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On the Formulation of Wald Tests on Long-Run
Parameters

Peter Boswijk

I. INTRODUCTION*

The single-equation error correction model has become one of the most
important tools in the econometric analysis of time series. It provides a clear
distinction between short-run dynamic adjustments and long-run equilibrium
relations. The strong connection between cointegration and error correction
models that follows from the Granger representation theorem see Engle and
Granger (1987) has only increased its use. Because economic theory usually
concerns long-run properties, hypotheses of interest often lead to restrictions
on the long-run parameters. In this note, we shall analyse two Wald test statis-
tics of linear restrictions on these parameters. The first statistic utilizes an
estimated covariance matrix of the long-run parameter estimators, obtained
from a first-order Taylor series expansion. The second statistic uses a refor-
mulation of the null hypothesis, leading to a linear restriction on a model that
is linear in the parameters. It is argued that the latter statistic has to be
favoured because of its invariance properties, and because it is not affected
by the lack of moments of the long-run parameter estimators. The use of
asymptotic standard errors for constructing confidence intervals will also be
addressed. An application to the UK consumption function illustrates the
issues.

. THE MODEL AND THE TEST STATISTICS
Consider the single-equation error corection model:
p-l p-1
Ay =Ay-1—0x_)+ Z YAyt Z ﬁijr~j+£n t=1,...,T (1)
j=1 j=0
*This paper was completed while the author was visiting Nuffield College, University of ‘
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where y, is the dependent variable, z, is a k-vector of explanatory variables,
and ¢, is a white noise disturbance with variance o®. The lag length p is
chosen the same for all variables for notational ease, but none of the results in
this paper will depend on this, nor on the absence of a constant term in (1).
We shall be concerned with inference on 6, the kX1 vector of long-run
parameters. If the explanatory variables in z, are not Granger-caused by y,
these are long-run multipliers. If the components of z, are integrated of order
1 and the model is stable, then the vector (1, —0'Y is a cointegrating vector,
see Engle and Granger (1987), because (y,—6'z,) is stationary although y,
and z, are not. The model is non-linear in the parameters, but an obvious
linear reformulation is

-t -l
AYI= T Y- + nézl—l + Z y/'Ay/—j+ z ﬂ;’Azt—j+51 (2)
j=t j=0
where i, = A and 7, = — A6 so that 6= — 7, /..
The hypothesis of interest states that the long-run parameters obey the
linear restrictions ‘

Hy:RO=r
where R and r are of order /X k and & X1, respectively (h<k). In the para-
metrization of (2), the null hypothesis (r— R6) =0 corresponds to
Hl:rr,+Ru,=0n=0,
where Q =[riR]and n=(m,, 75).

Let 7 denote the ordinary least-squares (OLS) estimator of s in (2). The
indirect least-squares (ILS) estimator of 8 is defined by

6=— T3 (3)

ESf

If the disturbances are normally distributed, and z, is weakly exogenous for 6,
then 8 is also the maximum likelihood estimator (conditional upon the start-
ing values). A consistent estimator of the covariance matrix' of 8 is (see also
Bardsen, 1989 and Banerjee et al., 1990).

PI61=1v14), (4)
where
LA S SRR S IS S
J_an' [(nl)z T T Ik} o (6:1] (5)

! Bewley (1979) shows that @ can be estimated directly by instrumental variables estimation
in a reparametrization of (1), the so-called pseudo-structural form, and Wickens and Breusch
(1988) have shown that the same holds for the covariance matrix estimator.
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is the Jacobian matrix or derivative of § with respect to z, and Jis obtained
from (5) with =, and 7, (and hence 6) replaced by their OLS estimators, and
where V[#] is the OLS covariance matrix estimator of 7. The Wald test
statistic for Hj is given by

W, =(RO—~r)[RIV#] S (RO ~—r). (6)
Alternatively, the Wald statistic for H in (2)is
W, =(Q#)[QV#]Q']" Q). (7)

Note that W, /h is equal to the F-statistic for Hy in (2).

If y, and z; are stationary and the model (1) is stable, then both statistics are
asymptotically equivalent and distributed as y* 4 ) under the null hypothesis.
Moreover, the same asymptotic null distribution applies if y, and z, are cointe-
grated, provided that z, is weakly exogenous for 8, see e.g. Johansen (1992).
Below it is assuymed that either of these conditions is satisfied.

Although the test statistics are asymptotically equivalent, they may differ
substantially in finite samples, so that the problem arises of choosing between
the alternative formulations. This will be considered next.

1. THE CHOICE OF A TEST STATISTIC

In order to facilitate comparison of the two statistics, we derived some alter-
native expressions for W, and W,. Observe that

4 1 1
R9—r=T(“Rﬁ2—rﬁ1)=—T 0 (8)
T, Ty

or Qfi=—#,(Ré—r). Now W, may be expressed similarly to W, in (6) by
dividing Qs and its covariance matrix by — 7, and ()%, respectively. Define
6,, to be any k-vector that satisfies R8,=r. Then the implicit covariance
matrix of (R6 — r) used for W, is

N : 5 : 1)
(ﬁl)z QV[”]Q = 7, [Roo-R]V[n][Rao-R] #,
=R V[#] /4R, (9)
where the notation
Jy= (6,1 (10)

T
is inspired by its similarity to (5). Thus we have

W, =(RO— Y[R, V[#]/oR'| (RO —7). (11)
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Note that 6, and hence J;, are not unique, because unless 4= k, there are
infinitely many vectors 6, that satisfy RO, = r. However, by definition R6, and
hence RS, are umquely defined, which is required in (9) and (11). The reason
for mtroducmg 6, is to show that the two statistics differ in the way the co-
variance matrix of 6§ is estimated. Where W, uses the null hypothesis (in the
form of 6,, W, does not utilize this information but replaces 6 by 6. The same
difference arises when W, is expressed similarly to W,. Using again
Q7 =—#(RO~r), we have

B [OV[#]10'1(Ok). (12)
where we have defined
Q=—# RI=[R6:R]. (13)
Because under the null hypothesis the available information is used more effi-
ciently for the construction of W, we may expect this statistic to display
better size properties than W,.  ?

A major disadvantage of the Wald testing principle is its lack of invariance
with respect to reformulations of the null hypothesis. The difference between
W, and W, is an illustration of this property, which is analysed by Gregory
and Veall (1985, 1986). The likelihood ratio (LR) test does not suffer from
this problem and is therefore to be preferred over the Wald test. However, it
is well-known that in a linear regression model with normally distributed
errors, the F- or Wald test statistic for a set of linear restrictions is (a mono-
tonic transformation of) the LR test statistic. Therefore, under the assump-
tion that {e,} ~IN(0, 0?) in (1), the statistic W, corresponds to the LR test of
H,. Note that W! does not lead to an LR test, because it is not a monotonic
function of W, (or the LR statistic).

An alternative approach to the invariance question is provided by
Critchley et al. (1989). In their analysis, the essential problem with a Wald
statistic for a non-linear restriction g(6)=0 (ona general parameter vector 6)
is that the asymptotlc covariance matrix of g(8) varies with 9. The depen-
dency of V[8] on.@ via the Jacobian matrix J in (4) and )5) is an example of
this. However, in this case the restricting function g(#)=(R6—r) can be
reformulated into Q7, the covariance matrix of which does not depend upon
any unknown parameters (except for ¢?2). In this so-called constant metric
case, the Wald test coincides with the Geodesic test that Critchley et al.
propose as a solution to the invariance problem. This gives a second argu-
ment for the use of W, statistic. Our recommendation corresponds to that of
Gregory and Veall (1987, p. 66) in the context of the partial adjustment
model.

A final pomt in favour of the W, statistic is the following. Because the ILS
estimator 6 is defined as a ratio of OLS estimators, it can be shown to have no
finite moments. The factor that 7, will have a positive density at the origin
causes the occurrence of large outliers in the distribution of . As can be seen
from (12), the statistic W, depends on the estimator f and thus its distribution
will be affected by these outliers, whereas this is not the case for W,.
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To see whether these theoretical arguments are reflected in a better finite
sample behaviour of the W2 statistic, we perform a small Monte Carlo experi-
ment. The generating mechanism is

Ay,=a+ ByAz,+My,_,—6z,_,)+e, ¢&~IN(O,o0?), t=1,..., T{14)

where T=50, a.=0, 8,=0.5, d=0.5, A&{—0.1, —0.2, —0.5} and 6<{0.5,
0.8, 1, 1.2, 1.5}. The explanatory variable z, is fixed at one realization of a
Gaussian random walk with innovation variance 1. For each of the 10,000
replications, we estimate (14) by OLS and wse compute the Wald statistics W,
and W, for the hypothesis 6= 1.

In the first row of Table 1 the rejection frequencies under the null (6
= 1) at the 5 percent critical value of the F(1, 50/4) distribution are given. In
all cases the actual size of the tests is larger than the nominal 5 percent level,
but the difference becomes smaller as the error correction coefficient gets
larger in absolute value. The anticipated better size performance of the W,
statistic is apparent, although at A=—0.1 both tests are quite unsatisfactory
in this respect. In the bottom row of Table 1 the exact (ie. simulated) 5
percent critical values are given. The rejection frequencies at these critical
values provide estimates of the power of the tests, which is given in Table 1
for 6€{0.5, 0.8, 1.2, 1.5}. No test statistic uniformly dominates the other in
power performance: for values of 6 smaller than 1, W, has higher power,
whereas the opposite holds for 6> 1. In the latter case, the differences in
power can be quite substantial. In almost all cases the power increases with
- A; a similar effect can be expected from increasing the sample size or
decreasing the error variance. In summary, this experiment corroborates the
theoretical arguments concerning the behaviour of the statistics under the

TABLE 1
Size and Power of the Wald Tests

A=-0.1 A=-02 A=-0.5
W W, W, W, W W,
Size
=1 0.259 0.124 0.150 0.087 0.071 0.060
Power
=12 0.016 0.039 0.010 0.151 0.772 0.847
0=15 0.001 0.127 0.191 0.770 1.000 1.000
6=0.8 0.109 0.097 0.250 0.173 0.805 0.709
0=0.5 0.237 0.230 0.723 0.40 1.000 0.995

5% critical value 23.119 6.520 10.390 5.337 5.077 4,384

Note: The size is estimated by the rejection frequencies at the 5% critical value of the
F(1,46) distribution (4.05), The power is estimated by the rejection frequencies at the exact 5%
critical values.



142 BULLETIN

null hypothesis, but provides no unamiguous conclusions about the relative
power performance of the tests.

IV. THE USE OF STANDARD ERRORS

The covariance estimator given in (4) provides the asymptotic standard
errors of the long-run parameters. The calculation of these standard errors is
discussed by Béardsen (1989) and Banerjee ef al. (1990), and is implemented
in Hendry’s (1989) PC-GIVE. Following the arguments in the previous
section, these standard errors should be used with caution. On the one hand,
the lack of moments of the estimators suggests that they may provide a poor
measure of dispersion. On the other hand, the fact that the second version of
the Wald test (W, ) has to be preferred over W, indicates that their role in con-
structing f-ratios is also limited. An alternative would be to compute standard
errors from the covariance matrix corresponding to W,. However, as can be
seen from (9) these depend upon the null hypothesis and therefore cannot
provide a measure of dispersion in general.

A possible solution to this problem is to construct confidence intervals
corresponding to W,. Define W,(6,;) to be the W, statistic for the hypothesis
that the jth component of 6 has a particular value 6,;. Then a 100(1 — a)%
confidence interval C for 6, is the set of hypothesized values that are not
rejected by W, at a given significance level a:

C={6y, ER: Wy( ) <xa(1)}, (15)

where y2(1) is the 100)1 — a)% quantile of the y%(1) distribution. Given the
dependence of W, on 6y, the calculation of the boundaries of these intervals
will amount to solving non-linear equations, and hence will require some
numerical routine.

V. AN APPLICATION2

In this section we shall apply the tests to a consumption function for the UK,
using annual data (1948-83) on the log of consumption c,. the log of income
Y, and the inflation rate Ap,. Following Hendry (1983), but allowing for a
general long-run income elasticity, the following specification is obtained

Ac,=0.329+0.528Ay,—0.132p, — 0.205(c,, — 0.854y,_ ).
(0.255) (0.041) ~ (0.027) (0.101)  (0.045)

6=0507%  AR2-F(2,28)=0.65 ARCHI1~F1,28)=122
Norm—x*2)=0.87 Chow — F(10,20)=0.70

Diagnostic testing against second-order serial correlation, first-order auto-
regressive conditional heteroskedasticity, non-normality, and predictive



PRACTITIONERS CORNER 143

failure over the last 10 years, reveals no misspecification of (16). The long-
run income elasticity of consumption is quite far from unity, and significantly
so, judging from the r-statistic #=(0.854~1)/0.045=-321 (or
W, =(3.21)%). However, an equivalent formulation of (16) is

Ac,=0.329+0.528Ay,— 0.132Ap,c,_, = y,-1)—0.030y,_ {17)
(0.255) (0.041) ~ (0.027) (0.101)  (0.023)

leading to a t-statistic of £,= —0.030/0.023 = —1.28, i.e. W,=(1.28)2. In this
case we see that the two formulations of the null hypothesis lead to conflicting
inferences. Imposing the restriction yields

Ac,=0.004+0.510Ay,—0.141Ap,— 0.078(c,—, = y,-,). (18)
(0.003) (0.039)  (0.026)  (0.018)

6=0.512% AR2-F(2,29)=0.53 ARCH1 - F(1,29)=0.02
norm— ¥*2)=0.97 chow— F(10,21)=0.58

A marked effect is the strong decrease in the error correction coefficient,
accompanied by an even stronger reduction in its standard error. However,
the ¢, test and diagnostics indicate that the restricted model parsimoniously
encompasses the general model.

The difference between the two approaches becomes even more apparent
if we consider 95% confidence intervals. The ‘naive’ confidence interval for 6,
based on (16)is equal to (0.765, 0.943), obviously excluding the long-run unit
elasticity hypothesis. On the other hand, the confidence interval bsed on W,,
as suggested in the previous section, equals (0.804, 3.166). The considerable
asymmetry of the interval is another reflection of the dependence of the
variance of § on 6; apparently this variance increases with 8, so that quite
large values of 6 are included in the interval.

VI. CONCLUSION

In this note we have shown that a linear restriction on the long-run para-
meters of an error correction model may be conveniently reformulated as a
linear restriction on a linear regression model. It has been argued that the
corresponding Wald or F-test has more favourable finite sample properties
than a test based on the asymptotic covariance matrix of the long-run para-
meter estimators.

Institute of Actuarial Science and Econometrics,
University of Amsterdam

Date of Receipt of Final Manuscript: August 1992

2 The computations in this section were performed using PC-GIVE, see Hendry (1989).
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