Beat-to-beat blood-pressure fluctuations and heart-rate variability in man: physiological relationships, analysis techniques and a simple model

de Boer, R.W.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

List of abbreviations 13

1 General introduction 15
1.1 Background of the study
1.2 Relevant aspects of the cardiovascular system
1.3 Blood-pressure and heart-rate as signals
1.4 Short-term variability of blood pressure and heart rate
1.5 Literature on heart-rate variability spectra
1.6 Outline of the thesis

2 Description of heart-rate variability data in accordance with a physiological model for the genesis of heart beats 27
2.1 Abstract
2.2 Introduction
2.3 Survey of methods for the description of a series of point events
2.4 The Integral Pulse Frequency Modulation (IPFM) model
2.5 The Instantaneous Heart-Rate (IHR) signal
2.6 Discussion
2.A1 Appendix 1: Additional remarks concerning the applicability of the IPFM model and the IHR signal for the time-domain description of heart-rate variability
2.A2 Appendix 2: Response of the DHR signal, the IHR signal and the LPFES signal to a sudden step in m(t)

3 Comparing spectra of a series of point events, particularly for heart-rate variability data 47
3.1 Abstract
3.2 Introduction
3.3 The power spectrum of a series of point events
3.4 Comparison of the interval spectrum, the heart-rate spectrum and the spectrum of counts of a point process
3.4.1 Experimental comparison of the spectra
3.4.2 Analytical comparison of the spectra
3.5 Conclusions
3.A1 Appendix 1: Some practical notes on the computation of the power spectrum
4 The spectrum of a series of point events, generated by the Integral Pulse Frequency Modulation (IPFM) model

4.1 Abstract
4.2 Introduction
4.3 Methods
4.4 The spectrum of counts and the interval spectrum of an IPFM-process
4.4.1 Derivation of analytical expressions
4.4.2 Experimental verification of the analytical results
4.4.3 The sum of two sinusoids
4.5 Conclusion
4.A1 Appendix 1: The amplitudes of the spectral peaks in figs.2a-c
4.A2 Appendix 2: Sum frequencies in the spectrum of counts

5 Beat-to-beat variability of heart interval and blood pressure

5.1 Abstract
5.2 Introduction
5.3 A beat-to-beat model of the cardiovascular system
5.4 Cross-correlation of blood pressure and heart interval
5.5 Data from a patient with respiratory sinus arrhythmia
5.6 Data from a patient with atrial fibrillation
5.7 Conclusion
5.8 Note on further discussion of the results of this chapter


6.1 Abstract
6.2 Introduction
6.3 Methods
6.3.1 Data acquisition
6.3.2 Data reduction
6.3.3 Computation of the power spectra
6.3.4 Computation of the cross-spectra
6.3.5 Note on the interpretation of cross-spectra
6.4 Results
6.4.1 Power spectra (Figs.2a-c, 3a-c, 4a-c)
6.3.4 Cross-spectra (Figs.2d-g, 3d-g, 4d-g)
6.5 Discussion
6.A1 Appendix 1: Cross-spectra for simulated data and the effect of smoothing on cross-spectra
7 Relationships between short-term blood-pressure fluctuations and heart-rate variability: II A simple model

Abstract

7.1 Introduction

7.2 Methods

7.3 Model

7.4 Relations between beat-to-beat blood-pressure and R-R interval values

7.4.1 The baroreflex equation

7.4.2 The Windkessel equation

7.4.3 Relations between the spectra

7.5 Discussion

7.6 Appendix 1: Phase spectra of the difference equations

8 General discussion and conclusions

8.1 Discussion

8.2 Conclusions

9 Postscript: A beat-to-beat model of the cardiovascular system, explaining respiratory sinus arrhythmia and the 10-second rhythm in human blood-pressure and heart-rate data.

9.1 Abstract

9.2 Introduction

9.3 Description of the model

9.3.1 Effective pressure

9.3.2 Baroreflex on heart rate

9.3.3 Baroreflex on peripheral resistance

9.3.4 Properties of the myocardium (Starling, restitution)

9.3.5 Windkessel

9.4 Results of the simulations

9.4.1 Simulation of resting data

9.4.2 Response to a simulated phenylephrine injection

9.5 Discussion

9.6 Appendices

9.A1 Analysis of a closed-loop difference-equation system

9.A2 Band-pass filter characteristics of the model

9.A3 Phase spectrum belonging to a partly vagal, partly sympathetic baroreflex
A Appendix A: Continuous non-invasive blood-pressure measurement 161
A.1 Introduction
A.2 "Photo-electric measurement of blood pressure, volume and flow in the finger" by Dr.J.Penaz

B Appendix B: Attribution of short-term blood-pressure and heart-rate variability to respiration and the 10-second-rhythm: a spectral analysis approach 165
B.1 Abstract
B.2 Introduction
B.3 Blood-pressure and heart-rate variability
B.4 Spectral analysis of blood-pressure and heart-rate variability
B.5 Subjects and methods
B.6 Data analysis
B.7 Results
B.8 Discussion

References 173

Summary 185

Samenvatting 188

Note
Chapters 2-7 and appendix B have been adapted from previously published papers (see Chapter 1.6).