The universe on edge: Limits of the effective field theory approach in the very early universe
Oberreuter, J.M.

Citation for published version (APA):
Oberreuter, J. M. (2013). The universe on edge: Limits of the effective field theory approach in the very early universe

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
In this appendix we provide some intermediate results in the calculation of (3.38–3.39). Using the expressions as stated in appendix D, to first order in $|G_q|$, the second derivatives of the potential are given by

$$V_{qq} = e^G \left[(2 + e^{-G}V) \nabla_q G_q + (\nabla_q \nabla_q G_q)G^q \right] + O(|G_q|^2), \quad (E.1)$$

$$V_{q\bar{q}} = e^G \left[G_{q\bar{q}}(1 + e^{-G}V) + G^{q\bar{q}}(\nabla_q G_q)(\nabla_{\bar{q}} G_{\bar{q}}) \right] + O(|G_q|^2). \quad (E.2)$$

Using the supersymmetry breaking restriction (3.35) in (E.1) and (E.2), we find

$$V_{qq} = -e^G G_{q\bar{q}} \left[(2 + e^{-G}V)(1 + e^{-G}V)G^{q\bar{q}} - G^{q\bar{q}}(\nabla_q \nabla_q G_q)G^q \right] + O(|G_q|^2), \quad (E.3)$$

$$V_{q\bar{q}} = e^G \left[G_{q\bar{q}}(1 + e^{-G}V) + (1 + e^{-G}V)^2 G^{q\bar{q}} G_q G_{\bar{q}} \right] + O(|G_q|^2)$$

$$= e^G G_{q\bar{q}}(2 + e^{-G}V)(1 + e^{-G}V) + O(|G_q|^2), \quad (E.4)$$

and hence

$$|V_{qq}| = e^G G_{q\bar{q}}(2 + e^{-G}V)(1 + e^{-G}V) \times$$

$$\times \sqrt{\frac{1}{1 - \frac{2G^{q\bar{q}} G_{q\bar{q}} G_q G_{\bar{q}}}{(2 + e^{-G}V)(1 + e^{-G}V)} + \frac{|G_{q\bar{q}}(\nabla_q \nabla_q G_q)G^q|^2}{(2 + e^{-G}V)^2(1 + e^{-G}V)^2} + O(|G_q|^2)}}$$

$$= e^G G_{q\bar{q}} \left[(2 + e^{-G}V)(1 + e^{-G}V) - G^{q\bar{q}} \text{Re}\left\{ (\nabla_q \nabla_q G_q)G^{q\bar{q}} G^q \right\} \right] + O(|G_q|^2). \quad (E.5)$$

Then (3.37) is evaluated to be

$$m_q^- = e^G G^{q\bar{q}} \text{Re}\left\{ (\nabla_q \nabla_q G_q)G^{q\bar{q}} G^q \right\} |G_{q\bar{q}}| + O(|G_q|^2), \quad (E.6)$$

$$m_q^+ = e^G \left[2(2 + e^{-G}V)(1 + e^{-G}V) - G^{q\bar{q}} \text{Re}\left\{ (\nabla_q \nabla_q G_q)G^{q\bar{q}} G^q \right\} \right] + O(|G_q|^2). \quad (E.7)$$