Socio-dynamic discrete choice: Theory and application

Dugundji, E.R.

Citation for published version (APA):

[129] A. Ghauche. Integrated Transportation and Energy Activity-Based Model. Master Thesis. Department of Civil and Environment-
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
<th>Cited on page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>J.P. Gliebe and F.S. Koppelman</td>
<td>A model of joint activity participation between household members</td>
<td>Transportation, 29:49–72, 2002.</td>
<td>4</td>
</tr>
</tbody>
</table>

[196] L. Lee. Amemiya’s generalized least squares and tests of overidentifi-
cation in simultaneous equation models with qualitative or limited dependent variables. *Econometric Reviews*, 11(3):319–
328, 1992. (Cited on page 318.)

autocorrelation: Constructing the weight matrix. *Social Net-

[198] W. Lenz. Beitrage zum verstandnis der magnetischen eigen-
schaften in festen korpern. *Physikalische Zeitschrift*, 21:613–615,
1920. (Cited on page 5.)

Dissertation. Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, MA, 1975. (Cited on pages 1, 22, 417, 422, 429, 430, and 432.)

analysis of travel behavior: The state of the art. transportation

[201] J.P. LeSage. Bayesian estimation of limited dependent variable

[202] T.M. Liggett. *Interacting Particle Systems*. Grundlehren der math-
ematischen Wissenschaften 276. Springer-Verlag, Berlin Heidel-
berg, Germany, 2005. (Cited on page 5.)

[204] T. Lisco. *The Value of Commuter’s Travel Time: A Study in Ur-
ban Transportation*. PhD Dissertation. Department of Economics,
University of Chicago, Chicago, IL, 1967. (Cited on page 3.)

[205] J. Louviere, K.E. Train, M. Ben-Akiva, C.R. Bhat, D. Brownstone,
T.A. Cameron, R.T. Carson, J.R. Deshazo, D. Fiebig, W. Greene,
and D. Hensher. Recent progress on endogeneity in choice

Currie, editor, *New Perspectives and Methods in Transport and
Social Exclusion Research*, pages 223–240, Emerald Group Pub-
lishing Ltd, Bingley, UK, 2011. (Cited on page 339.)

dependence structures in unordered multinomial choice models:
formulation and application to teenagers’ activity participa-
tion. Department of Civil, Architectural and Environmental
Engineering, University of Texas at Austin, TX, 2011. (Cited on
page 339.)

[276] I.N. Sener and C.R. Bhat. Flexible spatial dependence structures
for unordered multinomial choice models: Formulation and ap-
plication to teenagers’ activity participation. Transportation, 39

[277] I.N. Sener, N. Eluru, and C.R. Bhat. On jointly analyzing the
physical activity participation levels of individuals in a family
unit using a multivariate copula framework. Journal of Choice

[278] F. Sharmeen and D. Ettema. Whom to hang out with and
where? analysis of the influence of spatial setting on the choice
of activity company. 2010. (Cited on page 335.)

and temporal dependency in land use change models. Geograph-

Model for children’s school travel mode choice: Accounting for
effects of spatial and social interaction. Transportation Research
Record: Journal of the Transportation Research Board, 2213:
78–86, 2011. (Cited on pages 321 and 324.)

[281] A. Simma and K.W. Axhausen. Within-household allocation
of travel: The case of upper austria. Transportation Research
Record: Journal of the Transportation Research Board, 1752:
69–75, 2001. (Cited on page 4.)

[282] A. Sklar. Fonctions de répartition a n dimensions et leurs
marges. Publications de l’Institut de Statistique de L’Université de

[283] A. Sklar. Random variables, joint distribution functions, and

[329] P. Waddell and F. Nourzad. Incorporating non-motorized mode and neighborhood accessibility in an integrated land use and

