Pharmacological MRI in the assessment of monoaminergic function
Schouw, M.L.J.

Citation for published version (APA):
REFERENCE LIST


Alittoa, A., Seeman, P., Koiv, K., Eller, M., Harro, J., 2009. Rats with persistently high exploratory activity have both higher extracellular dopamine levels and higher proportion of D(2) (High) receptors in the striatum. Synapse 63, 443-446.


Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. Journal of Neuroscience 27, 7196-7207.


Han, D.D., Gu, H.H., 2006. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 6, 6.


brain: age-dependent changes in the serotonergic neurotransmitter system assessed by pharmacological MRI. Neuroimage. 59, 218-226.


Lemon N (2006). Dopamine D1/D5 Receptors Gate the Acquisition of Novel Information through Hippocampal Long-Term Potentiation and Long-Term Depression. Journal of Neuroscience 26: 7723–7729.


McCann UD, Szabo Z, Vranesic M, et al. Positron emission tomographic studies of brain dopamine and serotonin transporters in abstinent (+/−)3,4-methylenedioxyamphetamine


Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., Caron, M.G., 1998. Dopamine receptors: from structure to function. Physiol Rev. 78, 189-225.


Parsey RV, Oquendo MA, Simpson NR, Ogden RT, Van Heertum R, Arango V, Mann JJ. (2002) Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT receptor binding potential measured by PET using 1A[C-11]WAY-100635 Brain Research 954 173–182


Peters, J., Bromberg, U., Schneider, S., Brassen, S., Menz, M., Banaschewski, T., Conrod, PJ., Flor, H., Gallinat, J., Garavan, H., Heinz, A., Itterman, B., Lathrop, M., Martinot, J.L., Paus, T., Poline,


