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3
S O C I O - D Y N A M I C B I N A RY L O G I T: T H E O RY

The past two decades have seen noteworthy examples of concepts
from statistical physics being applied to further the understanding
of complex socio-economic systems, particularly with respect to non-
market interactions in the sense of conventions, network externalities,
neighborhood or group effects, or interactive agents. Notwithstand-
ing Manski’s seminal critique "Identification of endogenous social ef-
fects: the reflection problem" (1993), early examples include work by
Brock (1993), Durlauf (1991, 1993), Blume (1993), Aoki (1995), many of
which rely to some extent on mean field approximations in derivation
of analytical results. Furthermore principles from the mathematical
theory of random perturbations of dynamical systems have added
insight to the area of learning and evolutionary game theory, and
adaptive economic dynamics more generally. Forerunners in this field
include Young (1993, 2010), Kandori, Mailath and Rob (1993), Ellison
(1993) from the game theoretic tradition, applying results of Russian
mathematicians Freidlin and Wentzell (1979, 1998).1 Aoki (1995) and
Blume and Durlauf (2003) have examined dynamical aspects of social
interactions models with a discrete choice theoretic approach.

The traditional discrete choice framework reviewed in section 2 as-
sumes independent individuals. Brock and Durlauf (2001a) and Aoki
(1995) relax this assumption. Their approach is to assume that the
otherwise independent individuals are influenced by an aggregate
of all other choices in the community. There is an inherent dynamic
because each individual re-evaluates its choice based on the choices
made by other individuals. This implies an implicit time-trajectory
of repeated choices that defines the dynamics of the system. It is in
this sense that we call this a socio-dynamic model: the dynamics are
driven by social influence, albeit global social influence at this stage.
Brock and Durlauf (2001a) derive results for the equilibrium state of
this system. Aoki (1995) goes a step further and also characterizes the
dynamics of the transition to the equilibrium as a continuous time dis-
crete state Markov process. The master equation will be given in this

1 Other notable examples of social interactions models include: Hildenbrand (1971),
Weidlich (1971, 1994, 2000, 2002 ), Weidlich and Haag (1983), Weidlich and Braun
(1992), Ceccato and Huberman (1989), Eckstein and Wolpin (1989), Kirman (1992),
Aoki (1996, 2002), Aoki and Yoshikawa (2007), Helbing (2010); Binmore, Samuel-
son and Vaughn (1995), Glaeser, Sacerdote and Scheinkman (1996), Glaeser and
Scheinkman (2002), Benaim and Weibull (2003); Bayer and Timmins (2005, 2007),
Ekelund, Heckman and Nesheim (2004), Topa (2001), Conley and Topa (2002, 2003,
2007), Epple and Sieg (1999), Hoff and Sen (2005); Mobius (2000), Schelling (1971);
Akerlof (1997), Berry (1994), Berry, Levinsohn and Pakes (1995, 2004), Heckman,
Matzkin and Nesheim (2010).
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26 socio-dynamic binary logit : theory

section and the steady states of this dynamic process will be derived.
The model discussed here indeed has a "network", but at this stage it
is fully-connected. This is how we are able to calculate the analytical
results as a benchmark to verify the programming implementation of
the agent-based model at the outset of our consideration of the case
study in Chapter 6. Thereafter, we then proceed to further relax the
condition of the fully-connected network, and consider explicitly the
case of heterogeneous local social influence, instead of global social
influence.

For reasons of simplicity, in this chapter we first introduce the socio-
dynamic model for binary choice, and limit our initial discussions
to the binary logit model. In Chapters 4 and 5, using a different
approach, we will subsequently derive analytical results for the tri-
nary multinomial logit model and the trinary nested logit model as a
benchmark to verify the programming implementation of the agent-
based model for the case study in Chapter 7.

For all thoroughness in incremental scientific development of re-
sults as well as clarity of exposition, in Appendices A through C, we
also revisit the binary logit model and derive additional analytical
results for the case of the binary logit model with constant bias as
well as additional analytical results for the trinary multinomial logit
model with constant bias using the same methodological approach
as in Chapters 4 and 5.

The interested reader is highly encouraged to especially review Ap-
pendix A in parallel with reading this chapter, or directly hereafter,
before proceding to Chapter 4.

3.1 field effects model

Let us begin our analysis with the binary case of choice with the
universal set containing only two alternatives, C = i, j, say, choice of
travel by car versus by public transit. Thus, we have the simplifica-
tion:

Pin =
eµVin

eµVin + eµVjn
=

eµ(Vin−Vjn)

eµ(Vin−Vjn) + 1

Pjn =
eµVjn

eµVin + eµVjn
=

1

eµ(Vin−Vjn) + 1

(3.1)

where we again for convenience we make the arbitrary assumption
that the positive scale parameter µ = 1.

LetNi andNj be the total numbers of decision-making entities who
have chosen respectively alternative i and alternative j at time t. Since
we assume the choice set to be mutually exclusive and collectively
exhaustive, for the binary case we have N = Ni +Nj. Now let xi =
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Ni/N and xj = Nj/N = (1− xi) be the global proportions of decision-
making entities who have made each choice, and define:

x ≡ xi − xj = xi − (1− xi) = 2xi − 1 (3.2)

Note that the variable x varies on the range -1 to 1. In the limit
where x = −1, none of the decision-making entities in the sample
have chosen alternative i, that is, all have chosen alternative j. In the
limiting case where x = 1, all of the decision-making entities in the
sample have chosen alternative i, and none have chosen alternative j.
In the case where x = 0, half of the decision-making entities in the
sample have chosen alternative i, and half have chosen alternative j.

Following this approach, we introduce global social dynamics by
allowing the term Vin − Vjn in equation (3.1) to be a linear-in-
parameter β function of the proportions xi and xj of decision-making
entities2 who have made each choice:

Vin − Vjn ≡ βf
(
xi − xj

)
= βf (x) (3.3)

The function f(x) is an arbitrary function of x. The important aspect
for the subsequent analytical results is that Vin − Vjn is linear in the
parameter β. In Aoki’s original work, he considered an example with
f(x) polynomial in x. In our binary case study application in Chapter
6 we consider f(x) = x, however the analytical results apply more
generally. Substituting equation (3.3) into (3.1) and normalizing the
scale parameter µ = 1, we have:

Pin (x) =
eβf(x)

eβf(x) + 1
(3.4)

The variable xi is termed a field variable. As motivated by Aoki
(1995),

"Knowledge of a field variable relieves agents (at least par-
tially) of the need for detailed information on interaction
patterns. Any macroeconomic variable that serves this de-
centralizing function is called a field variable."

Such an approach can be particularly useful if other more concep-
tually restrictive assumptions such as having constant interactions
among all possible pairs of microeconomic agents, or interactions
only with other agents in neighborhoods in the strict sense of Markov
random fields (Kindermann and Snell, 1980), are inappropriate. The
field variable provides a way to model an average aggregate social
influence.

2 The notation here differs slightly from Aoki (1995).
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Note that the parameter β indicates the level of certainty in the
model. In the case βf(x) � 0, then the probability that the decision-
making entity n chooses alternative i approaches unity and we have
effectively deterministic choice:

Pin =
eβf(x)

eβf(x) + 1
≈ 1, for βf (x)� 0 (3.5)

That is, it is strongly certain that the utility of alternative i is greater
than the utility of alternative j.

In the case βf(x) ≈ 0, then the probability that the decision-making
entity n chooses alternative i approaches 1/2 and we have effectively
a "fair coin toss" between the two alternatives:

Pin =
eβf(x)

eβf(x) + 1
≈ e0

e0 + 1
=
1

2
, for βf (x) ≈ 0 (3.6)

That is, there is uncertainty as to which choice alternative is more
profitable.

In the case βf(x)� 0, then the probability that the decision-making
entity n chooses alternative i approaches zero. In our binary case, we
have again effectively deterministic choice:

Pin =
eβf(x)

eβf(x) + 1
≈ 0, for βf (x)� 0 (3.7)

That is, it is strongly certain that the utility of alternative i is less than
the utility of alternative j.

The critical difference thus between the two cases βf(x) � 0 and
βf(x) � 0 is that in the former, there is a positive influence on the
choice alternative i (ie. positive attraction towards the choice alterna-
tive i), but in the latter, there is a negative influence on the choice
alternative i (ie. negative attraction towards toward the choice alter-
native i, or otherwise said, a repulsion away from i). Both of the cases
βf(x) � 0 and βf(x) � 0 are indeed strongly certain, but the former
is a strong and certain attraction towards the choice alternative i and
the latter is a strong and certain repulsion away from the choice alter-
native i.

3.2 scalar autonomous equation

Aoki models decision-making entities as jump Markov processes, and
the dynamics of interactions (among these entities) as birth-and-death
stochastic processes where they switch their choices randomly and
asynchronously with transition rates that are functions of the aggre-
gate situations summarized by the proportion of decision-making
entities who have taken the same choices. As remarked by Blume
and Durlauf (2003) in an analogous continuous time Markov process
changing state in discrete jumps with a uniform global interactions
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model (that is, a model with interactions of constant strength between
all pairs of decision-making entities),

"Implicit... is the fact that players are myopic in (stochasti-
cally) best-responding to the current play of the popula-
tion rather than some forecast of future paths of play."

In this dissertation, we will accept this myopic assumption for our
exogenous network case with transportation mode choice, however
in future work, particularly for the endogenous network case with
residential choice, this assumption may be worth re-visiting.

Let us formalize these assumptions by considering the aggregate
behavior of the population of N decision-making entities instead of
the behavior of an individual decision-making entity. Let P(Ni, t) de-
note the probability that Ni number of decision-making entities have
chosen alternative i at time t. The total number of possible states of
the population of N decision-making entities is N+ 1, since the num-
ber of decision-making entities choosing alternative i can range from
0 to N, and the number of decision-making entities choosing alterna-
tive j is fully-determined given the number choosing alternative i, for
our binary choice case. LetWNi,N ′i denote the transition rate between
the states of the population with Ni and N ′i number of decision-
making entities choosing alternative i, and let WN ′i,Ni be the rate
of the inverse transition. Aoki uses the backward Chapman-Kolmogorov
equation, or so-called "master equation," to govern the time evolution
of the probability density.3 The master equation is fully specified once
the transition rates are given between the states.

∂P (Ni, t)
∂t

=
∑

∀Ni ′ 6=Ni

P
(
Ni
′, t
)
WNi ′,Ni −

∑
∀Ni ′ 6=Ni

P (Ni, t)WNi,Ni ′

=
∑

∀Ni ′ 6=Ni

{
P
(
Ni
′, t
)
WNi ′,Ni − P (Ni, t)WNi,Ni ′

}
(3.8)

As remarked in Reif (1965),

"Note that all terms... are real and that the time t enters
linearly in the first derivative. Hence the master equation
does not remain invariant as the sign of the time t is re-
versed from t to −t. This equation describes, therefore, the
irreversible behavior of a system."

Nonetheless, as motivated by Reif, there is assumed to be a symmetry
property relating a transition to its inverse:

WNi ′,Ni =WNi,Ni ′ (3.9)

3 For the origin of the word master, see for example Aoki, 1995, p.153, van Kampen,
2007, p. 97; for more about the master equation in equilibrium situations, see Reif,
1965, p. 550.
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In general, we have that the probability density P(Ni, t) tends to in-
crease with time because the population transitions from other states
to the given state with Ni number of decision-making entities choos-
ing alternative i, and the probability density tends to decrease with
time because the population in the given state transitions to other
states. For an assumption of asynchronous choices of the decision-
making entities, however, we have a convenient simplification, since
the only states to which the population in the given state with Ni
number of decision-making entities choosing alternative i can possi-
bly transition to, are the states with N ′i = Ni + 1 and/or N ′i = Ni − 1
number of decision-making entities choosing alternative i. In short,
in the birth-and-death processes of this thesis, the transition rates are
non-zero only for N ′i which is either Ni + 1 (a so-called "birth") or
Ni − 1 (a so-called "death"). We can thus simplify the master equa-
tion for this continuous time discrete state Markov process:

∂P (Ni, t)
∂t

= {P (Ni + 1, t)WNi+1,Ni − P (Ni, t)WNi,Ni+1}

+ {P (Ni − 1, t)WNi−1,Ni − P (Ni, t)WNi,Ni−1}

= {P (Ni + 1, t) − P (Ni, t)}WNi,Ni+1
+ {P (Ni − 1, t) − P (Ni, t)}WNi,Ni−1

(3.10)

The assumption that only one decision-making entity revises its
choice per unit time may be reasonable for analytical purposes if we
consider an arbitrarily small time unit. In practical situations, partic-
ularly with very large populations however, we can also imagine that
there can be a non-negligible time-lag in the spread of information
in the population, whereby multiple decision-making entities may re-
vise their choices per unit time interval, before the knowledge about
changes in the system is disseminated. Although not explored here, in
the multi-agent simulation implementation of the model we do allow
for the possibility to relax this assumption of asynchronous choices,
and to explicitly allow for revisions by multiple decision-making en-
tities per unit time via an external parameter that can be set by the
researcher.

In the simplest birth-and-death processes, the transition rates
WNi,Ni+1 and WNi,Ni−1 are given by:

WNi,Ni+1 = κ (N−Ni) = Nκ

(
1−

Ni
N

)
WNi,Ni−1 = λN = Nλ

Ni
N

(3.11)
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More generally we can express the transition rates WNi,Ni+1 and
WNi,Ni−1 as expansions in powers of N−1:

WNi,Ni+1 = g (N)
[
γ0 (Ni/N) + (1/N)γ1 (Ni/N) +O

(
N−2

)]
WNi,Ni−1 = g (N)

[
ρ0 (Ni/N) + (1/N) ρ1 (Ni/N) +O

(
N−2

)]
(3.12)

Dropping all terms of order N− 1 and higher, and making the sim-
plifying assumptions that:

g (N) = N (3.13)

and that the "birth" transition rate WNi,Ni+1 is linear in the individ-
ual choice probability Pin that alternative i is superior to alternative
j, and the "death" transition rate WNi,Ni−1 is linear in the individual
choice probability Pjn that alternative j is superior to alternative i, we
have instead of equation (3.11):

WNi,Ni+1 = Nγ0 (Ni/N) = Nκ

(
1−

Ni
N

)
Pin (x) = Nκ

1− x

2
Pin (x)

WNi,Ni−1 = Nρ0 (Ni/N) = Nλ

(
Ni
N

)
Pjn (x) = Nλ

1+ x

2
Pjn (x)

(3.14)

Aoki (1995) shows that the mean ϕ of the field variable x is gov-
erned by the deterministic differential equation:4

dϕ

dt
= κ

1−ϕ

2
Pin (ϕ) − λ

1+ϕ

2
Pjn (ϕ) (3.15)

Substituting (3.4) into (3.15) and normalizing κ = 1 and λ = 1, we
have:

dϕ

dt
=
1−ϕ

2

(
eβf(ϕ)

eβf(ϕ) + 1

)
−
1+ϕ

2

(
1

eβf(ϕ) + 1

)
=
eβf(ϕ) −ϕeβf(ϕ) − 1−ϕ

2
(
eβf(ϕ) + 1

)
=
1

2

eβf(ϕ) − 1

eβf(ϕ) + 1
−
ϕ

2

eβf(ϕ) + 1

eβf(ϕ) + 1

=
1

2

e
1
2βf(ϕ) − e−

1
2βf(ϕ)

e
1
2βf(ϕ) + e−

1
2βf(ϕ)

−
ϕ

2

=
1

2

(
tanh

1

2
βf (ϕ)

)
−
ϕ

2

(3.16)

4 For the origin and derivation of the Fokker-Planck equation, see for example van
Kampen, 2007, Chapter 8, or Reif, 1965, Section 15.11-15.1.
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Stationary points are zeros of dϕ/dt. Thus the key equation to de-
termine local equilibria is: 5

dϕ

dt
= 0 : ϕ = tanh

1

2
βf (ϕ) (3.17)

This scalar autonomous equation can be solved conveniently graphi-
cally, for example, by plotting the left-hand-side and the right-hand-
side on a graph and finding their intersection. Depending on the spec-
ification of f(ϕ) and the value of β, this equation may have more than
one solution.

3.3 stability analysis

A stationary point of the mean ϕ for the field variable x is locally
stable in perturbations of the mean if the derivative d2ϕ/dϕdt is
negative:

d

dϕ

(
dϕ

dt

)∣∣∣∣
ϕ=tanh 12βf(ϕ)

=
d

dϕ

(
1

2

(
tanh

1

2
βf (ϕ)

)
−
ϕ

2

)∣∣∣∣
ϕ=tanh 12βf(ϕ)

=
1

2

(
1− tanh2

1

2
βf (ϕ)

)(
1

2
βf ′ (ϕ)

)
−
1

2

(
dϕ

dϕ

)∣∣∣∣
ϕ=tanh 12βf(ϕ)

=
1

4

(
1−ϕ2

)
βf ′ (ϕ) −

1

2
(3.18)

Thus we have the condition for local stability:

d

dϕ

(
dϕ

dt

)∣∣∣∣
ϕ=tanh 12βf(ϕ)

< 0 :
(
1−ϕ2

)
βf ′ (ϕ) < 2 (3.19)

If the derivative f ′(ϕ) is non-positive with β any non-negative value,
or if the derivative f ′(ϕ) is non-negative with β any non-positive
value, then this local stability condition is always satisfied, since we
have defined x ≡ xi − xj on the interval [-1,1], and thus ϕ2 = [E(x)]2

will always have a value between 0 and 1, so that the term (1−ϕ2)

is always non-negative. If however, we have a case where βf ′(ϕ)� 0,
the inequality in equation (3.19) may be violated, with the equilib-
rium becoming unstable.

3.4 conclusions and reflections

In this chapter we have reviewed the important theoretical concept
of a "field" variable which we will apply throughout the remainder
of this dissertation. We have then reviewed Aoki’s derivation (1995)

5 Another quicker derivation considers aggregate dynamics in the limit of the number
of agents going to infinity and uses an infinitesimal generator for jump Markov
processes, see for example Ethier and Kurtz, 1986, Chapter 11.
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of the scalar autonomous equation describing the dynamics of socio-
dynamic binary logit model. We have noted that this equation can be
solved conveniently graphically. We have also reviewed how the sta-
bility of the steady-state solutions at equilibrium can be determined.
We will use these theoretical results in this chapter as a benchmark
for our further exploration of the socio-dynamic binary logit model
later in Chapter 6.

Perhaps not surprisingly in light of the similarity noted in Chapter
1 between the multinomial logit model and the canonical distribution,
the binary discrete choice problem with social interactions presented
thus far also has a direct analogy in statistical physics. Huang (1997)
introduces the topic of ferromagnetism:

"One of the most interesting phenomena in the physics of
the solid state is ferromagnetism. In some metals, e.g. Fe
and Ni, a finite fraction of the spins of the atoms becomes
spontaneously polarized in the same direction, giving rise
to a macroscopic magnetic field. This happens, however,
only when the temperature is lower than a characteristic
temperature known as the Curie temperature. Above the
Curie temperature, the spins are oriented at random, pro-
ducing no net magnetic field."

In terms of the discrete choice problem, we have an analogy between
spins of atoms and the choices of decision-making entities. With so-
cial feedback, these choices can become spontaneously polarized to-
ward one alternative or another giving rise to observed aggregate
preferences in blocks of a sampled population. As we saw in Aoki’s
derivation, this only happens however, when the parameter β, the
coefficient characterizing the interaction effect, is higher than a cer-
tain critical value. Below this critical value, the choices are oriented at
random when there are no other explanatory variables in the model,
producing no net aggregate preferences.

If we are only interested in equilibrium aspects of the problem,
there is a more straightforward approach yielding the same result as
in (3.17). This alternative approach is well known in statistical physics:
the self-consistency condition applied to a heuristic mean field theory
of ferromagnetism. We will apply the self-consistency approach in the
next chapter.

For deeper appreciation of the research presented in the next chap-
ter, the interested reader is highly encouraged at this point to first
review Appendix A where the results in this chapter are re-derived
using the self-consistency approach.


