.

To examine the closed tandem network of two P&S queues with swapping limits,
we begin by setting up the partial balance equations that correspond to the underlying
Markov chain. It is immediate to verify that these are given as follows:

1. The rate of leaving state (c; d) due to a service completion at the upper queue is
equal to the rate of entering state (c; d) due to an arrival at the upper queue (that
is, a service completion at the lower queue), provided c �= ∅:

π(c; d)μ(c) =
∑

d ′∈D|d|+ecn

m+1∑

p=1
δp,w(d ′)=(d,cn)

π(c1, . . . , cn−1; d ′)Δν(d ′
1, . . . , d

′
p),

(23)
where Dx refers to the set of all states d of the lower queue such that |d| = x .
Moreover, as before, the function δp,w(d ′) returns (d, i) if, observing the limit w,
a service completion at position p in state d ′ leads to the state d, with a job of class
i leaving the queue.

2. The rate of leaving state (c; d) due to a service completion at the lower queue is
equal to the rate of entering state (c; d) due to an arrival at the lower queue (that
is, a service completion at the upper queue), provided d �= ∅:

π(c; d)ν(d) =
∑

c′∈C|c|+edn

n+1∑

p=1
δp,w(c′)=(c,dn)

π(c′; d1, . . . , dm−1)Δμ(d ′
1, . . . , d

′
p),

(24)
where Cx refers to the set of all states c of the upper queue such that |c| = x .

It is worth noting that, again, the only difference between these balance equations
and those of the closed tandem without swapping limits (cf. (37) and (38)) lies in
the function δp,w(·). That is, due to the limit w a service completion may result in a
transition to a different state, ceteris paribus.

Without further assumptions, in general the partial balance equations (23) and (24)
do not necessarily have a solution. We illustrate this in Sect. 5.2.1. However, in
Sect. 5.2.2, we prove that under certain conditions on the swapping graph and the
initial state, a product-form solution is still guaranteed.

5.2.1 Counterexample in the absence of further conditions

We now provide an example of a closed network of two P&S queues in tandem
with swapping limits, the stationary distribution of which defies the partial balance
equations given in (23) and (24). Specifically, we identify a particular case where the
partial balance equations fail to hold. This allows us to conclude, as was the case for
the open queue, that closed tandem networks of P&S queues with swapping limits do
not necessarily admit a product-form solution in the absence of further conditions.
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Counterexample 2 Consider a closed tandem network of two P&S queues that con-
tains four jobs spanning three job classes. In particular, the system contains a single
class-1 job, a single class-3 job, and two class-2 jobs. Therefore, at any point in time
we have that |c| + |d| = (1, 2, 1). Define the service rate functions μ and ν such that
the first job in each queue receives service rate 2 and all other jobs receive service
rate 0. The swapping limit is w = 1 in both queues, and the swapping graph for both
queues constitutes the complete graph with the vertex set {1, 2, 3} (i.e., each job class
is swappable with any other).

The system described above does not admit a product-form stationary distribution.

Proof Before we analyze its stationary distribution, we first consider the states of the
Markov chain underlying this system. The state space of this Markov chain consists
of (c, d) such that |c| + |d| = (1, 2, 1). It is easy to verify that this Markov chain is
irreducible: by having the jobs in the first position of either queue complete service in
the correct order, any state in the state space can be reached from any other state. As a
result, because the state space is finite, the irreducibility of the Markov chain implies
that all states are positive recurrent; the unique stationary distribution corresponding
to this Markov chain will assign a positive probability to all of the states.

We now consider the partial balance equations (23) and (24) for this closed tandem
network. The key point in this counterexample is the fact that δp,w(·) depends on the
limit w.

Consider this system with no swapping limit, i.e., w = ∞. We will write the
partial balance equation (23) for the state ((1, 2); (2, 3)). The right-hand side of this
partial balance equation includes a sum over states d ′ such that δ1,∞(d ′) = ((2, 3), 2).
Observe that d ′ = (2, 3, 2) is the only such state with |d ′| = (0, 2, 1); in this case, the
service completion of the first class-2 job will cause it to swap with the class-3 job,
which in turn swaps with the second and final class-2 job. The first balance equation
(23) for the state ((1, 2); (2, 3)) then becomes

2π((1, 2); (2, 3)) = 2π((1); (2, 3, 2)),

In contrast, when the limit w = 1 is imposed, we have δ1,1((2, 3, 2)) = ((2, 2), 3)
because the class-3 job is forced to leave the system due to the swapping limit. Further-
more, it is easy to verify that, due to the limit w = 1 and the structure of the swapping
graph, there are no states d ′ with |d ′| = (0, 2, 1) such that δ1,1(d ′) = ((2, 3), 2).
While such states can be found for other service completion positions p, we note that
in this example only the first job in the queue receives service. As a result, (23) in this
example yields

2π((1, 2); (2, 3)) = 0.

This equation contradicts the earlier observation that the stationary distribution assigns
a positive probability to each state d with |d| = (1, 2, 1). Hence, the stationary dis-
tribution does not satisfy the partial balance equations, meaning that the stationary
distribution cannot have a product-form in this case. ��
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5.2.2 Product-form stationary distributions under further conditions

Counterexample 2 shows that closed tandem networks with swapping limits do not
necessarily admit product-form stationary distributions. In this section,we study a non-
trivial yet sufficient condition under which the closed tandem network with swapping
limits is guaranteed to admit a product-form solution. This extra condition states that
the swapping graph is a (w +1)-partite graph, where w is the swapping limit. In other
words, this condition dictates that the vertex set of the swapping graph can be divided
into w + 1 independent sets, i.e. w + 1 sets of vertices such that there is no edge
between two vertices from the same set.

The following theorem presents the stationary behavior of the closed tandem net-
work under this condition. We formulate the corresponding proof under the added
assumption that each job is of a unique job class. We make this assumption for clarity
of presentation, but without loss of generality, as explained in Remark 9 below.

Theorem 7 Consider a closed network of two P&S queues in tandem, and suppose
that the swapping graph is (w + 1)-partite. Then the following statements hold:

1. Suppose that the initial state (c; d) adheres to a placement order A for which the
longest path in the corresponding swapping graph has length at most w. Then the
stationary distribution coincides with the product-form stationary distribution of
the “original” closed tandem network (i.e., w = ∞) as given in (8):

πA(c; d) = 1

G
Φ(c)Λ(d) ∀(c; d) ∈ Σa, (25)

where Σa consists of all states (c; d) that adhere to the placement order A. As
before,

Φ(c1, . . . , cn) =
n∏

p=1

1

μ(c1, . . . , cp)
and Λ(d1, . . . , dm) =

m∏

p=1

1

ν(d1, . . . , dp)
.

2. There exists at least one placement order and initial state that satisfy the previous
statement.

3. Let A1, . . . , AI denote the placement orders that correspond to all I ≥ 1 orien-
tations of the swapping graph in which the longest path has a length of at most w.
Then each convex combination of the distributions πAi (·; ·) (as given in (25)), for
all i ∈ {1, . . . , I }, also forms a stationary distribution.
In effect, this theorem shows that, under certain conditions, it is possible for a

closed tandem network of P&S queues to have a product-form stationary distribution.
We present the full proof of this theorem in Appendix C.

Remark 8 While we state Theorem 7 for a closed network of two P&S queues in
tandem, the theorem can be extended straightforwardly to larger tandem networks
with any even number of queues, given the results presented in Sect. 3.3. We opt to
limit the presentation of Theorem 7 to two queues for the sake of notational concision.
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Fig. 7 Swapping graph and placement orders for Example 9

It should be noted that Theorem 7 leaves open the question of what happens when
the placement order of the initial state corresponds to an orientation which allows
paths of lengths exceeding w. Extensive numerical experiments support the following
conjecture concerning this scenario.

Conjecture 1 Suppose that the swapping graph corresponding to the queues of the
closed tandem network is (w + 1)-partite. A state (c; d) is transient if it adheres to
a placement order A that corresponds to an orientation that allows for paths with a
length greater than w.

Proving this conjecture appears challenging; we comment further on a possible
approach in Appendix C. Provided that this conjecture is indeed valid, it implies that
if the swapping graph is (w+1)-partite, then no matter the initial state the system will
always evolve to a state with a placement order orientation in which the longest path
is at most w, since all other states are transient. Theorem 7.1 then in turn indicates
that if the swapping graph is (w + 1)-partite, then the stationary distribution of the
closed tandem network is always of product form.We proceed to illustrate and provide
intuition for why these findings hold by means of an example.

Example 9 We consider a closed tandem network with five job classes, where the
swapping graph is a path on five vertices. That is, the swapping graph has vertex set
V = {1, 2, 3, 4, 5} and edge set E = {(1, 2), (2, 3), (3, 4), (4, 5)}, cf. Figure7a. It is
easily verified that this swapping graph is bipartite. The swapping limit in both queues
is given by w = 1, so that this closed tandem network meets the conditions posed in
Theorem 7 and Conjecture 1. The service rate functions at both queues are such that
at all points in time, all jobs in the system receive service at rate one.

Suppose now that the initial state is ((1, 3, 5, 4, 2); ∅). It is easily verified that this
initial state corresponds to the placement order A, where we have that 1 ≺A 2, 3 ≺A 2,
3 ≺A 4 and 5 ≺A 4 as depicted in Fig. 7b. Theorem 7.1 applies to this initial state,
as there are no paths in Fig. 7b with length larger than w = 1. This also exemplifies
the existence as claimed in Theorem 7.2. Because of this, in this state, the system will
behave as if w = ∞. That is, if the class-1 job completes service it will swap with the
class-2 job, which in turn leaves the queue because there are no jobs behind it in the
queue. Similarly, if either the class-3 or the class-5 job completes service, it will swap
with the class-4 job, which in turn leaves the queue because there are no jobs behind
it of class i such that 4 ≺A i .

The above argument indicates that the first transition out of the initial state is
stochastically identical to this transition in the case where w = ∞ as studied in [12].
As a result, Lemma 1 also applies to this transition, and therefore the next state adheres
to placement order A. Furthermore, any transition out of that state will involve at most
one swap, regardless of the value of w, and hence will again behave stochastically
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identically to the network with w = ∞. By repeatedly applying this argument, we
conclude that, as the network state evolves, the swapping limit w is never enforced.
This means that the functions δp,1(·) and δp,∞(·) yield the same output, and hence
the partial balance equations (23) and (24) are identical for the cases w = 1 and
w = ∞. Therefore, the stationary distribution of the queue state when w = 1 is equal
to the product-form stationary distribution πA as given in (25), as it coincides with the
distribution (8) derived in [12] for the case of w = ∞.

We next address Conjecture 1 for this particular example. To this end, we consider
the initial state ((1, 2, 3, 4, 5); ∅). This state adheres to a placement order that includes
a path of length 5 > w = 1 (see Fig. 7c). In this case, the swapping limit w = 1 does
play a role. For example, if the class-1 job completes service, then the system will
transition to state ((1, 3, 4, 5); (2)), as the limit forces the class-2 job to leave the queue
instead of swapping with the class-3 job (which would, in turn, ultimately lead to the
class-5 job leaving the queue). Now consider the following sample path: from state
((1, 3, 4, 5); (2)) the class-3 job completes service, resulting in state ((1, 3, 5); (2, 4));
then the class-4 job complete service, resulting in state ((1, 3, 5, 4); (2)); and finally
the class-2 job completes service, resulting in state ((1, 3, 5, 4, 2); ∅). At this point, we
have reached the state that we considered earlier in this example; recall that, once we
have reached state ((1, 3, 5, 4, 2); ∅), Lemma 1 will ensure that the system will never
return to state ((1, 2, 3, 4, 5); ∅). As such, the latter state is transient, exemplifying
Conjecture 1.

We now turn to Theorem7.3.Observe that from state ((1, 2, 3, 4, 5); ∅) it is possible
to reach recurrent states that adhere to a placement order different from the one depicted
in Fig. 7c. For example, we can also reach the state ((4, 2); (5, 1, 3)) through the
following evolution of states:

((1, 2, 3, 4, 5); ∅) → ((1, 2, 3, 4); (5)) → ((1, 2, 3); (5, 4))

→ ((1, 3); (5, 4, 2)) → ((1); (5, 4, 2, 3)) →
(∅; (5, 4, 2, 3, 1)) → ((4); (5, 2, 3, 1)) → ((4, 3); (5, 2, 1))

→ ((4, 3, 2); (5, 1)) → ((4, 2); (5, 1, 3)).

The placement order of state ((4, 2); (5, 1, 3)), which we refer to as B, is similar to
that depicted in Fig. 7c except that all edges are oriented in the opposite direction.
Due to this symmetry, once the system reaches state ((4, 2); (5, 1, 3)) it behaves as
it would in the w = ∞ case. Thus πB , the limiting distribution corresponding to
placement order B, also is a stationary distribution of the Markov chain underlying
this example, just like πA. By standard Markov chain theory, this implies that any
convex combination of πA and πB will also form a stationary distribution. Observing
that there are no other placement orders that include paths of length at most w = 1,
we have found all possible stationary distributions, in accordance with Theorem 7.2.

The proof of Theorem7 inAppendixC follows an approach similar to the arguments
presented in the above example. That is, we show that once a network state adheres
to a placement order in which all paths have length at most w, the system will adopt
the corresponding limiting distribution; because the limit w is irrelevant once such a
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state has been reached, the resulting limiting distribution must be of product form. In
Appendix C we also identify particular cases in which one can prove that Conjecture 1
holds.

It is important to stress that the swapping graph being (w + 1)-partite, as posed in
Theorem 7, is by no means a necessary condition for the network to have a product-
form stationary distribution. There are trivial situations in which the nature of the
swapping graph does not play a role. For example, if the swapping limit w exceeds
the number of jobs present in the network, then clearly the system behaves as if there
is no swapping limit. As such, the stationary distribution is then of product form by
the findings of [12] (see Sect. 3.1). However, there are also other, less trivial, closed
tandem networks in which the swapping graph is not (w+1)-partite but the stationary
distribution nonetheless is product-form. The following example presents such an
network.

Example 10 Consider a closed tandem network of two P&S queues in which there
are three jobs, all of different classes. We assume that the swapping graph is com-
plete, i.e. the vertex set is given by V = {1, 2, 3} and the edge set is given by
E = {(1, 2), (1, 3), (2, 3)}. Furthermore, all jobs in the system receive service at
rate one, and the swapping limit is set to w = 1. The swapping graph is immediately
seen not to be bipartite, hence Theorem 7 and Conjecture 1 do not apply.

In this system, the state space consists of 6×4=24 states. That is, there are six
possible permutations of the set {1, 2, 3}, and there are four ways to divide any such
permutation between the two queues.

Due to the complete symmetry of this system, it is easy to verify that for any of
the 24 possible states (c; d) we have π((c; d)) = 1

24 , independent of the initial state
of the system. Similarly, it is also easily seen that this stationary distribution satisfies
the partial balance equations (23) and (24) and thus has a product form. Interestingly,
in contrast to Example 9, the partial balance equations for w = 1 are not the same as
those for w = ∞. For example, with an initial state (c; d) = ((1, 2, 3); ∅), the only
states that can be reached without a swapping limit are ((1, 2, 3); ∅), ((1, 2); (3)),
((1); (3, 2)) and (∅; (3, 2, 1)). In the case of w = 1, all 24 states can be reached from
any initial state.

It remains an open question to formulate conditions which are both necessary and
sufficient for a closed tandem network with finite swapping limits to allow for a
product-form solution.

Remark 9 In this section, we have only considered examples where each job in the
system is of a unique class, and as such, a placement order necessarily exists. However,
in the absence of this assumption, one may encounter situations where a state does
not adhere to any placement order. This issue can be addressed using an isomorphic
queue [12], which we now illustrate.

Consider a closed tandem network in which the swapping graph has vertex set
V = {1, 2} (i.e., there are two job classes), and edge set E = {(1, 2)} (i.e., the two job
classes are swappable). Then there exist states, for example ((1, 2, 1); ∅), that do not
adhere to any placement order. In particular, in state ((1, 2, 1); ∅) the class-2 job both
precedes and follows a class-1 job, so the placement order A would have to satisfy
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1 ≺A 2 and 2 ≺A 1; this is not possible. Therefore, one may conclude that this state
is not covered by Theorem 7.

The notion of an isomorphic queue allows us to identify an equivalent system for
which Theorem 7 does apply, as discussed in [12, Appendix D.1]. The idea behind
an isomorphic queue is that, for each job whose class appears more than once in the
system, we introduce a new job class while otherwise maintaining the dynamics of
the system. For state ((1, 2, 1),∅), for example, we introduce job classes 1′ and 1′′
and define an updated swapping graph in which both of these classes have the same
neighbors as the original job class 1. Thus, we now consider the swapping graph with
V = {1′, 1′′, 2} and E = {(1′, 2), (1′′, 2)}. Finally, we relabel the class-1 jobs in the
original state to be of classes 1′ and 1′′, so thatwe nowconsider the state ((1′, 2, 1′′); ∅).
As long as the service rate functions in this new system treat job classes 1′ and job
class 1′′ identically to job class 1, it is immediate to verify that this new system behaves
identically to the original system. The benefit of this newly defined system is that each
job now has a unique job class, and so each state satisfies a placement order. Therefore,
in case w = 1, Conjecture 1 now implies that ((1′, 2, 1′′); ∅) is a transient state of the
adapted system, and thus so is ((1, 2, 1); ∅) in the original system.

Becausewe can repeatedly relabel jobs in this fashionwithout altering the dynamics
of the queue, we are always able to define an isomorphic queue in which there is at
most one job of each class. Therefore, the assumption of unique job classes is without
any loss of generality. The idea behind this relabelling technique is made more precise
in [12, Appendix D].

6 Discussion of open questions

In this paper, we have identified dimensions along which known product-form sys-
tems may be extended such that their stationary distribution remains of product form.
In particular, we studied the recently developed pass-and-swap queue of [12], which
departs from known product-form systems in that it introduces an intricate intra-queue
routing mechanism. We found that this mechanism can be extended further while still
preserving the product-form nature of the stationary distribution. Our first main result
shows that if the swapping graph involved with the P&S queue is modulated by an
exogenousMarkov process, the stationary distributions of both the open queue and the
closed network of two P&S queues in tandem exhibit a product form. Even stronger,
the state of the queue and that of the modulating Markov process are statistically inde-
pendent in stationarity, so that the stationary distribution of the queue state is the same
as that of the unmodulated version. Our second main result shows that one can intro-
duce a limit on the number of swaps performed in the intra-queue routing mechanism
without necessarily sacrificing the product form of the stationary distribution. Indeed,
in certain closed networks enforcing such a limit does not break the product-form
nature of the stationary distribution. Both of these findings lead to open follow-up
questions, which we discuss in this section and leave for future research.

Markov modulation of other system parameters
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The fact that Markov modulation of the swapping graph preserves the product-
form stationary distribution begs the question of whether other system parameters
may be Markov modulated as well, while still preserving the product-form stationary
distribution. For the arrival rate and service rate functions, it is unlikely that Markov
modulation leads to a simple, product-form stationary distribution. Indeed, even for a
system as simple as the M/M/1 queue, Markov modulation of the arrival and service
rates leads to an intricate stationary distribution which is hard to express in closed
form; see e.g. [30]. On the other hand, numerical experiments suggest that if we were
to introduceMarkovmodulation on the swapping limitw in the closed tandemnetwork
studied in Sect. 5.2.2, the product-form nature may be retained. For example, suppose
that we introduce to Example 9 a two-state modulating Markov process, where one
state corresponds to a swapping limit w = 1 and the other state to w = ∞ (i.e., there
is no limit on the number of swaps). In this case there is solution to the partial balance
equations for this system, and hence the stationary distribution is product-form.

Conjecture 2 Consider a closed network of two P&S queues in tandem, as described in
Sect. 5.2.2, and suppose that the swapping limit w is determined by the state b ∈ S of
an exogenous Markov process {X(t) : t ≥ 0} with state space S. Let (c; d; b) denote
the state of the system. Then the stationary distribution π(c; d; b) is of product form.

Non-Markovian modulation of system parameters
It is conceivable thatMarkovmodulation of the swapping graph is not the only form

of modulation that leads to a product form stationary distribution. Indeed, Remark 6
suggests that an independently drawn swapping graph for every pass-and-swap tran-
sition also leads to a product-form stationary distribution. In fact, these variations on
the type of modulation all lead to the same stationary distribution for the queue state,
which also coincides with that derived in [12] for the original, non-modulated P&S
system. Furthermore, equations (4) and (8) surprisingly reveal that the stationary dis-
tribution is independent of the swapping graph in the non-modulated setting. Hence,
we expect that modulating the swapping graph in any way—including according to a
non-Markovian process—will not impact the stationary distribution.

Conjecture 3 Consider the single open P&S queue (Sect. 2.4) or the closed network of
two P&S queues in tandem (Sect. 3). Suppose that the swapping graph is determined
by the state b ∈ S of an exogeneous non-Markovian process {X(t) : t ≥ 0} with state
space S. Let (c; b) (respectively, (c; d; b)) denote the state of the open (respectively,
closed) system. Then the stationary distribution π(c; b) (respectively, π((c; d; b)) is
of product form.

State-dependent parameters
It is also natural to askwhether systemparameters, such as the service rate functions,

can be made state-dependent while retaining the product form stationary distribution.
Unlike the case of Markov modulation, we do not expect this to hold in general
without imposing additional conditions. Observe that the proofs of Sect. 4 mainly
consist of adding partial balance equations to those of Sect. 2 to account for the
added Markov modulating dimension: the partial balance equations of Sect. 2 cor-
responding to changes in the queue state are unchanged. In contrast, in the presence of
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state-dependent system parameters the partial balance equations of Sect. 2 would now
fundamentally change, adding increased complexity to the proof. Despite this com-
plexity, we believe that this is nonetheless a worthy avenue of exploration. We note,
for example, that unlike the examples described in this paper, in the original Order
Independent queue (which the P&S queue itself extends) the service rate functionμ(·)
may incorporate an extra factor depending on the number of jobs in the queue, as this
does not violate Definition 1.

Other variations to the swapping graph
In addition to modulation to determine which of multiple swapping graphs one

applies for a given pass-and-swap transition, it is alsoworth investigatingwhether there
are other changes that one can make to the swapping graph without compromising
the product form. For example, the results in [12] and in this paper all assume that
the swapping graph is undirected. It can be seen without too much difficulty that one
cannot introduce a directed swapping graph in an open P&S queue and still retain the
product form; the argument is similar to that given in Counterexample 1 for swapping
limits in an open system. In particular, consider for example a system with two classes
of jobs, a swapping graph that contains only the directed edge from class 0 to class
1, and a service process that allocates rate μ to the first job in the queue and rate 0 to
all other jobs. In such a system, it is not possible to enter states of the form (1, . . . , 1)
due to a class-0 departure, yet it is possible to leave such states due to a class-0 arrival;
hence, the corresponding partial balance equation cannot hold. Indeed, one would not
expect the product form to be retained in this system, which corresponds to a two-class
preemptive priority queue. Nonetheless, it is plausible that, just as we saw in Sect. 5.2.2
for swapping limits, there may be additional conditions that one could impose in a
closed network that would allow a system with a directed swapping graph to admit
a product-form stationary distribution. Identifying such conditions remains an open
problem for future study.

Necessary and sufficient conditions for swapping limits in closed tandem
networks

Our results in Sect. 5.2 answermany questions about the circumstances underwhich
one can introduce a swapping limit while retaining the product-form stationary distri-
bution, yet we leave other questions open. At present, Conjecture 1 has not yet been
proven; we suggest a possible proof approach in Appendix C.2. Furthermore, while
we have shown that w + 1-partiteness of the swapping graph leads to a product-form
stationary distribution in a closed network of two P&S queues in tandem, this does not
mean that the w + 1-partiteness is a necessary condition, as demonstrated by Exam-
ple 10. To establish the full extent of product form stationary distributions in closed
systems with swapping limits, a first step may be to develop an algorithm to easily
identify all states that are reachable from a given initial state; this is itself a non-trivial
task.

Alternative intra-queue routing mechanisms
The original P&S queue, as described in [12], was the first time an intra-queue

routing mechanism was shown to yield a product-form stationary distribution. In this
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paper, we show that altering the intra-queue routing mechanism, in this case by intro-
ducing a swapping limit, can preserve this product-form stationary distribution. This
begs the question of whether other intra-queue routing mechanisms—perhaps entirely
unrelated to the pass-and-swap mechanism—can be implemented in the OI queue and
still result in a product-form stationary distribution. Preliminary numerical experi-
ments suggest that this is indeed possible; we thus leave this question open for future
research.

Conjecture 4 There exist intra-queue routing mechanisms other than the pass-and-
swap mechanism that also yield a product-form stationary distribution.

Broader classes of closed systems
One can also imagine exploring directions less related to those thatwe have explored

in this paper to identify other dimensions in which product form models may be
amenable to extension. For example, we have considered only closed systems for a
very specific setting with an even number of P&S queues in tandem. Other network
topologies are worthy of study, as they may exhibit different behavior. Topologies that
involve more complex routing among queues will interact with placement orderings in
more intricate ways; one can imagine that, in a sufficiently large and highly-connected
network, the placement order of the initial state may cease to be relevant. One can
imagine studying such questions using analytical strategies similar to those we employ
in this paper. Alternatively, one may view each queue in the closed network as a single
queue with external arrivals, where the arrival rates satisfy conditions akin to the OI
conditions in Definition 1. As analyzed in [16], such queues may produce a product
form stationary distribution as well.

Although this paper extends the space of known product forms in several
dimensions—and identifies some boundaries of this space—the above list of open
questions span a large range of different unexplored directions. As a result, we con-
clude that it remains an open problem to completely identify the class of systems that
admit a product-form stationary distribution. We hope that the conjectures and open
questions that we present here will serve as a useful guide to researchers seeking to
expand our understanding of the space of product forms.

A Proof of Theorem 2

Proof We will show that the form given in (4) satisfies the following partial balance
equations:

– For states c ∈ I∗\∅, the flow out of state c due to a service completion equals the
flow into state c due to a job arrival:

π(c)μ(c) = π(c1, . . . , cn−1)λcn . (26)
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– For states c ∈ I∗ and for each i ∈ I, the flow out of state c due to a class-i arrival
equals the flow into state c due to a class-i departure:

π(c)λi =
∑

d∈I∗

n+1∑

p=1
δp(d)=(c,i)

π(d)Δμ(d1, . . . , dp). (27)

That the first partial balance equation holds for the form given in (4) follows
immediately by the same argument that holds for OI queues.

The second partial balance equation differs from the corresponding equation for OI
queues and requires additional care. Let

Φ(c1, . . . , cn) =
n∏

p=1

1

μ(c1, . . . , cp)
(28)

denote the balance function of the P&Squeue. To show that (4) satisfies (27), it suffices
to show that the balance function satisfies:

Φ(c) =
∑

d∈I∗

n+1∑

p=1
δp(d)=(c,i)

Φ(d)Δμ(d1, . . . , dp) (29)

=
u−1∑

v=0

qv∑

p=qv+1+1

Φ(c1,...,p−1, iv, cp,...,qv−1, iv−1, cqv+1,...,qv−1−1, . . . ,
cq3+1,...,q2−1, i1, cq2+1,...,q1−1, i0, cq1+1,...,n)×Δμ(c1,...,p−1, iv),

where the second equality follows from (5); recall that v ∈ {0, . . . , u − 1} and p ∈
{qv+1 + 1, qv+1 + 2, . . . , qv}. In particular, we will show that the balance function
satisfies (29) for all n ≥ 0, u ∈ {1, . . . , n + 1}, states c = (c1, . . . , cn) ∈ I∗, job classes
i ∈ I, and decreasing integer sequence q0, q1, . . . , qu such that q0 = n + 1 and qu = 0,
where i0 = i , i1 = cq1 , i2 = cq2 , . . . , iu−1 = cqu−1 .

The proof will proceed by induction on u. For the base case, let u = 1; note that
this case corresponds to the standard OI queue, hence (29) holds with i = i0.

For the inductive step, assume that (29) holds for all u′ < u. We will now show
that (29) continues to hold for u ≥ 2. We begin by noting that the balance function
satisfies:

Φ(c) =
n+1∑

p=1

Φ(c1,...,p−1, i, cp,...,n)Δμ(c1,...,p−1, i). (30)

This follows from the proof of Theorem 1 for the original OI queue.
We are now ready to show the inductive case. Beginning by applying (30) to state

c, we have:

Φ(c) =
n+1∑

p=1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0) (31)

123



Queueing Systems (2024) 107:205–256 249

=
q1∑

p=1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0)

+
n+1∑

p=q1+1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0) (32)

=
(

n∏

p=q1

1

μ(c1,...,p, i0)

) q1∑

p=1

Φ(c1,...,p−1, i0, cp,...,q1−1)Δμ(c1,...,p−1, i0)

+
n+1∑

p=q1+1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0) (33)

=
(

n∏

p=q1

1

μ(c1,...,p, i0)

)
Φ(c1,...,q1−1)

+
n+1∑

p=q1+1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0). (34)

In the above derivation, (32) follows from splitting the sum at q1, (33) follows from
the definition of Φ and the OI properties of μ (cf. Definition 1), and (34) follows by
applying (30) to state c1,...,q1−1 and class i0.

We will now apply the inductive hypothesis in order to rewrite Φ(c1,...,q1−1). In
particular, let state c′ = c1,...,q1−1, so that the number of jobs in the system is now
n′ = q1 − 1. We further let i1 be the class of the departing job, so that i ′0 = i1,
i ′1 = i2, . . . , i ′u′−1 = i ′u−2 = iu−1 and q ′

0 = q1 = n′ + 1, q ′
1 = q2, . . . , q ′

u−2 = qu−1, q ′
u′ =

q ′
u−1 = qu = 0. Then, for state c′, (29) gives:

Φ(c1,...,q1−1) = (35)
u−1∑

v=1

qv∑

p=qv+1+1

Φ(c1,...,p−1, iv, cp,...,qv−1, iv−1, cqv+1,...,qv−1−1, . . .

cq4+1,...,q3−1, i2, cq3+1,...,q2−1, i1, cq2+1,...,q1−1) × Δμ(c1,...,p−1, iv).

Substituting (35) into (34) gives:

Φ(c) =
(

n∏

p=q1

1

μ(c1,...,p, i0)

)
(36)

u−1∑

v=1

qv∑

p=qv+1+1

Φ(c1,...,p−1, iv, cp,...,qv−1, iv−1, cqv+1,...,qv−1−1, . . . ,

cq4+1,...,q3−1, i2, cq3+1,...,q2−1, i1, cq2+1,...,q1−1) × Δμ(c1,...,p−1, iv)

+
n+1∑

p=q1+1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0).

We again use the definition of Φ and the fact that μ is order independent to obtain:

Φ(c) =
u−1∑

v=1

qv∑

p=qv+1+1

Φ(c1,...,p−1, iv, cp,...,qv−1, iv−1, cqv+1,...,qv−1−1, . . . ,

cq3+1,...,q2−1, i1, cq2+1,...,q1−1, i0, cq1+1,...,n) × Δμ(c1,...,p−1, iv)
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+
n+1∑

p=q1+1

Φ(c1,...,p−1, i0, cp,...,n)Δμ(c1,...,p−1, i0),

which yields the desired result, noting that the second summation is the missing
term v = 0 in the first summation. ��

B Proof of Theorem 3

Proof We begin by defining some notation that allows us to partition the state space
ΣA. Let X = {x ∈ NI : |x | ≤ �} denote the set of possible macrostates of the
upper queue, and let Cx denote the set of states c = (c1, . . . , cn) ∈ I∗ that adhere to
placement order A and satisfy |c| = x . Then the set of possible (detailed) states for
the upper queue is given by C = ⋃

x∈X Cx . Define Y and Dy similarly for the lower
queue, so that the set of possible (detailed) states for the lower queue isD = ⋃

y∈Y Dy .
Observe that if the state of the upper queue is c ∈ C, then the lower queue can be in
any state d ∈ D�−|c|, and vice versa. Hence, we can partition the state space ΣA as
follows:

ΣA =
⋃

x∈X
Cx × D�−x =

⋃

y∈Y
C�−y × Dy .

We will again make use of the function δp(c′), which outputs (c, i) ∈ I∗ × I if in the
equivalent single open P&S queue, a service completion of the job in position p when
the system is in state c′ will lead to state c, with a job of class i leaving the queue.

The proof now consists of showing that (8) satisfies the following partial balance
equations:

1. For all states (c; d) ∈ ΣA such that c �= ∅, the flow out of the state due to
a service completion at the upper queue equals the flow into the state due to a
service completion at the lower queue:

π(c; d)μ(c) =
∑

d ′∈D|d|+ecn

m+1∑

p=1
δp(d ′)=(d,cn)

π(c1, . . . , cn−1; d ′)Δν(d ′
1, . . . , d

′
p). (37)

2. Similarly, for all states (c; d) ∈ ΣA such that d �= ∅, the flow out of the state due
to a service completion at the lower queue equals the flow into the state due to a
service completion at the upper queue:

π(c; d)ν(d) =
∑

c′∈C|c|+edm

n+1∑

p=1
δp(c′)=(c,dm )

π(c′; d1, . . . , dm−1)Δμ(c′
1, . . . , c

′
p). (38)

We will begin with the partial balance equation (38). Observe that, by definition of the
balance function, Λ(d)ν(d) = Λ(d1, . . . , dm−1). One can then see that (8) satisfies
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(38) if and only if

Φ(c) =
∑

c′∈C|c|+edm

n+1∑

p=1
δp(c′)=(c,dm)

Φ(c′)Δμ(c′
1, . . . , c

′
p).

Recall that we have already shown (cf. (29) in the proof of Theorem 2) thatΦ satisfies

Φ(c) =
∑

c′∈I∗

n+1∑

p=1
δp(c′)=(c,i)

Φ(c′)Δμ(c′
1, . . . , c

′
p).

Applying this form to state (c1, . . . , cn−1) and class dm , we obtain:

Φ(c1, . . . , cn−1) =
∑

c′∈I∗

n∑

p=1
δp(c′)=(c1,...,cn−1,dm )

Φ(c′)Δμ(c′
1, . . . , c

′
p). (39)

Next, the form of Φ given in (28) immediately implies that Φ(c)μ(c) =
Φ(c1, . . . , cn−1). Combining this with (39) leads to

Φ(c)μ(c) =
∑

c′∈I∗

n∑

p=1
δp(c′)=(c1,...,cn−1,dm )

Φ(c′)Δμ(c′
1, . . . , c

′
p). (40)

By dividing both the left-hand side and the right-hand side of this equation by∑
c′∈C Φ(c′), we have established that (8) indeed satisfies (38).
The argument for the partial balance equation (37) is symmetric and hence is

omitted. ��

C Proof of Theorem 7 and Study of Conjecture 1

In this section, we prove Theorem 7 and more closely inspect Conjecture 1. For ease
of presentation, we assume that all jobs present in the system have a unique class. This
assumption is without loss of generality, as discussed in Remark 9 and [12, Appendix
D]. We first provide the proof of Theorem 7, after which we turn to Conjecture 1.

C.1 Proof of Theorem 7

We consider separately each of the three statements of Theorem 7, which we will refer
to as Theorems 7.1, 7.2, and 7.3.
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C.1.1 Theorem 7.1

We formalize the approach outlined in Example 9. Let A denote the placement order to
which the initial state adheres. Recall that this placement order imposes an orientation
on all edges in the swapping graph (V , E)which, by construction, results in a directed
acyclic graph. If a path exists from vertex u0 ∈ V to vertex un ∈ V in the placement
order graph, then for job classes u0 and un , we have u0 ≺A un . More strongly, if this
path is given by u0 → u1 → u2 → . . . → un , then there exists a state adhering to
this placement order in which the service completion of the job with class u0 triggers
a transition consisting of n swaps, ultimately resulting in the job of class un leaving
the queue. That is, the placement order may force the class-u0 job to take the position
of the class u1-job, which then takes the position of the class-u2 job, continuing the
transition until the class un−1 job takes the position of the class-un job, which then
leaves the queue. This leads us to the following observation.

Observation 1 If w = ∞ (i.e., there is no swapping limit), then each path in the
oriented swapping graph corresponds to a P&S transition where a service completion
of a job with the class corresponding to the origin vertex of the path results in the
queue departure of a job with the class corresponding to the destination vertex of the
path. Hence, the length of the longest path in the oriented swapping graph provides
an upper bound on the number of jobs that can be involved in any P&S transition.

This observation is the core idea behind the proof of Theorem 7.1, which includes
as an assumption that the orientation corresponding to the placement order of the
initial state does not include paths longer thanw. By Observation 1, this in turn means
that, regardless of the swapping limit, each transition can include at most w swaps.
Consequently, the swapping limit w will not be enforced.

Observation 1 implies that, when leaving the initial state, the system will behave
identically to a systemwith no swapping limit. By Lemma 1, the same placement order
will apply to the new state after this first transition. At this point Observation 1 will
again apply, so that the following transition will not be influenced by the presence of
the swapping limit. Through the repeated application of Lemma 1 andObservation 1, it
follows that the Markov chain underlying the closed tandem network with a swapping
limitw < ∞ is the same as that for the systemwithw = ∞. As a result, the stationary
distribution follows from [12, Section 5.2], which is exactly the distribution presented
in Theorem 7.1.

C.1.2 Theorem 7.2

We now turn to Theorem 7.2, which states that there always exists at least one initial
state such that the corresponding placement order imposes an oriented swapping graph
in which all paths have length at most w. To this end, the following lemma based on
graph-theoretical arguments turns out to be useful.

Lemma 3 A swapping graph (V , E) is (w + 1)-partite if and only if this graph has
an acyclic orientation for which the longest path has length at most w.
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Proof This lemma is a direct consequence of the Gallai–Hasse–Roy–Vitaver theorem,
cf. [21, Theorem 8.5]. Alternatively, one can argue as follows. If the swapping graph
is (w+1)-partite, then the vertex set V of this graph can be partitioned into the subsets
V1, . . . Vw+1 such that the edge set E contains no edges between two vertices from
the same subset. Therefore, all edges (u, v) ∈ E connect a vertex u ∈ Vi to a vertex
v ∈ Vj , where i �= j . Now suppose that all edges are oriented from the vertex in
the lower-indexed subset to the vertex in the higher-indexed subset. In this case, there
cannot exist a path with length greater than w, proving one direction of the statement.

For the reverse direction, we are given that there exists an acyclic orientation in
which the longest path has length at most w. Here, we identify all vertices with no
incoming oriented edges and collect them in a set V1. This set is necessarily non-empty,
as the orientation is acyclic. Furthermore, there are no edges (u, v) ∈ E for which
u, v ∈ V1, since the vertices in V1 have no incoming edges. We repeat this process
for the graph with vertex set V \V1 to create a set V2; similarly, V2 is necessarily
non-empty and there are no edges (u, v) ∈ E for which u, v ∈ V2. We repeat this
process until all vertices have been assigned to a subset. This process yields at most
w + 1 vertex sets because the longest path in the original orientation does not exceed
w. These vertex sets are by construction independent, hence that the graph (V , E) is
necessarily (w + 1)-partite. ��

In essence, Lemma 3 implies that if a swapping graph is (w+1)-partite, it is always
possible to orient its edges in an acyclic fashion so that all paths have length at most
w. Because an acyclic orientation on the swapping graph defines a placement order,
this lemma thus establishes the existence of a placement order disallowing paths larger
than w. Let A denote such a placement order.

All that remains is to show that there exists an initial state that adheres to placement
order A; we will do this by construction. Recall that all jobs have a unique class and
that the set of job classes is equivalent to the vertex set V of the swapping graph.
Because the placement order imposes an acyclic orientation on this swapping graph,
there is always a job class i1 ∈ V such that i1 has no incoming edges. Let the job with
class i1 be the first job present in the lower queue. We now continue this process in the
spirit of the proof of Lemma 3. That is, in the subgraph with vertex set V1 := V \{i1},
we can select a job class i2 ∈ V1 that has no incoming edges; let the job with class
i2 be the second job in the lower queue. One can keep selecting job classes i j and
vertex sets Vj := Vj−1\{i j } in this way n times until Vn := Vn−1\{in} = ∅. The
initial state is then given by (c; d) = ((i1, . . . , in); ()), which by construction adheres
to placement order A.

C.1.3 Theorem 7.3

We now study the third and final part of Theorem 7, which states that one can obtain
a new stationary distribution for the system by taking any convex combination of the
(product-form) stationary distributions corresponding to all I placement orders that
disallow paths longer than w.

This statement follows quite straightforwardly from Theorems 7.1 and 7.2. That
is, Theorem 7.2 states that I ≥ 1, so that A1, . . . AI represent one or more placement
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orders corresponding to oriented swapping graphs in which all path lengths are at
most w. Theorem 7.1 then provides for each of these placement orders Ai a stationary
distribution πAi (·; ·). The statement now follows from standard Markov chain theory.
Namely, because the stationary distributions πA1(·; ·), . . . , πAI (·; ·) satisfy the partial
balance equations given in (23) and (24), they must also satisfy the global balance
equations of the associated Markov process. That is, if Q is the generator matrix of
the closed tandem network, we have, with a slight abuse of notation, that πAi Q = �0
for any i ∈ {1, . . . , I }, interpreting πAi as a vector with the same dimension as the
rows or columns of Q. But if all vectors πAi satisfy the equation xQ = �0, then so
does any convex combination of these vectors. As a result, this convex combination
is also a stationary distribution.

C.2 Proof strategy for Conjecture 1

We now study Conjecture 1, which claims that, for a (w+1)-partite swapping graph, a
state (c; d) is transient if the oriented swapping graph corresponding to its placement
order includes paths of length greater than w. One possible approach to proving this
conjecture is to show that, if the system starts in such a state (c; d), then with positive
probability the Markov chain reaches a state (c′; d ′) that satisfies Theorem 7.1 (recall
that, by Theorem 7.2, state (c′; d ′) is guaranteed to exist). Once the system reaches
state (c′; d ′), by Lemma 1 and Observation 1 the placement order will not change any
further. Thus, by showing that a path exists from state (c; d) to state (c′; d ′), one has
effectively shown that the Markov chain does not return to the initial state (c; d) with
probability one, meaning that state (c; d) is transient.

Numerical experiments suggest that such a path indeed always exists, but designing
an algorithm that constructs an appropriate sample path for any general case seems
non-trivial. While this would be easy if all jobs in the system were allocated a positive
service rate at all times, we note that this condition does not hold in general. The
OI conditions—which the service rate functions μ(·) and ν(·) must satisfy—only
guarantee that the first job in each queue is allocated a positive service rate. Hence,
our generic algorithm must construct the required sample paths by having only the
first job in each queue complete service in the correct order.

The second challenge arises in determining in which order the first jobs in the
upper and lower queues should complete. In particular, observe that some edges of the
swapping graph associated with the placement order change orientation every time the
swapping limit is enforced. While changing the orientation of some edges is exactly
what we want to achieve (we want to find a sample path to a state corresponding
to an orientation that disallows paths larger than w), it is not straightforward to see
which jobs must complete in which order to accomplish a certain specified change
in the placement order, or equivalently, the corresponding oriented swapping graph.
Relatedly, it is not straightforward to see how the length of the longest path in the
oriented swapping graph induced by the placement order is affected by a service
completion.

We illustrate these challenges with the following example.
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Example 11 Consider a closed tandem with swapping limit w = 1 and four job
classes, where the swapping graph is a path on four vertices, i.e., it has vertex set
V = {1, 2, 3, 4} and edge set E = {(1, 2), (2, 3), (3, 4)}.

Suppose that the initial state is ((1, 4, 2, 3); ∅). This state induces a placement order
A where 1 ≺A 2 ≺A 3, hence the length of the longest path exceeds w = 1. Because
all jobs begin in the upper queue, the first step of our sample path must be for the
class-1 job to complete service; this results in the state ((4, 1, 3); (2)). This new state
induces a new placement order, B, in which 3 ≺B 2 as opposed to 2 ≺A 3. However,
while 1 ≺B 2 ⊀B 3 as we wish, this transition creates the path 4 ≺B 3 ≺B 2, which
also has length 2, still exceeding the swapping limit w = 1.

One possible sample path to follow from this point is to have the first job in the
upper queue complete service, followed by another completion at the upper queue,
followed by a completion at the lower queue. Following this sample path, the system
visits states {(1, 4); (2, 3)}, {(1); (2, 3, 4)} and {(1, 3); (2, 4)}. The placement order
C induced by this final state satisfies 1, 3 ≺C 2, and 3 ≺C 4; the longest path in
the corresponding oriented swapping graph has length 1. Thus, we have identified a
sample path that achieves the desired result for this example.

While the above example illustrates a case in which it is possible to find an appro-
priate sample path, the example does not reveal a generally applicable strategy that is
required for the proof of Conjecture 1. We thus leave the proof of this conjecture as an
open problem; we emphasize, however, that numerical experiments suggest that the
conjecture holds.
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