Networks of action control
Jahfari, S.

Citation for published version (APA):
Jahfari, S. (2014). Networks of action control

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
REFERENCES


Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport,


Cieslik, E. C., Zilles, K., Caspers, S., Roski, C., Kellermann, T. S., Jakobs, O.,


the National Academy of Sciences, 108(32), 13341-13346.


guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), *Inhibitory processes in attention, memory and language* (p. 189-239).


Neggers, S. F., Diepen, R. M., Zandbelt, B. B., Vink, M., Mandl, R., & Gutteling,


References

scholarship online.


Wiecki, T., & Frank, M. (2010). Neurocomputational models of motor and


reaction time after focal transcranial magnetic stimulation of the human brain occurs at the final motor output stage. *Brain Research, 744*(1), 32-40.