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A
S O C I O - D Y N A M I C B I N A RY L O G I T: T H E O RY,
R E V I S I T E D

In this appendix we re-visit the binary logit model with social inter-
actions reviewed in Chapter 3, applying techniques from the mathe-
matics of dynamical systems and bifurcation theory.

In section A.1, we describe the sociodynamic binary logit model for
choice between two alternatives as a scalar autonomous differential
equation in the utility parameter β for the level of aggregate social
influence. In section A.2, we characterize the stability of solutions via
the derivative of the equation, and search for values of the parame-
ter β such that a solution is a bifurcation point. We show that there
is one bifurcation point for this equation, which has cubic degener-
acy. This yields a pitchfork bifurcation. In section A.3, we see that a
potential function can be derived, yielding an alternative method for
determining the stability of the equilibria. .

a.1 scalar autonomous equation

Recall the formulation of the multinomial logit model in section 2.1.
Under the assumption of independent and identically Gumbel dis-
tributed error terms, the probability Pn(i|C) that the individual deci-
sion making entity n chooses alternative i within the binary choice
set C = 0, 1 is given by:

Pn(i|C) =
eµVin

1∑
j=0

eµVjn
(A.1)

where µ is a strictly positive scale parameter which we normalize to
1, following standard convention.

µ ≡ 1 (A.2)

If we assume that the only contribution to the systematic utility of
choices is a global field effect with utility parameter β real, finite on
the proportion pi of decision-making agents that have chosen alterna-
tive i, then in such a case, when the agents include their own choice
with equal weight to others’ choices in the calculation of the field ef-
fect for a given alternative, the agents’ choice behavior is perfectly ho-
mogeneous across agents. The probabilities of choosing respectively
alternatives 0, 1, among the two possible alternatives in the choice set
are:

P(i = 0|C) =
eβp0

eβp0 + eβp1
(A.3)
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352 socio-dynamic binary logit : theory, revisited

P(i = 1|C) =
eβp1

eβp0 + eβp1
(A.4)

For a large sample population, the rate of change of the proportions
p0, p1 of decision-making agents that have chosen each alternative is
given by the probabilities P(i|C) of choosing respectively alternatives
0, 1 among the two possible alternatives in the choice set, minus these
proportions. This yields a system of two equations in two unknowns,
with p0, p1 defined on [0, 1]. Given β real, finite, we will be interested
to find the steady-state solutions p0, p1 of the system.

ṗ0 =
eβp0

eβp0 + eβp1
− p0 (A.5)

ṗ1 =
eβp1

eβp0 + eβp1
− p1 (A.6)

p0,p1 ∈ [0, 1] (A.7)

At equilibrium:

ṗ0 = 0 : p0 =
eβp0

eβp0 + eβp1
(A.8)

ṗ1 = 0 : p1 =
eβp1

eβp0 + eβp1
(A.9)

Adding (A.8), (A.9):

p0 + p1 =
eβp0 + eβp1

eβp0 + eβp1
= 1 (A.10)

Solving (A.10) for p1:
p1 = 1− p0 (A.11)

Substituting (A.11) back into (A.5) at equilibrium:

ṗ0 =
eβp0

eβp0 + eβ(1−p0)
− p0 = 0 (A.12)

Multiplying (A.12) through by the denominator of the first term
which is always strictly positive for β real, finite with p0, p1 defined
on [0, 1], we have an alternative equation that is analytically easier to
work with:

g ≡ eβp0 − p0eβp0 − p0eβ(1−p0) = 0 (A.13)

Or, combining terms to see the symmetry in p0 and p1 = 1−p0 more
immediately:

g = (1− p0)e
βp0 − p0e

β(1−p0) = p1e
βp0 − p0e

βp1 = 0 (A.14)

This scalar equation can be solved conveniently graphically, for exam-
ple, by plotting the curve g and finding its intersection with the p0-
axis. Depending on the value of β, the equation may have more than
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one solution. Note however, that by the symmetry of (A.14), there is
always at least one solution, regardless of the value of β.

p0 = 1− p0 : p0 =
1

2
(A.15)

a.2 stability analysis

A stationary point of g is locally stable if the derivative dg/dp0 eval-
uated at the point is negative:

dg

dp0

∣∣∣∣
g(p0)=0

=
d

dp0

(
eβp0 − p0e

βp0 − p0e
β(1−p0)

)∣∣∣∣
g(p0)=0

= βeβp0 −βp0e
βp0 +βp0e

β(1−p0) − eβp0 − eβ(1−p0)
∣∣∣
g(p0)=0

= β(eβp0 − p0e
βp0 − p0e

β(1−p0))
∣∣∣
g(p0)=0

+2βp0e
β(1−p0) − eβp0 − eβ(1−p0)

∣∣∣
g(p0)=0

= (2βp0 − 1)e
β(1−p0) − eβp0

(A.16)
Thus we have the condition for local stability:

dg

dp0

∣∣∣∣
g(p0)=0

= (2βp0 − 1)e
β(1−p0) − eβp0 < 0

(2βp0 − 1)e
β(1−2p0) < 1

(A.17)

Note that if β is any real, non-positive value, then this local stability
condition will always be satisfied. Since we have defined p0 on the
interval [0, 1], then for β real, non-positive, we see exp(β(1–2p0) will
always take a non-negative value and (2βp0 − 1) will always take
a strictly negative value, so that the left hand side is always non-
positive. Thus, we can see already that any bifurcation in behavior
must take place when β is a strictly positive value.

A stationary point of g is locally unstable if the derivative dg/dp0
is positive. Thus we have the condition for local instability:

dg

dp0

∣∣∣∣
g(p0)=0

= (2βp0 − 1)e
β(1−p0) − eβp0 > 0

(2βp0 − 1)e
β(1−2p0) > 1

(A.18)

To find values of the parameter β which lead to bifurcations in
behavior, that is, change in number or stability of stationary points,
we are interested cases when the derivative dg/dp0 is zero:

dg

dp0

∣∣∣∣
g(p0)=0

= (2βp0 − 1)e
β(1−p0) − eβp0 = 0 (A.19)
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Dividing through by exp(βp0) + exp(β(1–p0)) which is always posi-
tive for β real, finite:

(2βp0 − 1)
eβ(1−p0)

eβp0 + eβ(1−p0)
−

eβp0

eβp0 + eβ(1−p0)
= 0 (A.20)

Substituting (A.8), (A.9) and (A.11) into (A.20):

0 = (2βp0 − 1)(1− p0) − p0

= −2βp0
2 + 2βp0 − 1

(A.21)

Solving for β

β =
1

2p0(1− p0)
(A.22)

Substituting (A.22) into (A.13)

0 = eβp0 − p0e
βp0 − p0e

β(1−p0)

= e
1

2p0(1−p0)
p0 − p0e

1
2p0(1−p0)

p0 − p0e
1

2p0(1−p0)
(1−p0)

= (1− p0)e
1

2(1−p0) − p0e
1
2p0

(A.23)

Re-arranging terms

(1− p0)e
1

2(1−p0) = p0e
1
2p0 (A.24)

Note by symmetry that the left-hand side and the right-hand side are
equal when the terms in the products individually are equal:

(1− p0) = p0 (A.25)

e
1

2(1−p0) = e
1
2p0 (A.26)

Furthermore, assuming (A.25) implies (A.26). Therefore, solving
(A.25) for p0

p0 =
1

2
(A.27)

Substituting (A.1.23) into (A.1.18)

β =
1

2p0(1− p0)
=

1

212(1−
1
2)

= 2 (A.28)

Verification that (A.27) is the only solution when (A.19) holds, can be
seen conveniently graphically by plotting the left-hand-side and the
right-hand-side of (A.24) on a graph and finding their intersection.

To determine the behavior at the bifurcation point it is necessary
to examine higher orders of the Taylor expansion of g. For computa-
tional convenience and clarity of the symmetry we repeat the compu-
tation of the first derivative using the form of g in (A.14)

g ′(p0) ≡
dg

dp0
=

d

dp0

(
(1− p0)e

βp0 − p0e
β(1−p0)

)
= β(1− p0)e

βp0 − eβp0 − (−β)p0e
β(1−p0) − eβ(1−p0)

= (β(1− p0) − 1)e
βp0 + (βp0 − 1)e

β(1−p0)

(A.29)
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We re-confirm for (A.14), (A.29) with the values p0 and β given by
(A.27), (A.28) we have:

g(p0 =
1

2
)

∣∣∣∣
β=2

= (1−
1

2
)e2·

1
2 −

1

2
e2(1−

1
2 ) =

1

2
e−

1

2
e = 0 (A.30)

g ′(p0 =
1

2
)

∣∣∣∣
β=2

= (2(1−
1

2
) − 1)e2·

1
2 + (2 · 1

2
− 1)e2(1−

1
2 )

= 0 · e+ 0 · e = 0
(A.31)

We compute the second derivative:

g ′′(p0) ≡
d2g

dp02
=

d

dp0

(
(β(1− p0) − 1)e

βp0 + (βp0 − 1)e
β(1−p0)

)
= β(β(1− p0) − 1)e

βp0 −βeβp0 −β(βp0 − 1)e
β(1−p0) +βeβ(1−p0)

= (β2(1− p0) − 2β)e
βp0 − (β2p0 − 2β)e

β(1−p0)

(A.32)
Evaluating at the bifurcation point:

g ′′(p0 =
1

2
)

∣∣∣∣
β=2

= (22(1−
1

2
) − 2 · 2)e2·

1
2 − (22 · 1

2
− 2 · 2)e2(1−

1
2 )

= −2e+ 2e = 0
(A.33)

Since the bifurcation point is degenerate at second order, we proceed
to compute the third derivative:

g ′′′(p0) ≡
d3g

dp03
=

d

dp0

(
(β2(1− p0) − 2β)e

βp0 − (β2p0 − 2β)e
β(1−p0)

)
= β(β2(1− p0) − 2β)e

βp0 −β2eβp0

+β(β2p0 − 2β)e
β(1−p0) −β2eβ(1−p0)

= (β3(1− p0) − 3β
2)eβp0 + (β3p0 − 3β

2)eβ(1−p0)

(A.34)
Evaluating at the bifurcation point:

g ′′′(p0 =
1

2
)

∣∣∣∣
β=2

= (23(1−
1

2
) − 3 · 22)e2·

1
2 + (23 · 1

2
− 3 · 22)e2(1−

1
2 )

= −8e+−8e = −16e
(A.35)

Cubic degeneracy: Pitchfork bifurcation

See Figure A.1 on page 356.
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Figure A.1: Bifurcation diagram for the sociodynamic binary logit model
showing a bifurcation point at β = 2, separating two regimes:
there is one stable equilibrium at p = 0.5 for β < 2; for β > 2 the
equilibrium at p = 0.5 becomes unstable with the appearance of
two new stable equilibria

a.3 potential function

The potential function is given by

G = −

∫
gdp0 = −

∫ (
eβp0 − p0e

βp0 − p0e
β(1−p0)

)
dp0

= −

∫
eβp0dp0 +

∫
p0e

βp0dp0 + e
β

∫
p0e

−βp0dp0

(A.36)

We evaluate the first term by a simple change of variables. Let

y ≡ βp0 : dy = βdp0 (A.37)

Then ∫
eβp0dp0 =

1

β

∫
eydy =

1

β
ey =

1

β
eβp0 (A.38)

We evaluate the second term in (A.36) by integration by parts. Let

u ≡ p0 : du = dp0

dv ≡ eβp0dp0 : v =
∫
eβp0dp0

(A.39)

Then, applying the result in (A.38)∫
p0e

βp0dp0 =

∫
udv = uv−

∫
vdu

= p0
1

β
eβp0 −

∫
1

β
eβp0dp0 = p0

1

β
eβp0 −

1

β2
eβp0

= (βp0 − 1)
1

β2
eβp0

(A.40)
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Similarly, we evaluate the third term in (A.36). By suitable change of
variables

w ≡ −βp0 : dw = −βdp0 (A.41)

we have:∫
e−βp0dp0 = −

1

β

∫
ewdw = −

1

β
ew = −

1

β
e−βp0 (A.42)

so that integrating by parts:

eβ
∫
p0e

−βp0dp0 = e
β

(
−
p0
β
e−βp0 −

∫
(−
1

β
e−βp0)dp0

)
= eβ

(
−p0

1

β
e−βp0 −

1

β2
e−βp0

)
= −(βp0 + 1)

1

β2
eβ(1−p0)

(A.43)

Finally, substituting (A.38), (A.40), (A.43) into (A.36) gives

G = −

∫
gdp0 = −

1

β
eβp0 + (βp0 − 1)

1

β2
eβp0 − (βp0 + 1)

1

β2
eβ(1−p0)

= −(β(1− p0) + 1)
1

β2
eβp0 − (βp0 + 1)

1

β2
eβ(1−p0)

(A.44)

Alternatively, since we are primarily interested in qualitative behav-
ior, divide (A.8) by (A.9) to obtain:

p0
p1

=
eβp0

/
(eβp0 + eβp1)

eβp1
/
(eβp0 + eβp1)

= eβ(p0−p1) (A.45)

Taking the natural logarithm of both sides:

ln
p0
p1

= β(p0 − p1) (A.46)

Substituting in (A.11) at equilibrium:

ln
p0

1− p0
= β(p0 − (1− p0)) = β(2p0 − 1) (A.47)

Alternative equation, rearranging terms:

ğ ≡ − lnp0 + ln(1− p0) +β(2p0 − 1) = 0 (A.48)

This form can also be obtained by moving the second term in (A.14)
to the right hand side, taking the natural logarithm and then moving
the right hand side back to the left hand side as follows:

(1− p0)e
βp0 = p0e

β(1−p0)

ln(1− p0) +βp0 = lnp0 +β(1− p0)

ğ ≡ − lnp0 + ln(1− p0) +β(2p0 − 1) = 0

(A.49)
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Alternative potential function is thus given by:

Ğ = −

∫
ğdp0 =

∫
lnp0dp0 −

∫
ln(1− p0)dp0 +

∫
β(1− 2p0)dp0

(A.50)
To evaluate the first term in (A.50), integrate by parts. Let

u ≡ lnp0 : du =
1

p0
dp0

dv ≡ dp0 : v =
∫
dp0 = p0

(A.51)

Then ∫
lnp0dp0 =

∫
udv = uv−

∫
vdu

= p0 lnp0 −
∫
p0 ·

1

p0
dp0 = p0 lnp0 − p0

(A.52)

We evaluate the second term by a simple change of variables. Let

y ≡ (1− p0) : dy = −dp0 (A.53)

Then, applying the result in (A.52)∫
ln(1− p0)dp0 = −

∫
lnydy = −(y lny− y)

= −(1− p0) ln(1− p0) + 1− p0
(A.54)

Finally, substituting (A.52) and (A.54) into (A.50) gives

Ğ = −

∫
ğdp0 = (p0 lnp0 − p0) − (−(1− p0) ln(1− p0) + 1− p0)

+β

∫
(1− 2p0)dp0

= p0 lnp0 + (1− p0) ln(1− p0) − 1+β(p0 − p02)

= p0 lnp0 + (1− p0) ln(1− p0) −
β

2
p0
2 −

β

2
(1− 2p0 + p0

2) + (
β

2
− 1)

= p0 lnp0 + (1− p0) ln(1− p0) −
β

2
p0
2 −

β

2
(1− p0)

2 +C

(A.55)
Or, substituting (A.11) to see the symmetry in p0 and p1 = 1 − p0
more immediately:

Ğ = p0 lnp0 + p1 lnp1 −
β

2
(p0

2 + p1
2) +C (A.56)


