Childhood cancer survivors: Evidence and care

Sieswerda, E.

Citation for published version (APA):
Chapter 7

Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer

Elske Sieswerda, Elvira C. van Dalen, Aleida Postma, Daniel K.L. Cheuk, Huib N. Caron, Leontien C.M. Kremer

Cochrane Database of Systematic Reviews 2011, Issue 9. Art. No.: CD008011
Abstract

Background
Anthracyclines are frequently used chemotherapeutic agents for childhood cancer that can cause cardiotoxicity during and after treatment. Although several medical interventions in adults with symptomatic or asymptomatic cardiac dysfunction due to other causes are beneficial, it is not known if the same treatments are effective for childhood cancer patients and survivors with anthracycline-induced cardiotoxicity.

Objectives
To compare the effect of medical interventions on anthracycline-induced cardiotoxicity in childhood cancer patients or survivors with the effect of placebo, other medical interventions or no treatment.

Search methods
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2011, issue 1), MEDLINE/PubMed (1949 to May 2011) and EMBASE/Ovid (1980 to May 2011) for potentially relevant articles. We additionally searched reference lists of relevant articles, conference proceedings and ongoing trial databases.

Selection criteria
Randomized controlled trials (RCTs) or controlled clinical trials (CCTs) comparing the effectiveness of medical interventions to treat anthracycline-induced cardiotoxicity with either placebo, other medical interventions or no treatment.

Data collection and analysis
Two review authors independently performed the study selection. One review author performed the data extraction and ‘Risk of bias’ assessments which were checked by another review author.

Results
We identified two RCTs. One trial (135 patients) compared enalapril with placebo in childhood cancer survivors with asymptomatic anthracycline induced cardiac dysfunction. The other trial (68 patients) compared a two-week treatment of phosphocreatine with a control treatment (vitamin C, ATP, vitamin E, oral coenzyme Q10) in leukemia patients with anthracycline-induced cardiotoxicity. Both studies had methodological limitations.

The RCT on enalapril showed no (statistically) significant differences in overall survival, mortality due to heart failure, development of clinical heart failure and quality of life between treatment and control group. A post-hoc analysis showed a decrease (i.e. improvement) in one measure of cardiac function (left ventricular end systolic wall stress (LVESWS): -8.62% change) compared with placebo (+1.66% change) in the first year of treatment (P = 0.036), but not afterwards. Patients treated with enalapril had a higher risk of dizziness or hypotension (RR 7.17, 95% CI 1.71 to 30.17) and fatigue (Fisher’s exact test, P = 0.013).
The RCT on phosphocreatine found no differences in overall survival, mortality due to heart failure, echocardiographic cardiac function and adverse events between treatment and control group.

Authors’ conclusions

For the effect of enalapril in childhood cancer survivors with asymptomatic cardiac dysfunction, only one RCT is available. Although there is some evidence that enalapril temporarily improves one parameter of cardiac function (LVESWS), it is unclear whether it improves clinical outcomes. Enalapril was associated with a higher risk of dizziness or hypotension and fatigue. Clinicians should weigh the possible benefits with the known side-effects of enalapril in childhood cancer survivors with asymptomatic anthracycline-induced cardiotoxicity.

For the effect of phosphocreatine in childhood cancer patients with anthracycline-induced cardiotoxicity, only one RCT is available. Limited data with a high risk of bias showed no significant difference between phosphocreatine and control treatment on echocardiographic function and clinical outcomes.

We did not identify any RCTs or CCTs studying other medical interventions for symptomatic or asymptomatic cardiotoxicity in childhood cancer patients or survivors. High-quality studies should be performed.

This review is published as a Cochrane Review in the Cochrane Database of Systematic Reviews 2011, Issue 9. Cochrane Reviews are regularly updated as new evidence emerges and in response to comments and criticisms, and the Cochrane Database of Systematic Reviews should be consulted for the most recent version of the Review.
Background

Description of the condition
Anthracyclines are frequently used chemotherapeutics for childhood cancer that can cause serious cardiac dysfunction (Lefrak 1973; Von Hoff 1977). This so-called anthracycline-induced cardiotoxicity can develop during, or many years after, treatment and may present clinically, with symptoms of heart failure, or subclinically, with abnormalities found only in diagnostic tests (Ganame 2007; Lipshultz 1991; Van Dalen 2006a). It is estimated that almost 10% of childhood cancer patients treated with anthracycline doses of 300 mg/m² or more will eventually develop symptomatic cardiotoxicity, a condition that is associated with high morbidity and mortality (Steinherz 1995; Van Dalen 2006a). Asymptomatic signs of cardiotoxicity are found in up to 57% of survivors of childhood cancer and are often progressive over time, but the long-term prognosis of these abnormalities is not known (Kremer 2002; Lipshultz 2005a; Sorensen 2003). In the general adult population individuals with asymptomatic cardiac dysfunction are at increased risk of developing symptomatic heart failure and death (Wang 2003). These findings raise the concern that children and young adults with asymptomatic cardiac dysfunction caused by anthracyclines are also at risk of progression to symptomatic heart failure in the long term.

Description of the intervention
Several cardiovascular drugs have been studied in patients with cardiac dysfunction due to other causes. Studies in adult patients with symptomatic as well as asymptomatic heart failure due to causes other than anthracyclines have shown that treatment with an average treatment duration of three years with angiotensin-converting enzyme (ACE) inhibitors reduces long-term morbidity and mortality, regardless of the etiology of heart failure (Abdulla 2006; Garg 1995; Jong 2003; SOLVD 1991; SOLVD 1992). The SOLVD studies also showed an improvement in quality of life in symptomatic patients and no negative effect in quality of life in asymptomatic patients (Rogers 1994; SOLVD 1991; SOLVD 1992). A cost-effectiveness study was done in symptomatic SOLVD patients and showed survival benefit as well as cost savings (Glick 1995). Treatment with beta-blocking agents in addition to an ACE-inhibitors improves the outcome in patients with symptomatic cardiac failure (CIBIS-II 1999; Foody 2002; Packer 1996a; Packer 1996b; Waagstein 1993) and improves cardiac function in asymptomatic heart failure patients (Colucci 2007; Exner 1999). Other medical interventions also have the potential to improve prognosis in patients with symptomatic or asymptomatic heart failure, such as angiotensin receptor blockers (Granger 2003; Maggioni 2002) or combinations of heart failure medication such as angiotensin receptor blockers, ACE-inhibitors and beta-blockers (Cohn 2001; McMurray 2003).
Why it is important to do this review
Many collaborative groups have advocated screening for cardiac dysfunction in childhood cancer patients and survivors (COG 2006; SIGN 2004; Skinner 2005; Steinherz 1992). However, for appropriate screening for a disease, an effective treatment should be available (Wilson 1968). In addition, physicians who are confronted with childhood cancer patients and survivors with cardiac dysfunction should be able to make a well-informed decision regarding the risks and benefits of treatment options. Currently the optimal treatment for patients with anthracycline-induced cardiotoxicity, and how to decrease morbidity and mortality, is unclear (Lipshultz 2002; Silber 2004; Van Dalen 2003). Although medical interventions in populations with symptomatic and asymptomatic heart failure due to causes other than anthracyclines are beneficial, we cannot assume that the efficacy of this treatment is similar in childhood cancer patients and survivors (Kay 2001; Shaddy 2007). The different etiology of the cardiac dysfunction as well as the different age distribution make it necessary to study the benefits and risks of treatment of symptomatic and asymptomatic anthracycline-induced cardiotoxicity in this specific population. Treatment of patients with anthracycline-induced cardiotoxicity should ideally decrease morbidity and mortality, improve cardiac function, reverse disease progression and improve quality of life.

This systematic review evaluated the current available evidence on medical interventions in both symptomatic and asymptomatic anthracycline-induced cardiotoxicity during and after treatment for childhood cancer.

Objectives
To compare the effect of medical interventions in childhood cancer patients or survivors with anthracycline-induced cardiotoxicity with the effect of placebo, other medical interventions or no treatment.

Methods
Criteria for considering studies for this review
Types of studies
Randomized controlled trials (RCTs) and controlled clinical trials (CCTs) (as defined by the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2008)), including non-inferiority and cross-over trials, comparing a medical intervention for treating anthracycline-induced cardiotoxicity with either placebo, other medical intervention(s) or no treatment.
Types of participants
Patients and survivors (previously) diagnosed with any type of childhood cancer (defined as a diagnosis of cancer at age 18 years or younger) and with symptomatic or asymptomatic anthracycline-induced cardiotoxicity. RCTs or CCTs including both children and adults were only eligible for inclusion in this review if the majority of participants were 18 years or younger at cancer diagnosis. Anthracycline-induced cardiotoxicity, as defined by the authors of the original study, could be diagnosed both during and after anthracycline treatment for childhood cancer. Due to the low number of patients expected, we did not exclude patients who also had been treated with mediastinal radiotherapy.

Types of interventions
Medical (i.e. drug) interventions given with the intention to change the course of anthracycline-induced symptomatic or asymptomatic cardiotoxicity. We excluded surgical interventions such as heart transplantation.

Types of outcome measures

Primary outcomes
- Overall survival
- Mortality due to heart failure
- Development of clinical heart failure as defined by authors
- Occurrence of adverse events and tolerability as defined by authors

Secondary outcomes
- Change in cardiac function measured by different diagnostic tests as defined by authors
- (Duration of) hospitalization for heart failure
- Change in NYHA (New York Heart Association) stage of heart failure (NYHA 1994)
- Change in quality of life as defined by author
- Costs as defined by authors
Outcomes may have been assessed at any time during follow-up.

Search methods for identification of studies

Electronic searches
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2011, issue 1), MEDLINE/PubMed (1949 to 26 May 2011) and EMBASE/Ovid (1980 to 26 May 2011) for potentially relevant articles.
We scanned the ISRCTN Register, the National Institute of Health (NIH) Register and the trials register of the World Health organization (WHO) in May 2010 for ongoing trials (http://www.controlled-trials.com and http://apps.who.int/trialsearch/).

There were no language restrictions. All electronic searches have been developed in co-operation with the Trials Search Coordinator of the Cochrane Childhood Cancer Group.

The search strategy for PubMed is shown in Appendix 1. We used the highly sensitive search strategy for identifying reports of RCTs and CCTs (sensitivity-maximizing version) as described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2008).

For EMBASE and CENTRAL we used adaptations of the same search strategy (see Appendix 2, Appendix 3).

Searching other resources
We located information about trials not registered in MEDLINE/PubMed, EMBASE/Ovid or CENTRAL, either published or unpublished, by searching the reference lists of relevant articles and review articles. In addition, we hand searched conference proceedings from 2005 to 2009 of the International Society for Pediatric Oncology (SIOP), the American Society of Clinical Oncology (ASCO), the American Society of Hematology (ASH), the International Conference on Long-Term Complications of Treatment of Children & Adolescents for Cancer and the European Symposium on Late Complications from Childhood Cancer. Again, there were no language restrictions.

Data collection and analysis

Selection of studies
After employing the search strategy described previously, two review authors independently identified studies meeting the criteria for this review. We obtained in full any study which seemed to meet the inclusion criteria on the grounds of the title, abstract or both for closer inspection. Based on full text assessment, the review authors included or excluded studies for this review. Two of the studies that we selected for full text evaluation were not in a language the authors were familiar with. For these, we contacted Cochrane collaborators from Russia and China, who individually determined if the studies were eligible. We recorded the reasons for exclusion of any study considered for the review. We resolved discrepancies in the selection process between authors by consensus. In case of doubt, we consulted a third-party arbitrator for final resolution.

One review author performed the search in reference lists of relevant articles and review articles as well as the search within the conference proceedings.
Data extraction and management

One review author performed data extraction using standardized forms and these were checked by a second review author. For the study that was published in Chinese, this was done by a review author from China based on full text and checked by another review author based on the abstract only. We abstracted information on the following items:

- Study design
- Risk of bias items
- Number of study patients
- Participants, including
 - Age at diagnosis
 - Age at study entry
 - Sex
 - Time since diagnosis
 - Study performed during cancer treatment or in survivors
 - In case of survivors, time since end of cancer treatment
- Prior anthracycline treatment, including:
 - Type of anthracycline
 - Cumulative anthracycline dose
- Other previous treatment, including:
 - Chemotherapy
 - Cardioprotective interventions
 - Radiotherapy on heart region
- Co-morbidities, including:
 - Cardiovascular disease (specification disease, cause and duration of disease before start of intervention)
 - Other (specification disease, cause and duration of disease before start of intervention)
- Other treatment, including:
 - Other cardiovascular medication (agent, dose, frequency, mode of administration and duration)
 - Other medication (agent, dose, frequency, mode of administration and duration)
 - Cardiovascular surgery (location and procedure)
- Interventions, including
 - Type of medical intervention (substance name, brand name)
 - Dose and frequency of medical intervention
 - Mode of administration (oral, intravenous etc.)
 - Duration of medical intervention
 - Duration between diagnosis of anthracycline-induced cardiotoxicity and start of medical intervention
• Outcome measures, including
 o Outcome definition
 o Timing of outcome measurement
 o Length of follow-up
In cases of disagreement, we re-examined the abstracts and articles and discussed the topic until consensus was achieved. No third-party arbitration was needed.

Assessment of risk of bias in included studies
One review author assessed the risk of bias using a standardized form and this was checked by another review author. The study that was published in Chinese was assessed by a review author from China based on full text and checked by another review author based on the (English) abstract only. We evaluated the studies according to the following criteria: generation of allocation sequence, concealment of treatment allocation, blinding of the study participants, blinding of personnel, blinding of outcome assessors, completeness of follow-up, intention-to-treat (ITT) analysis, selective outcome reporting and other sources of bias. We determined the items blinding of outcome assessors, completeness of follow-up and ITT analysis for all reported study outcomes. Only for overall survival, we regarded blinding of the outcome assessor not relevant. For all risk of bias items, we used definitions based on the module of the Cochrane Childhood Cancer Group at the time our protocol was published (Module CCG) and on the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2008) (Table 1). We resolved discrepancies between authors by consensus. In case of doubt, we consulted a third-party arbitrator.

Measures of treatment effect
We related dichotomous outcomes to risk using the risk ratio (RR) and presented all results with the corresponding 95% confidence interval (CI). When only one study was available and there were no events in one of the treatment groups, it was not appropriate to calculate the RR, its 95% CI and the corresponding P value. For these outcomes, we calculated the Fischer’s exact P value instead, using PASW Statistics (SPSS) for Windows version 18 (SPSS Inc., Chicago, IL). We planned to analyses continuous outcomes using the mean difference (MD). However, this was not possible since no standard deviation (SD) of change in the continuous outcomes were provided by the included studies. For the assessment of survival, we planned to use Parmar’s method if hazard ratios had not been explicitly presented in the study (Parmar 1998). This was not applicable, since we could not pool the included studies.

Dealing with missing data
When information relevant to study selection was missing, we attempted to contact the authors in order to obtain the missing data.
We extracted data by allocation intervention, irrespective of compliance with the allocated intervention, in order to allow an ITT analysis. If this was not possible, we stated this and performed an as-treated analysis.

Assessment of heterogeneity
Assessing heterogeneity was not applicable, since we did not pool the included studies.

Assessment of reporting biases
We were not able to construct a funnel plot to evaluate the existence of publication bias graphically (Higgins 2008), since only two trials could be included in this review and pooling of results was not possible. As a rule of thumb, tests for funnel plot asymmetry should be used only when there are at least 10 studies included in the meta-analysis. When there

Table 1 Criteria list for the assessment of risk of bias of included studies

<table>
<thead>
<tr>
<th>Description</th>
<th>Implementation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection bias</td>
<td>Adequate when a random (and therefore unpredictable) sequence was used to allocate the intervention to the participants.</td>
</tr>
<tr>
<td>Was the allocation sequence adequately generated?</td>
<td>Adequate when the upcoming allocations of participants were masked from those involved in enrolment into the trial.</td>
</tr>
<tr>
<td>Was allocation adequately concealed?</td>
<td>Adequate when the participants were unaware of the intervention they received.</td>
</tr>
<tr>
<td>Performance bias</td>
<td>Adequate when the personnel involved in the care of the participants were unaware of the intervention a participant received.</td>
</tr>
<tr>
<td>Was knowledge of the allocated intervention by participants adequately prevented during the study?</td>
<td>Adequate when the outcome assessor was unaware of the intervention a participant received.</td>
</tr>
<tr>
<td>Was knowledge of the allocated intervention by personnel adequately prevented during the study?</td>
<td>Complete when the outcome was assessed in at least 80% of the study cohort.</td>
</tr>
<tr>
<td>Detection bias (for each outcome separately)</td>
<td>Adequate when all participants were analysed in the treatment group to which they were randomised, regardless of whether or not they received the allocated intervention.</td>
</tr>
<tr>
<td>Was knowledge of the allocated intervention by the outcome assessor adequately prevented during the study?</td>
<td>Adequate when a study protocol was available that pre-specified study outcomes and analyses which were all reported in the final study report.</td>
</tr>
<tr>
<td>Attrition bias (for each outcome separately)</td>
<td>Adequate when there were no other important personal concerns about bias not addressed in the other domains in the tool.</td>
</tr>
<tr>
<td>Was the follow-up of the outcome complete?</td>
<td>Adequate when a study protocol was available that pre-specified study outcomes and analyses which were all reported in the final study report.</td>
</tr>
<tr>
<td>Was an intention-to-treat-analysis performed?</td>
<td>Adequate when all participants were analysed in the treatment group to which they were randomised, regardless of whether or not they received the allocated intervention.</td>
</tr>
<tr>
<td>Reporting bias</td>
<td>Adequate when there were no other important personal concerns about bias not addressed in the other domains in the tool.</td>
</tr>
<tr>
<td>Are reports of the study free of suggestion of selective outcome reporting?</td>
<td>Adequate when there were no other important personal concerns about bias not addressed in the other domains in the tool.</td>
</tr>
</tbody>
</table>

*All items were scored yes, no or unclear
are fewer studies, the power of the tests is too low to distinguish chance from real asymmetry (Higgins 2008).

Data synthesis
We entered the data into RevMan 5.0 (RevMan 2008) and analyzed according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2008). We used a random-effects model for the estimation of treatment effects throughout the review.

We included outcome measures in this systematic review only if it was the intention of the study authors to perform the necessary assessments in all randomized patients (i.e. not optional or only performed in some centers). When less than 50% of the patients in a study had an acceptable follow-up for a particular outcome measure, due to the associated high risk of attrition bias we did not report the results of this outcome measure.

We did not perform a pooled analysis since the included trials were not comparable with regard to important study characteristics, i.e. age, sex, cardiac dysfunction, treatment, used different outcome definitions and length of follow-up. We therefore summarized the results descriptively.

We planned to analyses data separately for clinical heart failure alone versus no clinical heart failure and for clinical and subclinical cardiotoxicity combined versus normal heart function. However, this was not applicable, since pooling was not possible and the study that included both patients with clinical and subclinical heart failure did not provide enough information to allow for such an analysis.

Subgroup analysis and investigation of heterogeneity
We hypothesized that treatment with mediastinal radiotherapy may cause other cardiac pathology, such as heart valve problems and that it is therefore possible that treatment effects would differ between patients treated with and without mediastinal radiotherapy. However, we were not able to investigate this type of heterogeneity by performing a subgroup analysis with regard to previous mediastinal radiotherapy, because pooling was not possible and because the individual studies did not provide outcomes separately for patients treated with and without previous radiotherapy.

Sensitivity analysis
Since results could not be pooled, performing a sensitivity analysis using the risk of bias criteria was not applicable.
Results

Description of studies

Results of the search

Our searches in the electronic databases of MEDLINE/PubMed, EMBASE/Ovid and CENTRAL identified 1429 titles with or without an abstract (Figure 1). Of these, we selected eight references reporting on five studies for full text assessment. The remaining 1421 papers were not included because they were not RCTs or CCTs, were a laboratory study, an animal study, did not include children with cancer or survivors of childhood cancer or were preventive intervention studies of patients without signs of cardiotoxicity. While going through the reference lists of relevant papers, we additionally found five papers, reporting on two studies (of which one was already identified in the electronic database search), which we also assessed in full text. In total, we assessed the full text of 13 papers reporting on six studies.

Based on full text assessment, we finally included in this review seven papers reporting on two studies. We excluded six papers reporting on four studies. Reasons for exclusion are listed in the Characteristics of excluded studies table.

By scanning the conference proceedings of the relevant conferences, we identified two papers that have not been published yet in full text and are awaiting further assessment (see the table Characteristics of studies awaiting classification). By scanning the ongoing

![Flow diagram](image)

Figure 1 Flow diagram
trials databases we identified one additional ongoing trial (see the table Characteristics of ongoing studies).

Included studies

In summary, the total number of included RCTs was two (Chen 2008, Silber 2004). Six papers provided information on one trial (see all references under Silber 2004). We extracted information about the study from all six papers. The total number of patients included in the two RCTs was 203.

In one trial, 69 patients received enalapril and 66 patients received placebo (Silber 2004). Patients were childhood cancer survivors with asymptomatic decline of cardiac function at some time during follow-up after anthracycline exposure. Follow-up time was a median of 2.80 (range 2 weeks to 6.1) years.

In the other trial, 35 patients received phosphocreatine and 33 patients received a control treatment with vitamin C, adenosine tri-phosphate (ATP), vitamin E, and oral coenzyme Q10 (Chen 2008). Patients were children with acute leukemia and anthracycline-induced cardiotoxicity, of which part was symptomatic. The duration of treatment was 14 days and assessment of cardiac function was done one day after the end of treatment, but it is unclear if there was longer follow-up, for example for the clinical outcomes. For more information see the Characteristics of included studies table.

Excluded studies

In total, the number of excluded papers based on full text evaluation was six, reporting on five studies. The table Characteristics of excluded studies summarizes the excluded studies.

Risk of bias in included studies

The evaluation of the risk of bias in the included studies is summarized below. An additional overview of the exact scores per included study is provided in the table Characteristics of included studies (‘Risk of bias’ section).

Allocation (selection bias)

In the enalapril study, allocation to treatment or control group was at random. For the allocation sequence random permuted blocks with equal allocation were used within each stratum of pre-specified variables (Silber 2004). Allocation was described to be concealed, but the method of allocation concealment was not stated and was therefore unclear.

In the phosphocreatine study allocation to treatment or control group was also at random, but the method used to generate the allocation sequence was not described (Chen 2008). It was not stated if there was allocation concealment.
Blinding (performance bias and detection bias)
The enalapril trial reported to be a double-blind study (Silber 2004). Although it was not clearly stated how the blinding was done, in one of the additional papers regarding the trial, it is said that patients truly did not know which of the two treatments they had received (Silber 2004), indicating that blinding of patients was effective. It was also clearly stated that investigators were blinded to the intervention. However, it was not specified if the blinding of investigators regarded personnel as well as outcome assessors, if it was applicable to all studied outcomes, and if it was effective. Based on the effectiveness of blinding of the patients and the statement that patients and investigators were blinded, we judged that this probably was the case. We consulted a third party for this judgment, who agreed with it.

In the phosphocreatine trial blinding was not described and based on the different types of route of administration per treatment and control group, we judged that blinding of patients and personnel was very unlikely (Chen 2008). It was not stated if the investigators or outcome assessors were blinded and therefore we judged it unclear.

Incomplete outcome data (attrition bias)
In the enalapril trial, follow-up was complete for overall survival, mortality due to heart failure and the development of clinical heart failure (Silber 2004). There was complete follow-up for change in cardiac function for the study outcomes maximal cardiac index (MCI) and left ventricular end-systolic wall stress (LVESWS), which were both measured in at least one post-baseline measurement in more than 80% of the patients. However, it should be noted that it was unclear if follow-up was complete for these parameters at the end of follow-up. For other measures of cardiac function (shortening fraction (SF) and stress-velocity index (SVI)) and the other outcomes that were reported (occurrence of adverse events and change in quality of life), it was unclear if there was complete follow-up. In one of the additional papers about this trial it was stated that a considerable fraction of the study participants ended participation, but not what the exact numbers and timing of study dropouts were (Silber 2004). It was clearly stated that for the trial's primary and secondary outcomes ITT analysis was performed. An extra per-protocol analysis was performed on LVESWS. For the other measures of cardiac function (SF and SVI) it was unclear if an ITT analysis was done. For overall survival, mortality due to heart failure and development of clinical heart failure, change in quality of life and occurrence of adverse events, ITT analysis was possible, since the treatment allocation was abstractable for the reported outcomes.

In the phosphocreatine trial, complete assessment was done for overall survival, mortality due to heart failure and the occurrence of adverse events (Chen 2008). For change in cardiac function, two parameters (echocardiography and hyper sensitivity C-reactive protein (hsCRP)) were reported in all patients, while for the other parameters of change in cardiac function outcomes (electrocardiogram (ECG), creatine kinase (CK), creatine kinase
MB (CK-MB), lactate dehydrogenase (LDH1) and alpha hydroxybutyrate dehydrogenase (alphaHBDH), were only assessed in some of the patients and therefore not reported in this review. For overall survival, mortality due to heart failure, two parameters of change in cardiac function (echocardiography and hsCRP) and the occurrence of adverse events, ITT analysis was possible, since the treatment allocation was abstractable for all reported outcomes.

Selective reporting (reporting bias)
There was no sign of selective reporting in the enalapril trial (Silber 2004). A protocol was published that presented the outcomes that were planned to be studied as well as the planned data-analyses (Silber 2004). All outcomes were reported and the analyses done in the final report (Silber 2004). The authors clearly explained that they performed some additional analyses based on exploration of the data.

In the phosphocreatine trial, there was no published protocol and we therefore cannot exclude selective reporting bias in the study (Chen 2008).

Other potential sources of bias
In the enalapril trial, we were not aware of other potential problems that could put the study at a high risk of bias (Silber 2004).

In the phosphocreatine study, we had concerns about the comparability of the study participants especially with regard to potential confounders such as gender, age, cumulative anthracycline dose, type of anthracycline, other cardiotoxic treatment, number of symptomatic patients and the provision of other treatments during the study (Chen 2008).

Effects of interventions
Both trials did not allow data extraction for all endpoints. See the table Characteristics of included studies for a more detailed description of the extractable endpoints of each study.

Overall survival and mortality due to heart failure
We could extract data on overall survival and mortality due to heart failure from both studies.

In the enalapril trial, there were no deaths in both the intervention and the control group during the study (Silber 2004). However, one patient from the placebo group (1.5%) died eight months after the end of the study, as a result of congestive heart failure. Because it was unclear if both the intervention group and placebo group had been followed longer than the end of the study, we did not calculate an RR of death due to heart failure including this late death.

In the phosphocreatine trial, there were no deaths in both the intervention and the control group during the study (Chen 2008).
Development of clinical heart failure (as defined by authors)
The enalapril trial provided data on the occurrence of clinical heart failure, which the authors pre-defined as a clinically significant decline in cardiac performance (Silber 2004). In the intervention group, one patient (1%) developed such a significant decline, while in the control group this occurred in six (9%) patients (RR = 0.16, 95% CI 0.02 to 1.29, P = 0.09). See also Table 2 for Analysis 1.1, and Figure 2.

Figure 2
Forest plot of comparison 1: Enalapril versus placebo, outcome: 1.1 Development of clinical heart failure (analysis 1.1)

Table 2
Enalapril versus placebo (based on 1 study with 135 participants)

<table>
<thead>
<tr>
<th>Analysis and outcome</th>
<th>Risk ratio (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Development of clinical heart failure</td>
<td>0.16 (0.02 – 1.29)</td>
</tr>
<tr>
<td>1.2 Dizziness or hypotension</td>
<td>7.17 (1.71 – 30.17)</td>
</tr>
<tr>
<td>1.3 Rash or hives</td>
<td>0.96 (0.25 – 3.67)</td>
</tr>
<tr>
<td>1.4 Heart palpitations</td>
<td>3.83 (0.44 – 33.35)</td>
</tr>
<tr>
<td>1.5 Anxiety or depression</td>
<td>1.91 (0.18 – 20.60)</td>
</tr>
<tr>
<td>1.6 Headache</td>
<td>3.83 (0.44 – 33.35)</td>
</tr>
<tr>
<td>1.7 Gastrointestinal disturbance</td>
<td>0.96 (0.20 – 4.57)</td>
</tr>
<tr>
<td>1.8 Hepatitis C</td>
<td>0.64 (0.11 – 3.70)</td>
</tr>
<tr>
<td>1.9 Neutropenia</td>
<td>0.48 (0.04 – 5.15)</td>
</tr>
<tr>
<td>1.10 Musculoskeletal pain</td>
<td>0.96 (0.20 – 4.57)</td>
</tr>
<tr>
<td>1.11 Dry cough</td>
<td>0.96 (0.06 – 14.98)</td>
</tr>
<tr>
<td>1.12 Shortness of breath</td>
<td>0.96 (0.14 – 6.59)</td>
</tr>
<tr>
<td>1.13 Chest pain</td>
<td>1.67 (0.51 – 5.45)</td>
</tr>
</tbody>
</table>

* Risk ratio was based on the Mantel-Haenszel method using a random effects model

Occurrence of adverse events and tolerability (as defined by authors)
Both studies reported on the occurrence of adverse events. Severity or grading was not reported in either study.

In the enalapril trial, all patients were evaluated on the occurrence of adverse events (Silber 2004). The number of adverse events in patients was presented per adverse event and many events were recorded (see Table 2 for Analysis 1.2 until Analysis 1.13 for RRs and corresponding 95% CI, and Table 3 for Fischer’s exact P values in outcomes with no event in one of the two groups). A notable difference in adverse events between groups was the
higher occurrence of dizziness or hypotension (RR 7.17, 95% CI 1.71 to 30.17, P = 0.007; Analysis 1.2 in Table 2 and Figure 3) and fatigue (Fisher’s exact test, P = 0.013, Table 3) in the enalapril group. Other reported adverse events were not statistically different between groups (see Table 2 for Analysis 1.3 until Analysis 1.13, and Table 3).

In the phosphocreatine trial, all patients were also evaluated for adverse events (Chen 2008). It was not stated what type of adverse events were assessed. No adverse events were found in the patients of either the phosphocreatine group or the control group during the trial.

Table 3 Fisher’s exact test of outcomes with no events in the enalapril or placebo group (based on 1 study with 135 participants)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Enalapril (n=69)</th>
<th>Placebo (n=66)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7</td>
<td>0</td>
<td>0.013</td>
</tr>
<tr>
<td>Fever</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Alopecia</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Severe sunburn</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Wolf-Parkinson-White syndrome</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Anorexia</td>
<td>0</td>
<td>2</td>
<td>0.24</td>
</tr>
<tr>
<td>Cholecystitis or gallstones</td>
<td>2</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Elevated bilirubin</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Second cancer</td>
<td>2</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Tumor recurrence</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Renal stones</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Impotence</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Taste disturbance</td>
<td>1</td>
<td>0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 3 Forest plot of comparison: 1 Enalapril versus placebo, outcome: 1.2 Dizziness or hypotension (analysis 1.2)
Chapter 7

Change in cardiac function measured by a diagnostic test
Both studies provided several measures of change in cardiac function in treatment and control groups.

The enalapril trial presented their results in unadjusted and adjusted linear mixed models of the change over time of maximal cardiac index (MCI), left ventricular end-systolic wall stress (LVESWS), stress-velocity index (SVI) and shortening fraction (SF) (Silber 2004). Since the authors did not present dichotomous outcomes, we were not able to calculate RRs and we therefore describe the outcomes as presented in the original study (reported as ITT analyses). All analyses were adjusted for anthracycline dose, age at diagnosis, follow-up time, gender and cardiac irradiation. No differences were detected in the rate of change of all outcome parameters between intervention and control group (adjusted model coefficient and P value of effect of enalapril: MCI 0.17, P = 0.36; LVESWS -1.41, P = 0.24; SVI 0.004, P = 0.68; SF 0.07, P = 0.81). After the data became available, the authors of the study explored the data and subsequently performed a piecewise linear model on LVESWS. In this per-protocol analysis (adjusted for the same covariates) they found that enalapril caused a decrease (i.e. improvement) in LVESWS (-8.62 g/cm² change) compared with placebo (+1.66g/cm² change) in the first year of treatment (P = 0.036). After the first year, there was no statistically significant difference in LVESWS change between enalapril and placebo group (-0.30 versus +0.49 g/cm², P = 0.56).

In the phosphocreatine trial, complete baseline and outcome parameters were provided for echocardiographic cardiac function and the cardiac marker hsCRP (Chen 2008). All patients had normal echocardiograms before and at the end of treatment (not further specified). In the phosphocreatine group, mean (SD) baseline levels of hsCRP was 8.79 (1.36) mg/L compared with 7.88 (2.08) mg/L in the control group, while post treatment levels were 2.23 (0.82) mg/L in the phosphocreatine group compared with 4.2 (1.52) mg/L in the control group. Since the SDs of the difference before and after treatment within each group were not provided, we could not estimate the MD. It is therefore unclear if the change in hsCRP was significantly different between treatment groups. For the cardiac enzymes CK, CK-MB, LDH1 and alphaHBDH, only post treatment levels were provided and are therefore not presented in this review. For the outcomes ECG, troponin I and the combined outcome of all cardiac enzymes together (hsCRP, CK, CK-MB, LDH1, alphaHBDH, troponin I) numbers of patients with normal or abnormal outcomes after the intervention were only provided for those patients with abnormal values at baseline. Since these outcomes were only assessed in a specific subgroup of the studied cohort, we did not present them in this review.

(Duration of) hospitalization for heart failure
None of the studies provided outcome data on the (duration of) hospitalization for heart failure.
Change in NYHA stage for heart failure

None of the studies provided change in NYHA stage for heart failure as an outcome parameter.

The phosphocreatine trial did provide change in symptoms after the intervention of the patients with symptoms at baseline (Chen 2008). However, since this outcome was reported in less than 50% of the patients, we did not present them in this review.

Change in quality of life (as defined by authors)

The enalapril study provided some information on quality of life (Silber 2004). There were no differences between groups on any of the dimensions of the Short-Form 36 General Health Survey or the Childhood Health Questionnaire-85. No further information was provided.

Costs as defined by authors

None of the included studies provided outcome data on costs.

Discussion

As a result of survival rates of childhood cancer patients now approximating 75%, there is a steadily growing group of young childhood cancer survivors who are confronted with asymptomatic or even symptomatic anthracycline-induced cardiac dysfunction. Many collaborative groups have advocated screening for cardiac dysfunction in childhood cancer patients and survivors (COG 2006,SIGN 2004, Skinner 2005). However, for appropriate screening for a disease, an effective treatment should be available (Wilson 1968). In addition, physicians who are confronted with childhood cancer patients and survivors with cardiac dysfunction should be able to make a well-informed decision regarding the risks and benefits of treatment options. Although ACE-inhibitors and beta-blockers in adult populations with symptomatic and asymptomatic cardiac dysfunction due to other causes improve subclinical and clinical outcomes (Abdulla 2006; CIBIS-II 1999; Foody 2002; Garg 1995; Jong 2003; Packer 1996a; Packer 1996b; SOLVD 1991; Waagstein 1993), the different etiology makes it difficult to extrapolate these beneficial effects to childhood cancer patients and survivors with anthracycline-induced cardiotoxicity. This is the first systematic review summarizing all evidence on medical interventions for anthracycline-induced cardiotoxicity in childhood cancer patients and survivors.

For a reliable evaluation of the effects of medical interventions for the treatment of anthracycline-induced cardiotoxicity, the best study design is an RCT in which the only difference between the intervention and control group is the use of the medical intervention. However, because of the relative rareness of childhood cancer and therefore of survivors
with cardiac dysfunction, we expected low number of studies and therefore decided that both RCTs and CCTs were eligible for this review, keeping in mind the limitations of CCTs. We identified two eligible RCTs investigating different medical interventions in different study populations and with different lengths of follow-up. Since for both medical interventions only one study was available, no definitive conclusions about their effects on anthracycline-induced cardiotoxicity can be made. One RCT on enalapril (Silber 2004) in childhood cancer survivors with asymptomatic anthracycline-induced cardiotoxicity showed no significant effect of enalapril on overall survival, mortality due to heart failure, development of clinical heart failure and quality of life compared with placebo. Only a post-hoc, per-protocol analysis of the study investigators themselves showed an improvement in a measure of cardiac function (LVESWS) in the enalapril group compared with the placebo group in the first year of treatment. No effect was found after one year nor in other echocardiographic parameters of cardiac function over time. Patients treated with enalapril had a higher risk of dizziness or hypotension and fatigue. No conclusions can be made about the effect of enalapril on (duration) of hospitalization, change in NYHA stage of heart failure and costs, since these outcomes were not studied. The other RCT on phosphocreatine (Chen 2008) in children with acute leukemia and symptomatic or asymptomatic anthracycline-induced cardiotoxicity showed no significant differences in overall survival, mortality due to heart failure, echocardiographic cardiac function and adverse events compared with a control treatment with vitamin C, ATP, vitamin E, and oral coenzyme Q10 (in all outcomes no events/abnormalities in both groups). The effect of the intervention on one marker (hsCRP) was unclear. The study did not report on development of clinical heart failure, (duration of) hospitalization for heart failure, change in NYHA stage for heart failure or costs. Therefore, no conclusions can be drawn for these outcomes.

It should be noted that reasons for not finding significant beneficial effects in the enalapril trial (Silber 2004), could be due to the low number of patients (i.e. low power), and potentially patient compliance and loss-to-follow-up. Also, the fact that there was a low threshold for patients to be classified as having anthracycline-induced cardiotoxicity could have influenced the identified effects of treatment. Patients with minor and sometimes temporary abnormalities were included, in which large benefits of the intervention were unlikely. In the so-called SOLVD trial on enalapril in adults with asymptomatic cardiac dysfunction due to other causes than anthracyclines (SOLVD 1992), a clear benefit of enalapril was found on the occurrence of clinical heart failure. This trial had a much larger sample size (4228 patients) and used a more strict definition to classify patients as having cardiac dysfunction (i.e. a left ventricular ejection fraction (LVEF) of 35% or less). The enalapril trial had a relatively short length of follow-up (median 2.80 years). It is therefore unknown if there is a beneficial effect of enalapril on the longer term. In comparison, a follow-up study (Jong 2003) of the earlier mentioned SOLVD trial (SOLVD 1992), showed beneficial effects of enalapril treatment on mortality during a 12-year follow-up. In the phosphocreatine trial
reasons for not identifying significant effects of the intervention could also be the low power and the very short duration of treatment and presumably also maximum follow-up (i.e. 14 days). Also, the most optimal dosage schedule of phosphocreatine is currently unknown. Suboptimal dosages of study treatment could have led to the fact that no differences between treatment groups were found.

The enalapril study (Silber 2004) had a low/moderate risk of bias. There was a low/moderate risk of selection bias, performance bias and detection bias. For most outcomes there was a low risk of attrition bias, but for some outcomes (the post-hoc analysis of LVESWS, other parameters of cardiac function (SF and SVI), the change in quality of life and the risk of adverse events) ITT analysis was not possible or it was unclear if follow-up was complete, leading to a possible risk of attrition bias for these other outcomes. There were no other risks of bias, nor unexpected outcomes or inconsistencies in the data. The phosphocreatine study (Chen 2008) had a high risk of bias. We concluded there was a high risk of selection bias, performance and detection bias. There was no sign of attrition bias. There was a risk of reporting bias and we had concerns about the comparability of the two groups. We found no unexpected outcomes or other inconsistencies in the data.

The external validity of a study indicates how well the results of the study can be generalized to individual patients with anthracycline-induced cardiotoxicity during and after treatment for childhood cancer. Although we did not systematically assess this in this review, we regarded the external validity of the enalapril trial (Silber 2004) as reasonable. Patient characteristics were well-defined and the study population seemed to be a representative sample of childhood cancer survivors who can present with asymptomatic cardiotoxicity during follow-up. However, it should be noted that a large proportion of patients had been treated previously with cardiac radiotherapy. It is not unlikely that the pathophysiology, course and response to treatment of cardiac dysfunction that is induced by both anthracyclines and radiotherapy is different from cardiac dysfunction caused by anthracyclines only. Also other study characteristics could have influenced the effects of treatment. An observational study in adults with anthracycline-induced cardiotoxicity (Cardinale 2010) suggested that time between the end of anthracycline treatment and start of heart failure treatment (including at least enalapril) influenced the chance of response to ACE-inhibitors, with a longer follow-up time associated with a lower chance of a beneficial effect. Another issue regarding the generalizability of the enalapril trial is that the diagnostic tools to determine cardiotoxicity that were used in this study are not easily used in daily practice. Especially equipment and expertise to determine MCI, LVESWS and SVI may not be widely available in the follow-up settings of childhood cancer survivors. As previously mentioned, the duration of follow-up precludes extrapolation to follow-up longer than three years. Finally, clear outcome definitions were provided, making it easy to extrapolate the study outcomes to daily practice. The phosphocreatine trial (Chen 2008) was less well generalizable to daily practice. Not all patient characteristics were described, including
age and gender of the control group, time since leukemia diagnosis and information on (previous) cardiotoxic cancer treatment. No clear definitions (i.e. cut-off values of abnormal diagnostic tests) of cardiotoxicity were provided. No patient had an abnormal echocardiogram, and since most research on anthracycline-induced cardiotoxicity as well as guidelines on detection of cardiotoxicity include echocardiographic examination of childhood cancer patients and survivors, we feel that the study group is not very representative with regard to cardiotoxicity (COG 2006; SIGN 2004; Skinner 2005; Steinherz 1992; Van Dalen 2006b). In addition, phosphocreatine is an experimental therapy and not a registered agent at the European Medicines Agency (EMA) or Food and Drug Administration (FDA). Both the intervention and the control treatments are not common practice in most countries. Treatment duration and outcome assessment of cardiac function in this trial were only two weeks, so we only know the immediate effects of the intervention studied and not any long-term benefits or harms. Based on these arguments, we feel that the outcomes of the phosphocreatine trial (Chen 2008) can hardly be extrapolated to daily clinical practice and care for childhood cancer patients.

There is no evidence from RCTs or CCTs available for other medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer (for a complete list of evaluated interventions, see the search strategy in the appendices (Appendix 1, Appendix 2, Appendix 3). Please note that in this review RCTs and CCTs were only eligible for inclusion when the patients (previously) had a type of childhood cancer (defined as a diagnosis of cancer at age 18 years or younger). RCTs or CCTs including both children and adults were only eligible for inclusion in this review if the majority of participants were 18 years or younger at cancer diagnosis. It is possible that there are RCTs or CCTs in adults that evaluate the effects of medical interventions on anthracycline-induced cardiotoxicity in cancer patients or survivors. Although we did not systematically search for them, we are not aware that studies in survivors of adult cancers exist, apart from non-controlled observational studies (Cardinale 2010; Jensen 1996; Jensen 2002). One of these studies evaluated ACE-inhibitor (with or without a beta-blocker) treatment in all study participants (Cardinale 2010). This study was a prospective cohort study with a mean follow-up of 36 months in 201 adults with symptomatic and asymptomatic cardiac dysfunction after anthracycline therapy, who were all treated with at least an ACE-inhibitor as soon as cardiac impairment was noted. The study showed a (pre-specified) response of cardiac function in 42%, a partial response in 13% and no response in 45% of the study group. Responders had fewer cardiac events and a relationship was found between the duration of cardiac dysfunction and the probability to respond to the therapy. The authors did not report if side-effects occurred. It was concluded that beneficial effects of modern heart failure treatment are expected when treatment is started early after the detection of anthracycline-induced cardiotoxicity. It should be noted that it is not always appropriate to extrapolate adult cancer (survivor)
studies to childhood cancer (survivor) studies. Other age ranges, pharmacokinetics, pharmacodynamics as well as comorbidities and co-treatments may influence the effect of interventions for cardiotoxicity as well as the generalizability of studies to the clinical care of childhood cancer patients and survivors. Similarly, RCTs in other childhood populations are also difficult to generalize to childhood cancer patients and survivors. For example, in an RCT of the beta-blocker carvedilol in children with symptomatic heart failure (Shaddy 2007), almost 40% of the study population had symptomatic heart failure due to congenital heart disease, with often a very different anatomy of the heart.

Even though RCTs provide the highest levels of evidence, observational studies can sometimes be useful when no, or few, RCTs or CCTs are available. A retrospective cohort study (Lipshultz 2002) described clinical and echocardiographic follow-up of 18 childhood cancer survivors with symptomatic and asymptomatic anthracycline-induced cardiotoxicity from the start of enalapril treatment during a median follow-up of 10 years. There were no serious side effects during the long-term enalapril treatment in the cohort. The authors found an initial improvement of cardiac function, but a deterioration of cardiac function and clinical parameters after six years of follow-up. However, the study was small, had no control group and is highly prone to selection, detection and performance bias. Another retrospective study of childhood cancer survivors treated with anthracyclines compared a group of 34 growth-hormone (GH) treated children to a group of 86 children not treated with GH therapy (Lipshultz 2005b). Echocardiographic assessments done during routine clinical follow-up were re-analyzed by an investigator blinded for the intervention. From repeated measurements analyses adjusted for baseline characteristics and non-random missingness of data, the authors’ main conclusion was that GH therapy increased LV wall thickness during but not after therapy. It should be noted that among other issues, the retrospective construction of the control group, several confounding factors that were not adjusted for (such as, co-treatment with cardiovascular medication) and the missing outcome data for a large part of the two groups, put this study at high risk for selection and attrition bias. Therefore, no (careful) conclusions can be drawn from these two observational studies.

We are awaiting the results of the ongoing study (NCT00003070) and also more information from the three studies that currently did not provide enough information for inclusion (see Table Characteristics of studies awaiting classification).

Authors’ conclusions

Implications for practice
We identified only one RCT (Silber 2004) comparing enalapril and placebo in childhood cancer survivors with asymptomatic cardiotoxicity. Although there is some evidence that enalapril temporarily improves one parameter of cardiac function (LVESWS), the current
evidence did not show a statistically significant improvement of other parameters of cardiac function nor of clinical outcomes such as overall survival, mortality due to heart failure, occurrence of clinical heart failure and quality of life. However, “no evidence of effect” should not be confused with “evidence of no effect”. The RCT showed that enalapril treatment is associated with a higher risk of dizziness or hypotension and fatigue. Effects of enalapril on (duration of) hospitalization, change in NYHA stage of heart failure and costs were not studied. Also, no evidence is available on the effects of enalapril beyond 2.8 years of follow-up and on the effects of enalapril for treating symptomatic cardiotoxicity. Based on the currently available evidence in childhood cancer survivors with asymptomatic anthracycline-induced cardiac dysfunction, we are not able to give appropriate recommendations for clinical practice. Clinicians should weigh the potential benefits of enalapril with the known side-effect in childhood cancer survivors with asymptomatic anthracycline-induced cardiac dysfunction.

We identified one RCT (Chen 2008) comparing phosphocreatine and a control treatment of vitamin C, ATP, vitamin E, and oral coenzyme Q10 in childhood leukemia patients with symptomatic and asymptomatic cardiotoxicity. Limited data with a high risk of bias and poor generalizability showed no difference of phosphocreatine compared with a control treatment on overall survival, mortality due to heart failure, echocardiographic function, and adverse events. The effect of the intervention on one marker (hsCRP) was unclear and effects on occurrence of clinical heart failure, (duration) of hospitalization, change in NYHA stage of heart failure and costs were not studied. No evidence is available of the effects of phosphocreatine beyond two weeks of treatment or on the effects of phosphocreatine in survivors of childhood cancer with symptomatic or asymptomatic cardiotoxicity. Based on the currently available evidence, we do not recommend the use of phosphocreatine in clinical practice.

We did not identify RCTs or CCTs studying other medical interventions for symptomatic or asymptomatic cardiotoxicity in childhood cancer patients or survivors. Therefore, no conclusions can be made about the effect of other medical interventions in these patients and we are not able to give appropriate recommendations for clinical practice.

Implications for research
One RCT (Silber 2004) has studied the effect of enalapril in childhood cancer survivors with asymptomatic anthracycline-induced cardiac dysfunction and found no clear effect on clinical outcomes, possibly due to, among other things, low power of the study. Because there is strong evidence that ACE-inhibitors are beneficial for asymptomatic cardiac dysfunction in other populations, we urge the scientific community to start high-quality studies evaluating the effect of enalapril in childhood cancer patients and survivors with symptomatic or asymptomatic anthracycline-induced cardiotoxicity. These studies should preferably be RCTs, within homogenous populations and with long-term follow-up using
valid and clinically relevant selection criteria and outcome definitions. Previous treatment with radiotherapy, duration since cancer diagnosis, duration of cardiotoxicity, the age of the patient, the severity of cardiotoxicity and comorbidity should ideally be taken into account. The number of included patients should be sufficient for the power that is needed for reliable results. In addition, a long-term follow-up study of the enalapril trial (Silber 2004), evaluating the long-term effects of enalapril treatment versus placebo, would be very contributory to the current evidence.

One low-quality RCT (Chen 2008) has studied the effect of phosphocreatine in childhood leukemia patients with symptomatic or asymptomatic anthracycline-induced cardiac dysfunction. Other medical interventions for symptomatic or asymptomatic cardiotoxicity in childhood cancer patients or survivors have not been studied in RCTs or CCTs, even though several potentially beneficial treatment options are available. Especially for symptomatic childhood cancer patients and survivors, evidence on potential treatments for this severe complication is needed. Therefore, also studies with the above mentioned criteria should be started evaluating different treatment options in childhood cancer patients and survivors with symptomatic cardiotoxicity.

Acknowledgement

Leontien Kremer, the Coordinating Editor of the Childhood Cancer Group, is a co-author of this review and therefore she could not act as the Coordinating Editor for this review. Dr. Marianne van de Wetering (Department of Pediatric Oncology of the Emma Children’s Hospital/Academic Medical Center, Amsterdam, the Netherlands) was willing to take on this task, for which we would like to thank her. Also, We would like to thank Edith Leclercq (the Trial Search Coordinator of the Cochrane Childhood Cancer Group) for developing the search strategy and running the search strategy in the different databases and for providing us with the titles and abstracts of the searches, Oleg Borisenko for translating a Russian article, Robert Shaddy, Charles Canter and Daphne Hsu for providing additional information about a RCT, Joerg Meerpohl for providing information about one potential study awaiting classification and, finally, the Tom Voûte Foundation (previously the Foundation of Paediatric Cancer Research, SKK), the Netherlands and Stichting Kinderen Kankervrij (KiKa), the Netherlands for the financial support which made it possible to perform this systematic review. The editorial base of the Cochrane Childhood Cancer Group is funded by Kinderen Kankervrij (KiKa).
References

Included studies
Chen 2008

Silber 2004

Excluded studies
Garcia 2007

Ginsberg 2004

Shaddy 2007

Tallaj 2005
Vatutin 2001

Studies awaiting classification
Mandric 2008

Mandric 2009

Ongoing studies
NCT00003070

Additional references
Abdulla 2006

Cardinale 2010

CIBIS-II 1999

COG 2006

Cohn 2001

Colucci 2007

Exner 1999

Foody 2002

Ganame 2007

Garg 1995

Glick 1995

Granger 2003

Higgins 2008

Jensen 1996

Jensen 2002

Jong 2003

Kay 2001

Kremer 2002
Lefrak 1973

Lipshultz 1991

Lipshultz 2002

Lipshultz 2005a

Lipshultz 2005b

Maggioni 2002

McMurray 2003

Module CCG

NYHA 1994

Packer 1996a

Packer 1996b

Parmar 1998
RevMan 2008

Rogers 1994

SIGN 2004

Skinner 2005

SOLVD 1991

SOLVD 1992

Sorensen 2003

Steinherz 1992

Steinherz 1995

Van Dalen 2003

Van Dalen 2006a

Van Dalen 2006b

Von Hoff 1977

Waagstein 1993

Wang 2003

Wilson 1968
Table 7.1 Characteristics of included studies

Study characteristics table Chen 2008

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen 2008</td>
<td>RCT using simple random allocation to intervention and control groups</td>
<td>68 childhood cancer patients, receiving phosphocreatine or control treatment of a combination of vitamin C, ATP, vitamin E and coenzyme Q10. Included patients had anthracycline related cardiotoxicity based on cardiac enzymes (CK, CK-MB, LDH1, alphaHBDH, troponin I, hsCRP), ECG and / or echocardiogram. Median (range) age of the phosphocreatine group was 5 (1 to 15) years and 15 of 35 were males. Age and gender of the control group were not mentioned. Median time since cancer diagnosis was not mentioned. Patients had a diagnosis of acute lymphatic leukaemia or acute myeloid leukaemia. Information on (previous) cardiotoxic cancer treatment (cumulative anthracycline dose, cardiac radiotherapy and dose and cardioprotective interventions) were not mentioned for both groups. Other cardiovascular comorbidities and treatments were also not mentioned. At the start of the study, distribution of abnormalities in cardiac symptoms and signs in the treatment group (n = 35) was: cardiac symptoms 18, abnormal cardiac enzymes 28, abnormal troponin I 7, abnormal ECG 20 and abnormal echocardiogram 0. Mean (SD) hsCRP in the treatment group was 8.79 (1.36) mg/L. For the control group (n = 33) this distribution was: cardiac symptoms 16, abnormal cardiac enzymes 25, abnormal troponin I 7, abnormal ECG 18 and abnormal echocardiogram 0. Mean (SD) hsCRP in the control group was 7.88 (2.08) mg/L. Time since diagnosis of cardiotoxicity was not mentioned.</td>
<td>Phosphocreatine 1 g intravenously over 30 to 40 minutes once to twice per day (n = 35) or a combination treatment of vitamin C 150 mg/kg and ATP 20 mg into 5% glucose 100ml intravenously once per day, oral vitamin E 50 mg once per day and oral coenzyme Q10 (ubidecarenone) 10 mg 3 times per day. All treatment durations were 14 days.</td>
<td>Overall survival. Mortality due to heart failure (no definitions provided). Occurrence of adverse events (no definition provided). Change in cardiac function (normal / abnormal echocardiography, change in hsCRP, normal / abnormal ECG, normal / abnormal cardiac enzymes (CK, CK-MB, LDH1, alphaHBDH, troponin I and hsCRP), post-intervention levels of CK, CK-MB, LDH1, alphaHBDH and Troponin I. No definitions were provided).</td>
<td>The abstract (in English) mentions “retrospectively assessed”. However, we think the study is an RCT, because there is a statement in the methods section (in Chinese) that “all patients have entered the clinical trial with simple random allocation to treatment and control groups.” Duration of follow-up was not mentioned, but it seems that it was 15 days for the assessment of cardiac function, since that was done at the beginning and one day after the intervention. For clinical outcomes it is unclear. There was no loss to follow-up of patients.</td>
</tr>
</tbody>
</table>
Risk of bias table Chen 2008

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgment</th>
<th>Support for judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of participants?</td>
<td>High risk</td>
<td>Blinding of participants was not mentioned but seemed inadequate or very unlikely since the intervention and control treatment had different routes of administration</td>
</tr>
<tr>
<td>Blinding of personnel?</td>
<td>High risk</td>
<td>Blinding of personnel was not mentioned but seemed inadequate or very unlikely since the intervention and control treatment had different routes of administration</td>
</tr>
<tr>
<td>Blinding of outcome assessors?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality due to heart failure</td>
<td>Unclear risk</td>
<td>Blinding of outcome assessors was not mentioned</td>
</tr>
<tr>
<td>Occurrence of adverse events and tolerability</td>
<td>Unclear risk</td>
<td>Blinding of outcome assessors was not mentioned</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test</td>
<td>Unclear risk</td>
<td>Blinding of outcome assessors was not mentioned</td>
</tr>
<tr>
<td>Change in quality of life</td>
<td>Unclear risk</td>
<td>Blinding of outcome assessors was not mentioned</td>
</tr>
<tr>
<td>Completeness of follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival</td>
<td>Low risk</td>
<td>Outcome could be abstracted for all patients</td>
</tr>
<tr>
<td>Mortality due to heart failure</td>
<td>Low risk</td>
<td>Outcome could be abstracted for all patients</td>
</tr>
<tr>
<td>Development of clinical heart failure (as defined by authors)</td>
<td>Unclear risk</td>
<td></td>
</tr>
<tr>
<td>Occurrence of adverse events and tolerability (as defined by authors)</td>
<td>Low risk</td>
<td>Outcome was provided for all patients</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test</td>
<td>Low risk</td>
<td>For echocardiography (normal/abnormal) change in outcome was provided for all patients</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test</td>
<td>Low risk</td>
<td>For one biomarker (hsCRP) change in outcome was provided for all patients</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test</td>
<td>Unclear risk</td>
<td></td>
</tr>
<tr>
<td>Change in quality of life (as defined by authors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intention-to-treat-analysis?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Mortality due to heart failure</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Development of clinical heart failure (as defined by authors)</td>
<td>Unclear risk</td>
<td></td>
</tr>
<tr>
<td>Occurrence of adverse events and tolerability (as defined by authors)</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
</tbody>
</table>
Chapter 7

Risk of bias table Chen 2008 (continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgment</th>
<th>Support for judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>For echocardiography (normal/abnormal) treatment allocation was provided</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>For the biomarker (hsCRP) treatment allocation was provided</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Unclear risk</td>
<td></td>
</tr>
<tr>
<td>Change in quality of life (as defined by authors)</td>
<td>Unclear risk</td>
<td></td>
</tr>
<tr>
<td>Free of selective reporting?</td>
<td>Unclear risk</td>
<td>We found no published protocol in which the reported outcomes and analyses were pre-specified</td>
</tr>
<tr>
<td>Free of other bias?</td>
<td>High risk</td>
<td>The baseline characteristics were not fully described. For example, there was no data about the gender and age distribution of the control group. We do not know what type of anthracycline and what doses of medications were used in each group of the patients. We have no information on whether radiation therapy was given. Therefore, we were not certain whether the intervention and control groups were comparable/similar at baseline. We are not certain whether co-interventions were different between the intervention and control groups.</td>
</tr>
</tbody>
</table>

Random sequence generation? | Unclear risk | No description of sequence generation |
Allocation concealment? | Unclear risk | No description of allocation concealment |

Study characteristics table Silber 2004

Silber 2004

Methods

ACE inhibitor After Anthracycline (AAA) trial. Double-blinded RCT. Randomizations were performed using random permuted blocks (random size between 2 and 8) with equal allocation to each treatment (stratified according to the variables age at treatment (under 3 year old versus 3 year or older), total cumulative anthracycline dose (under 300 mg/m2 versus 300 mg/m2 or higher) and time from diagnosis (less than 10 years versus 10 years or more)).

Participants

135 childhood cancer survivors (aged 8.3 to 30.6 years, 78 males) with asymptomatic decline of cardiac function at some time after anthracycline exposure, detected with echocardiography, resting or exercise GNA, MCI at peak exercise and / or resting ECG. Median (range) time since cancer diagnosis 9 (4.2 to 22.3) years in the enalapril group and 9.6 (4.3 to 25.8) years in the placebo group. Patients had been treated for various types of cancer diagnosis at a median (range) age of 7.2 (3 to 21.8) years in the enalapril group and 8.2 (0.3 to 10.3) years in the placebo group. Median (range) age at study entry 17 (8.3 to 31.5) years in enalapril and 18.9 (8.1 to 30.6) years in placebo group.
Previous anthracycline treatment with median (range) cumulative anthracycline dose 305 (75 to 396) mg/m² in enalapril and 300 (75 to 738) mg/m² in placebo group (types of anthracyclines not mentioned). Previous cardiac radiotherapy in enalapril group: 26 (38%), unknown in 1 (1.4%). In placebo group: 23 (35%), unknown in 0 (0%). Other previous potential cardiotoxic treatment or cardioprotective interventions not mentioned. Total radiotherapy dose, other cardiovascular comorbidities and treatments were not mentioned. 1 patient in enalapril group required a growth hormone supplement, 1 patient in placebo group required a testosterone supplement.

At the start of the study, 111 patients had echocardiographic abnormalities (based on SF, LVESWS and/or SVI) and/or abnormalities during resting or exercise GNA (based on EF). Of the remaining 24 patients, 7 had (only) abnormalities on cycle ergometry (based on MCI) and 17 had any of the abnormalities (possibly including an abnormal QTc interval on ECG) before study entry. Mean (SD) cardiac function in enalapril group was: MCI (L/min/m²): 8.39 (2.66) (68 patients), LVESWS (g/cm²): 73.2 (19.0) (69 patients), EF (%): 59.1 (7.4) (69 patients), SF (%): 69: 30.7 (4.9) (69 patients), QTc (ms): 418 (23.4) (69 patients). Mean (SD) cardiac function in placebo group was: MCI (L/min/m²): 8.24 (2.57) (65 patients), LVESWS (g/cm²): 68.4 (20.4) (66 patients), EF (%): 58.3 (7.1) (64 patients), SF (%): 30.6 (3.9) (66 patients), QTc (ms): 411 (17.6) (66 patients). Time since diagnosis of cardiotoxicity was not mentioned.

Interventions:
Oral enalapril once daily (n = 69) or oral placebo once daily (n = 66). Dosing of study medication was as follows: at start 0.05 mg/kg/day, escalation after 14 days to 0.10 mg/kg/day and escalation at 3 months visit to 0.15 mg/kg/day if no side effects occurred.

Outcomes:
Overall survival.
Mortality due to heart failure (no definitions provided).
Development of clinical heart failure (defined as a clinically significant decline in cardiac performance: documented acute congestive heart failure, SF decline 20% (and below 28%) from baseline in 2 measures or MCI decline by 30% (and 2 SD below the mean) from baseline in 2 measures).
Occurrence of adverse events (no definition provided).
Change in cardiac function (Primary outcome: rate of decline over time of MCI. Secondary outcome: rate of increase over time in LVESWS. Other outcomes first-year reduction in LVESWS (post-hoc and ITT analysis), % of change in SF and change in SVI over time).
Quality of life: based on the Short-Form 36 General Health Survey (age above 14 years) or the Childhood Health Questionnaire-85 (age equal or younger than 14 years). No definition for an abnormal outcome was provided.

Notes:
Median (range) follow-up time was 2.80 years (2 weeks to 6.1 years). Loss of follow-up was not mentioned.
Since the authors did not present dichotomous outcomes, we were not able to define RRs for the outcome change in cardiac function; we therefore describe the outcomes as presented in the original study.
Risk of bias table Silber 2004 (continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgment</th>
<th>Support for judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of outcome assessors?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality due to heart failure</td>
<td>Low risk</td>
<td>Investigators were blinded to the intervention. Based on this statement and the effective blinding of patients, we judged that the outcome assessors were effectively blinded</td>
</tr>
<tr>
<td>Development of clinical heart failure (as defined by authors)</td>
<td>Low risk</td>
<td>Investigators were blinded to the intervention. Based on this statement and the effective blinding of patients, we judged that the outcome assessors were effectively blinded</td>
</tr>
<tr>
<td>Occurrence of adverse events and tolerability (as defined by authors)</td>
<td>Low risk</td>
<td>Investigators were blinded to the intervention. Based on this statement and the effective blinding of patients, we judged that the outcome assessors were effectively blinded</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>Investigators were blinded to the intervention. Based on this statement and the effective blinding of patients, we judged that the outcome assessors were effectively blinded</td>
</tr>
<tr>
<td>Change in quality of life (as defined by authors)</td>
<td>Low risk</td>
<td>Investigators were blinded to the intervention. Based on this statement and the effective blinding of patients, we judged that the outcome assessors were effectively blinded</td>
</tr>
<tr>
<td>Completeness of follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival</td>
<td>Low risk</td>
<td>Outcome could be abstracted for all patients</td>
</tr>
<tr>
<td>Mortality due to heart failure</td>
<td>Low risk</td>
<td>Outcome could be abstracted for all patients</td>
</tr>
<tr>
<td>Development of clinical heart failure (as defined by authors)</td>
<td>Low risk</td>
<td>Outcome was provided for all patients</td>
</tr>
<tr>
<td>Occurrence of adverse events and tolerability (as defined by authors)</td>
<td>Unclear risk</td>
<td>Completeness of follow-up not mentioned</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>For MCI any follow-up measurement was done in 83% of the patients. Completeness of follow-up at the end of the study was not mentioned</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>For LVESWS follow-up was 93% in the first year. Follow-up after the first year was not mentioned</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>For other outcomes of cardiac function (SF and SVI) completeness of follow-up was not mentioned</td>
</tr>
<tr>
<td>Change in quality of life (as defined by authors)</td>
<td>Unclear risk</td>
<td>Completeness of follow-up not mentioned</td>
</tr>
<tr>
<td>Intention-to-treat-analysis?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Mortality due to heart failure</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Development of clinical heart failure (as defined by authors)</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Occurrence of adverse events and tolerability (as defined by authors)</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Low risk</td>
<td>For change in MCI and LVESWS intention-to-treat-analyses were performed by the study</td>
</tr>
</tbody>
</table>
Risk of bias table Silber 2004 (continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgment</th>
<th>Support for judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>High risk</td>
<td>For the extra post-hoc analysis of change in LVESWS (piecewise model), a per protocol analysis was performed by the study</td>
</tr>
<tr>
<td>Change in cardiac function measured by a diagnostic test (as defined by authors)</td>
<td>Unclear risk</td>
<td>For other outcomes of cardiac function (SF and SVI) it was not stated if intention-to-treat-analyses were performed by the study</td>
</tr>
<tr>
<td>Change in quality of life (as defined by authors)</td>
<td>Low risk</td>
<td>Allocation was provided for the reported outcome</td>
</tr>
<tr>
<td>Free of selective reporting?</td>
<td>Low risk</td>
<td>There was a published protocol in which the reported outcomes and analyses were pre-specified. All outcomes were reported and the analyses were done in the final report. The authors clearly explained that they performed some additional analyses based on exploration of the data.</td>
</tr>
<tr>
<td>Free of other bias?</td>
<td>Low risk</td>
<td>Randomizations were performed using random permuted blocks (random size between 2 and 8) with equal allocation to each treatment</td>
</tr>
<tr>
<td>Random sequence generation?</td>
<td>Low risk</td>
<td>It was stated that there was allocation concealment, but the method of allocation concealment was not mentioned.</td>
</tr>
<tr>
<td>Allocation concealment?</td>
<td>Unclear risk</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: alphaHBDH: alpha hydroxybutyrate dehydrogenase; ATP: adenosine tri-phosphate; CK: creatine kinase; CK-MB: creatine kinase MB; ECG: electrocardiogram; EF: ejection fraction; GNA: gated nuclear angiography; hsCRP: hyper sensitivity C-reactive protein; ITT: intention-to-treat; LDH1: lactate dehydrogenase; LVESWS: left ventricular end-systolic wall stress; MCI: maximal cardiac index; RCT: randomised controlled trial; RR: risk ratio; SD: standard deviation; SF: shortening fraction; SVI: stress-velocity index.

Characteristics of excluded studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcia 2007</td>
<td>No RCT or CCT.</td>
</tr>
<tr>
<td>Ginsberg 2004</td>
<td>Health related quality of life was assessed in patients of the AAA trial (Silber 2004), but outcomes were not related to the treatment allocation.</td>
</tr>
<tr>
<td>Shaddy 2007</td>
<td>In consultation with the authors of the paper: patients with anthracycline-induced cardiomyopathy were included in the trial, but it was not possible to separate the data of these patients from the data of all included patients.</td>
</tr>
<tr>
<td>Tallaj 2005</td>
<td>No RCT or CCT.</td>
</tr>
<tr>
<td>Vallutin 2001</td>
<td>Exclusion based on adult age.</td>
</tr>
</tbody>
</table>

Abbreviations: AAA trial: ACE inhibitor After Anthracycline trial; CCT: controlled clinical trial; RCT: randomized controlled trial.
Characteristics of studies awaiting classification

Mandric 2008

Methods
CCT comparing enalapril to placebo.

Participants
30 survivors of paediatric haematological malignancies, aged between 6 and 14 years and treated with doxorubicin. All patients had at least one cardiac abnormality identified at any time after anthracyclines exposure.

Enalapril group: 10 children, mean age at diagnosis 6 years, mean or median follow-up 16 months.

Placebo group: 20 children. Mean age and follow-up not mentioned.

Both groups had been treated with similar doses of anthracyclines. No further patient characteristics were provided. Duration of follow-up was unclear.

Interventions
Enalapril (dose range between 0.2 and 0.5 mg/kg/day).

Placebo (not further specified).

Outcomes
Cardiac evaluation (including echocardiography) at baseline and at 3, 6, 12, 16 month after initiation of enalapril/placebo therapy.

In the enalapril group, progressive improvement in LV dimensions (end-systolic and end-diastolic), fractional shortening, LV mass, LV percent posterior wall thickening, interventricular percent septal thickening and Tei index was found.

In the placebo group, the same echocardiographic parameters were constant or worsened in the course of follow-up (not further specified).

Notes
This study has not been published in full text, but has been presented at the SIOP conference 2008 (abstract L.030). It seems that patients were not randomized. Completeness of follow-up was not mentioned.

Mandric 2009

Methods
Unclear (possibly a CCT).

Participants
27 children aged between 3 and 18 years.

Enalapril group: 10 children with subclinical cardiotoxicity on echocardiography.

No “cardioprotector” group: 6 children with a chemotherapeutic protocol completed.

It was not specified if this group suffered from cardiotoxicity.

Third group: 11 children with newly diagnosed cancer. It was not specified if this group received an intervention.

No further patient characteristics were provided. Duration of follow-up was unclear.

Interventions
Enalapril (not further specified).

No “cardioprotector” (not further specified).

Outcomes
Periodic history and physical examination, electrocardiogram, chest X-ray, 2 dimensional/Doppler echocardiography, cardiac biomarkers (BNP, cTnl, ALAT, CPK).

“Clinical manifestations”: heart failure: 1 patient; “untypical manifestation”: 15 patients; “echocardiographic modifications”: 6 patients; electrocardiographic changes: 5 patients; high values of plasma BNP (cut-off value of 100 microgram/ml): 11 patients.

It was not mentioned what the differences in these outcomes were between subgroups, except that all children on “cardioprotector” treatment had normal values of BNP and cTnl.

Notes
This study has not been published in full text, but has been presented at the SIOP conference 2009 (abstract PQ.020). The title suggested that cardiotoxicity in children in group B (and possibly also in group C) was caused by anthracyclines. It seems that patients were not randomised. Completeness of follow-up was not mentioned.

Abbreviations: ALAT: alanine transaminase; BNP: brain natriuretic peptide; CCT: controlled clinical trial; CPK: creatine phosphokinase; cTnl: cardiac troponin I; LV: left ventricular; SIOP: Société Internationale d’Oncologie Pédiatrique (International Society of Paediatric Oncology).
Characteristics of ongoing studies

<table>
<thead>
<tr>
<th>Study name</th>
<th>Afterload Reduction Therapy for Late Anthracycline Cardiotoxicity: A Pediatric Oncology Group Cancer Control Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomized double-blinded phase III trial to compare the effectiveness of enalapril with a placebo in treating heart damage in patients who received anthracycline chemotherapy for childhood cancer.</td>
</tr>
<tr>
<td>Participants</td>
<td>Patients with histologically diagnosed childhood malignancy that had prior anthracycline therapy and echocardiographic evidence of reduced fractional shortening, reduced contractility, or increased afterload, or any combination. At least 6 months oncologic disease free. At least 8 years old at study entry and less than 22 years at diagnosis. At least 1 year since prior cumulative anthracycline therapy of at least 200 mg/m².</td>
</tr>
<tr>
<td>Interventions</td>
<td>Enalapril maleate and placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Body surface area-adjusted left ventricular mass, ventricular function, quality of life</td>
</tr>
<tr>
<td>Starting date</td>
<td>15 Aug 1997</td>
</tr>
<tr>
<td>Contact information</td>
<td>Stephen Lipshultz, James P. Wilmot Cancer Center</td>
</tr>
<tr>
<td>Notes</td>
<td>On the ongoing trial website there is a note about the recruitment status: completed. However, we found no publication of this trial. One of the authors (LK) learned from contacts in the US that this trial has as yet not been executed.</td>
</tr>
</tbody>
</table>
Appendices

1. Search strategy for MEDLINE (PubMed)

Medical interventions

1. ACE-inhibitor

(ace inhibitor OR ace-inhibitor OR ace inhibitor* OR ace-inhibitor* OR Angiotensin-Converting Enzyme Inhibitors OR Angiotensin-Converting Enzyme Inhibitors[Pharmacological Action] OR Angiotensin Converting Enzyme Inhibitors OR Angiotensin-Converting Enzyme Antagonists OR Angiotensin Converting Enzyme Antagonists OR Enzyme Antagonists, Angiotensin-Converting OR Antagonists, Angiotensin-Converting Enzyme OR Antagonists, Angiotensin Converting Enzyme OR Antagonists, Kininase II OR Inhibitors, Kininase II OR Inhibitors, ACE OR ACE Inhibitors OR Kininase II Inhibitors OR Kininase II Antagonists OR Angiotensin I-Converting Enzyme Inhibitors OR Angiotensin I Converting Enzyme Inhibitors OR Inhibitors, Angiotensin-Converting Enzyme OR Enzyme Inhibitors, Angiotensin-Converting OR Inhibitors, Angiotensin Converting Enzyme OR Angiotensin-Converting Enzyme Inhibitor* OR Angiotensin Converting Enzyme Inhibitor* OR Angiotensin-Converting Enzyme Antagonist* OR Angiotensin Converting Enzyme Antagonist* OR Angiotensin I Converting Enzyme Inhibitor* OR Kininase II Inhibitor* OR Kininase II Antagonist* OR Angiotensin I-Converting Enzyme Inhibitor* OR Kininase II Antagonist* OR Angiotensin I Converting Enzyme OR Carboxycathepsin OR Kininase A OR CD143 Antigen OR CD143 Antigens OR Dipeptidyl Peptidase A OR Dipeptidyl Peptidase A OR Antigens, CD143 OR Angiotensin Converting Enzyme OR Kininase I)

2. Angiotensin receptor blocker

(angiotensin receptor blocker OR angiotensin receptor blockers OR angiotensin receptor blocker* OR Angiotensin II Type 1 Receptor Blockers OR Angiotensin II Type 1 Receptor Antagonists OR Type 1 Angiotensin Receptor Antagonists OR Type 1 Angiotensin Receptor Blockers OR Selective Angiotensin II Receptor Antagonists OR Sartans OR Angiotensin II OR Angiotensin Receptors/antagonists & inhibitors OR Angiotensin II Type 1 Receptor Blocker* OR Type 1 Angiotensin Receptor Antagonist* OR Type 1 Angiotensin Receptor Blocker* OR Selective Angiotensin II Receptor Antagonist* OR losartan OR valsartan)

3. Beta-blocker

(beta blocker OR beta blockers OR beta-blockers OR beta-blocker OR beta-blocker* OR beta blocker* OR Adrenergic beta Antagonists OR adrenergic beta-antagonists OR adrenergic beta-antagonists[Pharmacological Action] OR beta-Antagonists, Adrenergic OR Adrenergic beta Antagonists)

4. Calcium channel blocker
(calcium channel blocker OR calcium channel blockers OR calcium channel blockers[Pharmacological Action] OR calcium channel blocker* OR Exogenous Calcium Antagonists OR Antagonists, Exogenous Calcium OR Calcium Antagonists, Exogenous OR Exogenous Calcium Blockaders OR Blockaders, Exogenous Calcium OR Calcium Inhibitors, Exogenous OR Calcium Channel Blocking Drugs OR Exogenous Calcium Inhibitors OR Inhibitors, Exogenous Calcium OR Calcium Blockaders, Exogenous OR Channel Blockers, Calcium OR Blockers, Calcium Channel OR Exogenous Calcium Antagonist* OR Exogenous Calcium Blockader* OR Calcium Channel Blocking Drug* OR Exogenous Calcium Inhibitor* OR Exogenous Calcium Blockader* OR Calcium Channel Blocking Drug* OR Exogenous Calcium Inhibitor* OR diltiazem OR nifedipine)

5. Digoxin
(digoxin OR digoxin* OR Lanoxin)

6. Vasodilator agent
(vasodilator OR vasodilators OR vasodilator* OR vasodilator agents OR vasodilator agents[Pharmacological Action] OR Agents, Vasodilator OR Vasodilator Drugs OR Drugs, Vasodilator OR Vasoactive Antagonists OR Antagonists, Vasoactive OR Vasoactive Antagonist* OR vasodilator agent* OR Vasodilator Drug* OR nitroglycerin OR Glyceryl Trinitrate OR Trinitrate, Glycerol OR Nitroglycerin* OR diazoxide OR adenosine)
7. Diuretic
(diuretic OR diuretics OR diuretic* OR diuretics[Pharmacological Action] OR furosemide)

8. Aldosterone antagonist
(aldosteron antagonist OR aldosteron antagonists OR aldosterone antagonist OR aldosterone antagonists* OR aldosteron antagonist* OR “Aldosterone antagonists”[Pharmacological Action] OR Antagonists, Aldosterone OR spironolactone)

9. (Other) antihypertensive agents
(antihypertensiva OR anti-hypertensive OR anti hypertensive OR anti hypertensive drugs OR antihypertensive drugs OR antihypertensive agents OR antihypertensive agents[Pharmacological Action] OR Agents, Antihypertensive OR Anti-Hypertensive Agents OR Agents, Anti-Hypertensive OR Anti Hypertensive Agents OR Anti-Hypertensive Drugs OR Anti Hypertensive Drugs OR Drugs, Anti-Hypertensive OR Anti-Hypertensives OR Anti-Hypertensives OR Antihypertensive Drugs OR Drugs, Antihypertensive OR Anti hypertensive* OR antihypertensive drug* OR anti hypertensive drug* OR antihypertensive agent* OR anti hypertensive agent* OR clonidine)

10. Inotropic
(inotropics OR inotropic OR inotropic* OR dopamine OR dobutamine OR epinephrine OR norepinephrine)

11. Growth hormone
(growth hormone OR Growth Hormone, Pituitary OR Pituitary Growth Hormone OR Somatotropin OR Growth Hormone, Recombinant OR Growth Hormones Pituitary, Recombinant OR Pituitary Growth Hormones, Recombinant OR Recombinant Pituitary Growth Hormones OR Somatotropin, Recombinant OR Recombinant Somatotropin OR Recombinant Growth Hormone OR Recombinant Growth Hormones OR Growth Hormones, Recombinant OR Recombinant Somatotropins OR Somatotropins, Recombinant OR growth hormon* OR Somatotropin* OR Pituitary Growth Hormon* OR Recombinant Pituitary Growth Hormon* OR Recombinant Somatotropin* OR Recombinant Growth Hormon*)

The total search strategy for medical interventions was:
12. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11

13. Anthracyclines
(anthracyclines OR anthracyclin* OR anthracycline antibiotics OR antibiotics, anthracycline OR 4-demethoxydaunorubicin OR 4 demethoxydaunorubicin OR 4-desmethoxydaunorubicin OR 4 desmethoxydaunorubicin OR IMI 30 OR IMI30 OR IMI-30 OR idarubicin hydro-
chloride OR hydrochloride, idarubicin OR NSC 256439 OR NSC-256439 OR NSC256439 OR idarubicin OR idarubic* OR 4’-epiadiamycin OR 4’ epiadiamycin OR 4’-epidoxorubicin OR 4’ epidoxorubicin OR 4’-epi-doxorubicin OR 4’ epi doxorubicin OR 4’-epi-adriamycin OR 4’ epi adriamycin OR 4’-epi-DXR OR 4’ epi DXR OR epirubicin hydrochloride OR hydrochloride, epirubicin OR farmorubicin OR IMI-28 OR IMI 28 OR IMI28 OR NSC 256942 OR NSC-256942 OR NSC256942 OR epirubicin OR epirubic* OR adriablastine OR adriblastin OR adriablastin OR adriamycin OR DOX-SL OR DOX SL OR doxorubicin hydrochloride OR hydrochloride, doxorubicin OR doxorubic* OR adriamyc* OR dauno-rubidomycine OR dauno rubidomycin OR rubidomycin OR rubomycin OR daunomycin OR cerubidine OR daunoblastin OR daunoblastine OR daunorubicin hydrochloride OR hydrochloride, daunorubicin OR daunorubic* OR rubidomyc* OR NSC-82151 OR NSC 82151 OR NSC82151 OR daunoxome OR daunoxom* OR daunosom* OR doxil OR caelyx OR liposomal doxorubicin OR doxorubicin, liposomal OR myocet OR doxorubicin OR daunorubicin)

14. Childhood cancer

(((leukemia OR leukemi* OR leukaemi* OR (childhood ALL) OR AML OR lymphoma OR lymphom* OR hodgkin* OR T-cell OR B-cell OR non-hodgkin OR sarcoma OR sarcom* OR sarcoma, Ewing’s OR Ewing* OR osteosarcoma OR osteosarcom* OR wilms tumor OR wilms* OR nephroblastom* OR neuroblastoma OR neuroblastom* OR rhabdomyosarcoma OR rhabdomyosarcom* OR teratoma OR teratom* OR hepataoma OR hepatom* OR hepatoblastoma OR hepatoblastom* OR PNET OR medulloblastoma OR medulloblastom* OR PNET* OR neuroectodermal tumors, primitive OR retinoblastoma OR retinoblastom* OR meningioma OR meningiom* OR glioma OR gliom*) OR (pediatric oncology OR paediatric oncology)) OR (childhood cancer OR childhood tumor OR childhood tumors)) OR (cancer or neoplasms or tumor or cancers or neoplasm or tumors)

15. RCTs, CCTs

The final combined search was:

16. 12 AND 13 AND 14 AND 15

[pt = publication type; tiab = title, abstract; sh = subject heading; mh = MeSH term; *=zero or more characters; RCT = randomized controlled trial; CCT = controlled clinical trial]
2. Search strategy for EMBASE (OVID)

1. Medical interventions

1. (ace inhibitor or ace-inhibitor or ace inhibitor$ or ace-inhibitor$).mp.
2. Dipeptidyl Carboxypeptidase Inhibitor/ or (angiotensin converting enzyme inhibitor or angiotensin converting enzyme inhibitors or angiotensin converting enzyme inhibitor$).mp.
3. (angiotensin-converting enzyme inhibitor or angiotensin-converting enzyme inhibitors or angiotensin-converting enzyme inhibitor$).mp.
4. (angiotensin-converting enzyme antagonist or angiotensin-converting enzyme antagonists or angiotensin-converting enzyme antagonist$ or angiotensin converting enzyme antagonist or angiotensin converting enzyme antagonists or angiotensin converting enzyme antagonist$).mp.
5. (kininase II inhibitor or kininase II inhibitors or kininase II antagonist or kininase antagonists or kininase antagonist$).mp.
6. (angiotensin I-converting enzyme inhibitors or angiotensin I converting enzyme inhibitors or angiotensin I converting enzyme inhibitor$ or angiotensin I converting enzyme inhibitor$).mp.
7. (peptidyl dipeptidase or peptidyl dipeptidase A).mp.
8. exp Dipeptidyl Carboxypeptidase/ or exp Dipeptidyl Peptidase/ or Dipeptidyl Peptidase A.mp.
9. (Carboxycathepsin or Angiotensin Converting Enzyme or Kininase II).mp.
10. exp Angiotensin I-Converting Enzyme or Angiotensin I Converting Enzyme.mp.
11. (Captopril Plus Hydrochlorothiazide/ or exp Captopril/ or exp Enalapril Maleate/ or exp Enalapril Plus Hydrochlorothiazide/ or exp Enalapril/ or exp Enalapril Maleate Plus Nitrendipine/ or exp Enalapril Maleate Plus Felodipine/ or exp Diltiazem Plus Enalapril Maleate/ or exp Fosinopril/ [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name]).mp.
12. (angiotensin receptor blocker or angiotensin receptor blockers or angiotensin receptor blocker$).mp.
13. (angiotensin II type 1 receptor blockers or angiotensin II type 2 receptor blocker$).mp.
14. (selective angiotensin II receptor antagonists or selective angiotensin II receptor antagonists or sartans or angiotensin II).mp.
15. (losartan or valsartan).mp.
16. (beta blocker or beta blockers or beta blocker$ or beta-blocker or beta-blockers or beta-blocker$).mp.
17. exp Beta Adrenergic Receptor Blocking Agent.mp.
18. (adrenergic beta-antagonists or adrenergic beta antagonists).mp.
19. (adrenergic beta-receptor blockaders or adrenergic beta receptor blockaders or beta-adrenergic receptor blockaders or beta adrenergic receptor blockaders).mp.
adrenergic blocking agents or beta adrenergic blocking agents or beta-adrenergic blockers or beta adrenergic blockers or adrenergic beta-blockers or adrenergic beta blockers). mp.25. (sympatholytics or sympathetic-blocking agents or sympathetic blocking agents or sympatholytic agents or sympatholytic drugs or sympatholytic$).mp.26. (adrenergic beta antagonist$ or adrenergic beta-receptor blocker$ or adrenergic beta receptor blocker$ or beta-adrenergic receptor blocker$ or beta adrenergic receptor blocker$ or beta-adrenergic blocking agent$ or beta adrenergic blocking agent$).mp.27. (beta adrenergic blocker$ or beta-adrenergic blockader$ or adrenergic beta-blocker$ or sympathetic-blocking agent$ or sympathetic blocking agent$ or sympatholytic agent$ or sympatholytic drug$).mp.28. (carvedilol or atenolol or metoprolol or propanolol).mp. or exp carvedilol/ or exp atenolol plus chlortalidone/ or exp atenolol/ or exp atenolol plus nifedipine/ or exp metoprolol tartrate/ or exp metoprolol/ or exp metoprolol fumarate/ or exp metoprolol succinate/ or exp propranolol29. (calcium channel blocker or calcium channel blockers or calcium channel blocker$).mp.30. exp Calcium Channel Blocking Agent/31. exp Calcium Antagonist/ or (exogenous calcium antagonists or exogenous calcium blockers or calcium channel blocking drugs).mp.32. (exogenous calcium inhibitors or exogenous calcium antagonist$ or exogenous calcium blockader$ or calcium channel blocking drug$).mp.33. (exogenous calcium inhibitor$ or exogenous calcium blockader$ or calcium channel blocking drug$ or exogenous calcium inhibitor$).mp.34. exp Diltiazem Derivative/ or exp Diltiazem/ or exp Diltiazem Plus Enalapril Maleate/ or exp Nefedipine/ or (diltiazem or nefedipine).mp.35. exp DIGOXIN/36. (digoxin or digoxin$ or lanoxin).mp.37. (vasodilator or vasodilators or vasodilator$).mp.38. exp Vasodilator Agent/ or (vasodilator agents or vasodilator drug$ or vasodilator drugs or vasodilator drug$ or vasoactive antagonists or vasoactive antagonist$).mp.39. (nitroglcerin or glyceryl trinitrate or nitroglycerin$ or diazoxide or adenosine).mp.40. exp diazoxide/ or exp glyceryl trinitrate41. (diuretic or diuretics or diuretic$).mp.42. exp Diuretic Agent/ or exp Furosemide Plus Triamterene/ or exp Furosemide/ or furosemide.mp.43. (aldosterone antagonist or aldosterone antagonists or aldosterone antagonist aldosterone antagonists or aldosterone antagonist$).mp.44. exp Aldosterone Antagonist/ or spironolacton.mp. or exp Spironolactone/45. (antihypertensiva or antihypertensive or anti hypertensive or anti-hypertensive).mp.46. exp Antihypertensive Agent/47. (anti hypertensive drugs or anti-hypertensive drugs or antihypertensive drugs or antihypertensive agents or anti-hypertensive agents or anti hypertensive agents).mp.48. (anti-hypertensives or anti hypertensives or antihypertensives).mp.49. (antihypertensiva or antihypertensive or anti hypertensive or anti-hypertensive).mp.50. exp Clonidine Derivative/ or clonidine.mp. or exp Clonidine/ or exp Clonidine Displacing Substance/51. (inotropic or inotropics or inotropic$).mp.52. exp dopamine/ or exp dobutamine/ or exp adrenalin/ or exp noradrenaline/ or (dopamine or dobutamine or epinephrine or norepinephrine).mp.53. (growth hormone or pituitary growth hormone).mp. or exp Growth Hormone/54. (somatropin or recombinant somatotropin).
Chapter 7

mp. or exp recombinant growth hormone/ or recombinant pituitary growth hormones. mp.55. (recombinant growth hormone or recombinant growth hormones or recombinant somatotropins). mp.56. (growth hormon$ or somatotropin$ or pituitary growth hormon$ or recombinant pituitary growth hormon$ or recombinant somatotropin$ or recombinant growth hormon$). mp.57. or/1-56

2. Anthracyclines
1. (anthracyclin$ or anthracyclines). mp. or exp Anthracycline/2. anthracycline antibiotics.mp. or exp Anthracycline Antibiotic Agent/3. exp Anthracycline Derivative/4. (4-demethoxydaunorubicin or 4 demethoxydaunorubicin or 4-desmethoxydaunorubicin or 4 desmethoxydaunorubicin). mp. or exp idarubicin/5. (IMI 30 or IMI30 OR IMI-30 or idarubicin hydrochloride). mp.6. (NSC 256439 or NSC-256439 or NSC256349 or idarubicin or idarubic$). mp.7. (4’-epiadriamycin or 4’ epiadriamycin or 4’-epidoxorubicin or 4’ epidoxorubicin or 4’-epi-doxorubicin or 4’ epi doxorubicin). mp.8. (4’-epi-adriamycin or 4’ epi adriamycin or 4’-epi-DXR or 4’ epi DXR). mp.9. exp epirubicin/ or (epirubicin or epirubicin hydrochloride or epirubic$ or farmorubicin). mp.10. (IMI-28 or IMI 28 or IMI28 or NSC 256942 or NSC-256942 or NSC256942). mp.11. (adriablastine or adriblastin or adriablastin or adriamycin). mp.12. (DOX-SL or DOX SL or doxorubicin hydrochloride or doxorubic$ or adramyc$). mp.13. (dauno-rubidomycine or dauno rubidomycin or rubidomycin or rubomy-cin or daunomycin). mp.14. (cerubidine or daunoblastin or daunoblastine or daunorubicin hydrochloride or daunorubicin$). mp.15. (NSC-82151 or NSC 82151 or NSC82151). mp.16. (daunoxome or daunoxom$ or daunosom$ or doxil or caelyx or liposomal doxorubicin or myocet or doxorubicin or daunorubicin). mp.17. exp DAUNORUBICIN DERIVATIVE/ or exp DAUNORUBICIN/ or exp IDARUBICIN DERIVATIVE/ or exp IDARUBICIN/ or exp DOXORUBI-CIN DERIVATIVE/ or exp DOXORUBICIN/ or exp EPIRUBICIN/18. or/1-17

3. Childhood cancer
1. (leukemia or leukemi$ or leukaemi$ or (childhood adj ALL) or acute lymphocytic leukemia). mp.
2. (AML or lymphoma or lymphom$ or hodgkin or hodgkin$ or T-cell or B-cell or non-hodgkin). mp.
3. (sarcoma or sarcom$ or Ewing$ or osteosarcoma or osteosarcom$ or wilms tumor or wilms$). mp.
4. (nephroblastom$ or neuroblastoma or neuroblastom$ or rhabdomyosarcoma or rhab-domyosarcom$ or teratoma or teratom$ or hepatoma or hepatom$ or hepatoblastoma or hepatoblastom$). mp.
5. (PNET or medulloblastoma or medulloblastom$ or PNET$ or neuroectodermal tumors or primitive neuroectodermal tumor$ or retinoblastoma or retinoblastom$ or meningioma or meningiom$ or glioma or gliom$). mp.

194
6. (pediatric oncology or paediatric oncology).mp.
7. ((childhood adj cancer) or (childhood adj tumor) or (childhood adj tumors) or childhood malignancy or (childhood adj malignancies) or childhood neoplasm$).mp.
8. ((pediatric adj malignancy) or (pediatric adj malignancies) or (paediatric adj malignancy) or (paediatric adj malignancies)).mp.
9. ((brain adj tumor$) or (brain adj tumour$) or (brain adj neoplasms) or (brain adj cancer$) or brain neoplasm$).mp.
10. (central nervous system tumor$ or central nervous system neoplasm or central nervous system neoplasms or central nervous system tumour$).mp.
11. intracranial neoplasm$.mp.
12. LEUKEMIA/ or LYMPHOMA/ or brain tumor/ or central nervous system tumor/ or teratoma/ or sarcoma/ or osteosarcoma/
13. nephroblastoma/ or neuroblastoma/ or rhabdomyosarcoma/ or hepatoblastoma/ or medulloblastoma/ or neuroectodermal tumor/ or retinoblastoma/ or meningioma/ or glioma/ or childhood cancer/
14. or/1-13

4. RCTs, CCTs
1. Randomized Controlled Trial/2. Controlled Clinical Trial/3. randomized.ti,ab.4. placebo.ti,ab.5. randomly.ti,ab.6. trial.ti,ab.7. groups.ti,ab.8. drug therapy.sh.9. or/1-810. Human/11. 9 and 10

The final combined search was:
5. 1 AND 2 AND 3 AND 4

[mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name; sh = subject heading; ti,ab = title, abstract; / = Emtree term; $=zero or more characters ; RCT = randomized controlled trial; CCT = controlled clinical trial]

3. Search strategy for Central Register of Controlled Trials (CENTRAL)

Medical interventions

1. ACE-inhibitor
(ace inhibitor OR ace-inhibitor OR ace inhibitor* OR ace-inhibitor* OR Angiotensin-Converting Enzyme Inhibitors OR Angiotensin Converting Enzyme Inhibitors OR Angiotensin-Converting Enzyme Antagonists OR Angiotensin Converting Enzyme Antagonists OR ACE Inhibitors OR Kininase II Inhibitors OR Kininase II Antagonists OR Angiotensin I-Converting
Enzyme Inhibitors OR Angiotensin I Converting Enzyme Inhibitors OR Angiotensin-Converting Enzyme Inhibitor* OR Angiotensin Converting Enzyme Inhibitor* OR Angiotensin-Converting Enzyme Antagonist* OR Angiotensin Converting Enzyme Antagonist* OR Kininase II Inhibitor* OR Kininase II Antagonist* OR Angiotensin I-Converting Enzyme Inhibitor* OR Angiotensin I Converting Enzyme Inhibitor* OR captopril OR enalapril OR fosinopril OR peptidyl dipeptidase OR Peptidyl Dipeptidase A OR Angiotensin I-Converting Enzyme OR Angiotensin I Converting Enzyme OR Carboxycathepsin OR Kininase A OR CD143 Antigen OR CD143 Antigens OR Dipeptidyl Peptidase A OR Angiotensin Converting Enzyme OR Kininase II)

2. Angiotensin receptor blocker
(angiotensin receptor blocker OR angiotensin receptor blockers OR angiotensin receptor blocker* OR Angiotensin II Type 1 Receptor Blockers OR Angiotensin II Type 1 Receptor Antagonists OR Type 1 Angiotensin Receptor Antagonists OR Type 1 Angiotensin Receptor Blockers OR Selective Angiotensin II Receptor Antagonists OR Sartans OR Angiotensin II OR Angiotensin Receptors/antagonists & inhibitors OR Angiotensin II Type 1 Receptor Blocker* OR Type 1 Angiotensin Receptor Antagonist* OR Type 1 Angiotensin Receptor Blocker* OR Selective Angiotensin II Receptor Antagonist* OR losartan OR valsartan)

3. Beta-blocker

4. Calcium channel blocker
(calcium channel blocker OR calcium channel blockers OR calcium channel blocker* OR Exogenous Calcium Antagonists OR Exogenous Calcium Blockaders OR Calcium Channel Blocking Drugs OR Exogenous Calcium Inhibitors OR Exogenous Calcium Antagonist* OR
Exogenous Calcium Blockader* OR Calcium Channel Blocking Drug* OR Exogenous Calcium Inhibitor* OR Exogenous Calcium Blockader* OR Calcium Channel Blocking Drug* OR Exogenous Calcium Inhibitor* OR diltiazem OR nifedipine)

5. **Digoxin**
(digoxin OR digoxin* OR Lanoxin)

6. **Vasodilator agent**
(vasodilator OR vasodilators OR vasodilator* OR vasodilator agents OR Vasodilator Drugs OR Vasoactive Antagonists OR Vasoactive Antagonist* OR vasodilator agent* OR Vasodilator Drug* OR nitroglycerin OR Glyceryl Trinitrate OR Trinitrate, Glyceryl OR Nitroglycerin* OR diazoxide OR adenosine)

7. **Diuretic**
(diuretic OR diuretics OR diuretic* OR furosemide)

8. **Aldosterone antagonist**
(aldosterone antagonist OR aldosterone antagonists OR aldosterone antagonist OR aldosterone antagonists OR aldosterone antagonist* OR aldosterone antagonist* OR spironolactone)

9. **(Other) antihypertensive agents**
(antihypertensiva OR anti-hypertensive OR anti hypertensive OR anti hypertensive drugs OR antihypertensive drugs OR antihypertensive agents OR Anti-Hypertensive Agents OR Anti Hypertensive Agents OR Anti-Hypertensive Drugs OR Anti Hypertensive Drugs OR Anti-Hypertensives OR Anti Hypertensives OR Antihypertensive Drugs OR Antihypertensives OR antihypertensiv* OR antihypertensive drug* OR anti hypertensive drug* OR antihypertensive agent* OR anti hypertensive agent* OR clonidine)

10. **Inotropic**
(inotropics OR inotropic OR inotropic* OR dopamine OR dobutamine OR epinephrine OR norepinephrine)

11. **Growth hormone**
(growth hormone OR Pituitary Growth Hormone OR Somatotropin OR Recombinant Pituitary Growth Hormones OR Recombinant Somatotropin OR Recombinant Growth Hormone OR Recombinant Growth Hormones OR Recombinant Somatotropins OR growth hormon* OR Somatotropin* OR Pituitary Growth Hormon* OR Recombinant Pituitary Growth Hormon* OR Recombinant Somatotropin* OR Recombinant Growth Hormon*)
Total search strategy for medical interventions:
12. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11

13. Anthracyclines
anthracyclines OR anthracyclin* OR anthracycline antibiotics OR 4-demethoxydaunorubicin OR 4 demethoxydaunorubicin OR 4-desmethoxydaunorubicin OR 4 desmethoxydaunorubicin OR IMI 30 OR IMI30 OR IMI-30 OR idarubicin hydrochloride OR NSC 256439 OR NSC-256439 OR NSC256439 OR idarubicin OR idarubic* OR 4'-epiadiamycin OR 4' epiadiamycin OR 4'-epidoxorubicin OR 4' epidoxorubicin OR 4'-epi-doxorubicin OR 4' epi doxorubicin OR 4'-epi-adriamycin OR 4' epi adriamycin OR 4'-epi-DXR OR 4' epi DXR OR epirubicin hydrochloride OR farmorubicin OR IMI-28 OR IMI 28 OR IMI28 OR NSC 256942 OR NSC-256942 OR NSC256942 OR epirubicin OR epirubic* OR adriablastine OR adriablastin OR adriamycin OR DOX-SL OR DOX SL OR doxorubicin hydrochloride OR doxorubic* OR adriamyc* OR daunorubicine OR dauno rubidomycine OR rubidomycin OR rubomycin OR daunomycin OR daunomycin OR cerubidine OR daunoblastin OR daunoblastine OR daunorubicin hydrochloride OR hydrochloride, daunorubicin OR daunorubic* OR rubidomyc* OR NSC-82151 OR NSC 82151 OR NSC82151 OR daunoxome OR daunoxom* OR daunosom* OR doxil OR caelyx OR liposomal doxorubicin OR myocet OR doxorubicin OR daunorubicin

14. Childhood cancer
(leukemia OR leukemi* OR leukaemi* OR (childhood ALL) OR AML OR lymphoma OR lymphom* OR hodgkin* OR T-cell OR B-cell OR non-hodgkin OR sarcoma OR sarcom* OR Ewing* OR osteosarcoma OR osteosarcom* OR wilms tumor OR wilms* OR nephroblastom* OR neuroblastoma OR neuroblastom* OR rhabdomyosarcoma OR rhabdomyosarcom* OR teratoma OR teratom* OR hepatoma OR hepatom* OR hepatoblastoma OR hepatoblastom* OR PNET OR medulloblastoma OR medulloblastom* OR PNET* OR neuroectodermal tumors, primitive OR retinoblastoma OR retinoblastom* OR meningioma OR meningiom* OR glioma OR gliom* OR pediatric oncology OR paediatric oncology OR childhood cancer OR childhood tumor OR childhood tumors OR cancer or neoplasms or tumor or cancers or neoplasms or tumors)

The final combined search was:
15. 12 AND 13 AND 14

All searches in Title, Abstract or Keywords in Cochrane Central Register of Controlled Trials (CENTRAL).

[*=zero or more characters]