Metformin in polycystic ovary syndrome
Moll, Etelka

Citation for published version (APA):
Moll, E. (2013). Metformin in polycystic ovary syndrome

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 7

Summary and implications for future research

Etelka Moll
Summary

The polycystic ovary syndrome (PCOS) affects 5% to 10% of women of reproductive age.\(^1\) PCOS is characterised by oligo-anovulation, clinical or biochemical hyperandrogenism and/or polycystic ovaries.\(^2\)\(^-\)\(^4\)

Insulin resistance accompanied by compensatory hyperinsulinemia constitutes another major biochemical feature of PCOS. With hyperinsulinemia as starting point, Nestler and co-authors were the first to study metformin in women with PCOS.\(^5\) Originally, this trial was meant to study the effects of metformin on metabolic and endocrinological parameters in women undergoing ovulation induction, but the authors noticed that some of the women (12%) conceived naturally. From that moment on many small trials were set up to test insulin sensitizers -mainly metformin- for ovulation induction in women with PCOS.\(^6\)\(^-\)\(^7\)

The drug of first choice for ovulation induction in patients with newly diagnosed PCOS is the anti-estrogen clomifene citrate (CC).\(^8\) Administration of CC is followed by an enhanced release of pituitary gonadotrophins resulting in follicular recruitment. 75% of women with PCOS will ovulate on CC.\(^9\) Treatment complications are rare and usually mild. Patients who do not ovulate on the maximal dose of 150 mg are considered CC-resistant.

To evaluate the effectiveness of metformin as co-treatment to CC in women with PCOS, we performed a multicentre randomised clinical trial in 20 Dutch hospitals. The results of this trial are presented in Chapter 2. Two-hundred-and-twenty-eight women with PCOS were included for either CC plus metformin or CC plus placebo. The ovulation rate in the metformin group was 64% compared with 72% in the placebo group, a non-significant difference (risk difference −8%, 95% confidence interval (CI) −20% to 4%). There were no significant differences in ongoing pregnancy rates (40% v 46%; −6%, 95% CI −20% to 7%) and spontaneous miscarriage rates (12% v 11%; 1%, 95% CI −7% to 10%). A significantly larger proportion of women in the metformin group discontinued treatment because of side effects (16% v 5%; 11%, 95% CI 5% to 16%).

Based on these data, we concluded that metformin is not an effective addition to CC as primary treatment for inducing ovulation in therapy naïve women with PCOS.
In Chapter 3 we describe a meta-analysis to evaluate the effectiveness of metformin in subfertile women with PCOS. A literature search identified 27 trials.

In therapy naive women, we found no evidence of a difference in live birth rate when comparing metformin with CC [relative risks (RR) 0.73; 95% confidence interval (CI) 0.51 to 1.1] or comparing metformin plus CC with CC alone (RR 1.0; 95% CI 0.82 to 1.3). In CC-resistant women, metformin plus CC led to higher live birth rates than CC alone (RR 6.4; 95% CI 1.2 to 35); metformin also led to higher live birth rates than laparoscopic ovarian drilling (LOD) (RR 1.6; 95% CI 1.1 to 2.5). We found no evidence for a positive effect of metformin on live birth when added to LOD (RR 1.3; 95% CI 0.39 to 4.0) or FSH (RR 1.6; 95% CI 0.95 to 2.9), or when co-administered in IVF (RR 1.5; 95% CI 0.92 to 2.5). In IVF, metformin led to fewer cases of ovarian hyperstimulation syndrome (OHSS) (RR 0.33; 95% CI 0.13 to 0.80).

This meta-analysis demonstrated that CC is still first choice therapy for women with therapy naive PCOS. In CC-resistant women, the combination of CC plus metformin was the preferred treatment option before starting with LOD or FSH. At present, there is no evidence of an improvement in live birth when adding metformin to LOD or FSH. In IVF, metformin lead to a reduced risk of OHSS.

Since the addition of metformin to CC did not lead to better outcomes in the general population of women with PCOS, we wanted to assess whether there are specific subgroups of women with PCOS in whom CC plus metformin leads to higher pregnancy rates. In Chapter 4 we describe a subgroup analysis based on clinical and biochemical parameters. We reanalyzed the data from our previously published randomised trial, see chapter 2. There was a significantly different chance of an ongoing pregnancy for CC plus metformin versus CC plus placebo between subgroups based on age and WHR (P = 0.014). There was a positive effect of metformin versus placebo on ongoing pregnancy rate in older women (>28 years) with a high WHR, a negative effect of metformin versus placebo in young women (<28 years) regardless of their WHR and no effect in older women with a normal WHR. No significant differences in effect of treatment were found for groups based on BMI, 2 h glucose, HOMA or plasma testosterone. Therefore, we concluded that metformin may be an effective addition to CC in a subgroup of older and viscerally obese infertile women with PCOS.

Altered chances of pregnancy might not be the sole effect of metformin treatment in women with PCOS. Hyperinsulinemia makes women with PCOS more...
prone to suffer from the metabolic syndrome. Therefore these women are thought to be at increased risk for cardiovascular disease. Metformin is claimed to improve biomarkers associated with metabolic syndrome, but no randomized controlled trials had been performed to evaluate the effect of metformin on these biomarkers. As part of our multicenter randomized controlled trial, we therefore describe in Chapter 5 changes in biomarkers associated with metabolic syndrome, i.e. anthropometric, glucose metabolism, lipid, coagulation and fibrinolytic parameters. We found a statistically significant but modest difference between women treated with CC plus metformin and women treated with CC plus placebo for one biomarker associated with metabolic syndrome; after treatment the mean endogenous thrombin potential was 8.4% lower in the metformin group (95% confidence interval 13.5% to 3.3%; p<0.001). Although statistical significant, there is probably no clinical significance. For all other parameters we found no evidence of a difference between metformin and placebo treatment.

Our findings indicate that metformin on a short term basis does not lead to a significant improvement of biomarkers associated with metabolic syndrome in treatment-naive women with polycystic ovary syndrome.

In our trial we had observed that in the group receiving metformin more women dropped out from the study due to treatment side effects than in the group receiving placebo medication. To study the effect of metformin use on women’s’ wellbeing we investigated the health related quality of life (HRQoL) in the women that had participated in our randomised clinical trial. In Chapter 6 we present these results. Subscale scores were transformed to a 0 to 100 scale, with higher scores indicating more symptoms and lower quality of life. Baseline overall values were 25 versus 24 respectively for metformin versus placebo. In the intention to treat analysis we found differences between treatment groups with respect to physical symptoms and overall wellbeing. Physical wellbeing was significantly impaired in women allocated to metformin but not in women allocated to placebo. The increase in physical symptoms in the metformin group was caused by side-effects typical for metformin. It was most pronounced at week 1 (mean difference 12 (95% CI 8 to 16) and still apparent at week 16 (mean difference 7 (95% CI 2 to 12). Overall wellbeing was significantly impaired in the metformin group compared to the placebo group (mean difference 13 (95% CI 6 to 20).
Our finding that metformin was more burdensome than placebo, strengthens the recommendation that CC only and not CC plus metformin should be the treatment of choice in this patient population. For the women ≥28 years and with a high WHR more trials are needed to give more evidence based recommendations.

Overall the main result of this thesis can be summarized as follows: the addition of metformin to CC in therapy-naïve women with PCOS does not increase their chance of pregnancy except for possibly a subgroup of older women with high WHR, does hardly lead to improved metabolic profiles but does lead to a decreased HRQoL.

Recommendations for further research

The important clinical question is not whether metformin “works”, but whether it is better than CC in terms of live birth in CC naïve women or whether it has additional benefit in terms of live birth when used as co-treatment in therapy naïve or CC resistant women.

To answer the question whether women ≥28 years and a higher WHR or waist circumference have higher pregnancy rates with metformin than without, an IPD meta analysis should be done.

Despite many studies testing surrogate markers for CVD,^{10,11} and some reviews trying to find the answer,^{12} we still lack proper data whether women with PCOS do have a higher prevalence of CVD later in life.^{13-15} We need large, long term, adequately powered, follow up studies, considering women with PCOS as diagnosed with the ESHRE/ASRM Rotterdam criteria, to evaluate this. Only after this has been determined, a proper approach, like lifestyle adjustments or pharmaceutical treatment, can be tested to try and decrease this risk, if necessary.

In light of the pandemic increase of obesity and the simultaneously rise in diabetes and cardiovascular complications, it is necessary to investigate and compare these risks in women with PCOS, on a short term notice.
Nederlandse samenvatting

Vijf tot 10% van vrouwen in de vruchtbare leeftijd heeft het polycysteus ovarium syndroom (PCOS).1 PCOS wordt gekarakteriseerd door oligo- of anovulatie, klinisch of chemisch hyperandrogenisme en/of polycysteuze ovaria.2-4

Insuline resistentie met hyperinsulinemie tot gevolg vormt een ander belangrijk biochemisch kenmerk van PCOS. Uitgaande van deze hyperinsulinemie bestudeerden Nestler et al. als eerste het effect van metformine in vrouwen met PCOS.5 Oorspronkelijk was deze studie bedoeld om de effecten te bestuderen van metformine op metabole en endocrinologische parameters in vrouwen die ovulatie inductie kregen, maar tijdens de studie bleek dat sommige vrouwen (12%) spontaan zwanger werden. Hierna volgden meer kleine onderzoeken om insuline sensitizers, voornamelijk metformine, te testen als middel voor ovulatie inductie in vrouwen met PCOS.6,7

Eerste keus voor ovulatie inductie in vrouwen die nieuw gediagnosticeerd zijn met PCOS, is een anti-oestrogeen, clomifeen citraat (CC).8 Bij het toedienen van CC ontstaat een verhoogde afgifte van gonadotrofines uit de hypofyse, resulterend in follikelgroei. Vijf-en-zeventig procent van vrouwen met PCOS heeft een ovulatie na toediening van CC.9 Complicaties en bijwerkingen zijn zeldzaam en meestal mild. Patiënten die niet ovulieren op de hoogste dosis van 150 mg, zijn CC resistent.

Om te evalueren of metformine in combinatie met CC een effectieve behandeling is in vrouwen met PCOS, verrichten wij een multicenter, gerandomiseerd, klinisch onderzoek in 20 Nederlandse ziekenhuizen. De resultaten van dit onderzoek staan in hoofdstuk 2. Er werden 228 vrouwen geïncludeerd, hetzij in de groep CC met metformine, hetzij in de groep CC met placebo. In de metformine groep ovuleerde 64% van de vrouwen, vergeleken met 72% in de placebo groep. Dit is niet statistisch significant verschillend (risico verschil \(-8\%,\ 95\%\) betrouwbaarheidsinterval (BI) \(-20\%\) tot 4\%). Er was geen verschil in aantal doorgaande zwangerschappen (40\% v 46\%; \(-6\%,\ 95\%\) BI \(-20\%\) tot 7\%) en aantal spontane miskramen (12\% v 11\%; 1\%, 95\% BI \(-7\%\) tot 10\%). Een significant groter deel van de vrouwen in de metformine groep stopte met de behandeling wegens bijwerkingen (16\% v 5\%; 11\%, 95\% BI 5\% tot 16\%).
Op grond van deze gegevens, concludeerden wij dat metformine geen toegevoegde waarde heeft bovenop CC als primaire behandeling bij ovulatie inductie in vrouwen met PCOS.

In hoofdstuk 3 beschrijven we een meta-analyse waarin we gekeken hebben naar de effectiviteit van metformine in subfertiele vrouwen met PCOS. Onze literatuur studie leverde 27 artikelen op.

Wij vonden geen bewijs voor een verschil in aantal levend geborenen bij vrouwen die voor de eerste keer behandeld werden, als we metformine met CC vergeleken [relatief risico (RR) 0.73; 95% BI 0.51 tot 1.1] of als we metformine plus CC vergeleken met CC alleen (RR 1.0; 95% BI 0.82 tot 1.3).

CC resistenten vrouwen die behandeld werden met metformine plus CC hadden een hogere kans op een levend geboren kind dan vrouwen die behandeld werden met alleen CC (RR 6.4; 95% BI 1.2 tot 35); metformine gaf ook een hogere kans op een levend geboren kind in vergelijking met laparoscopische elektrocoagulatie van de ovaria (LEO) (RR 1.6; 95% BI 1.1 tot 2.5). Er was geen bewijs voor een positief effect op het aantal levend geborenen als metformine werd toegevoegd aan LEO (RR 1.3; 95% BI 0.39 tot 4.0) of FSH (RR 1.6; 95% BI 0.95 tot 2.9), of als toegevoegd aan IVF (RR 1.5; 95% BI 0.92 tot 2.5). Als metformine werd toegevoegd aan de standaard medicatie bij IVF, was er een lagere kans op het ovarieel hyperstimulatie syndroom (OHSS) (RR 0.33; 95% BI 0.13 tot 0.80).

Deze meta-analyse liet zien dat CC nog steeds eerste keus is bij vrouwen met PCOS die voor de eerste keer behandeld worden. In CC resistenten vrouwen heeft CC plus metformine de voorkeur voordat gestart wordt met LEO of FSH. Er is geen bewijs dat metformine toegevoegd aan LEO of FSH een hogere kans geeft op een levend geboren kind. In IVF leidt het gebruik van metformine tot een lagere kans op OHSS.

Omdat metformine toegevoegd aan CC geen betere uitkomsten gaf in de algemene populatie van vrouwen met PCOS, wilden we uitzoeken of er bepaalde subgroepen van vrouwen met PCOS waren die wel betere zwangerschapskansen hadden als ze behandeld werden met CC plus metformine. In hoofdstuk 4 beschrijven we een subgroep analyse, gebaseerd op klinische en biochemische parameters. We hebben daarbij gebruik gemaakt van de data van ons eerder gepubliceerde gerandomiseerde onderzoek (zie hoofdstuk 2). In subgroepen gebaseerd op leeftijd en middel-heup-ratio (WHR) was de kans op een doorgaande
zwangerschap tussen de groep die CC plus metformine kreeg in vergelijking met de groep die CC plus placebo kreeg, significant anders ($p=0.014$): metformine versus placebo gaf een hogere kans op doorgaand zwangerschap in de vrouwen ≥ 28 jaar met een hoge WHR en een lagere kans bij vrouwen <28 jaar onafhankelijk van hun WHR en geen effect in oudere vrouwen met een normale WHR. Er was geen statistisch significant verschil in kans op een doorgaande zwangerschap tussen groepen gebaseerd op BMI, 2 uurs glucose, HOMA of plasma testosteron spiegels. Daarom concludeerden wij dat metformine mogelijk het effect van CC versterkt in een subgroep van subfertiele vrouwen met PCOS die ouder zijn en een hoge WHR hebben.

Veranderingen in zwangerschapskansen zijn misschien niet het enige effect van metformine behandeling bij vrouwen met PCOS. Hyperinsulinemie geeft vrouwen met PCOS meer kans op het metabole syndroom. Daarom wordt gedacht dat deze vrouwen een hoger risico lopen op hart- en vaatziekten. Metformine zou de biomarkers die geassocieerd zijn met het metabole syndroom verbeteren, maar er is nog geen gerandomiseerd onderzoek gedaan om het effect van metformine op deze biomarkers te evalueren. In hoofdstuk 5 beschrijven wij een onderdeel van onze gerandomiseerde studie waarin wij gekeken hebben welk effect metformine heeft op biomarkers van het metabole syndroom, te weten antropometrische parameters, parameters van het glucose metabolisme, de vetstofwisseling, en de stollingsstofwisseling. We vonden een statistisch significant, maar heel klein verschil bij één biomarker die geassocieerd is met het metabole syndroom, tussen vrouwen die behandeld werden met metformine plus CC en vrouwen die behandeld werden met placebo plus CC; het gemiddelde endogene trombine potentieel was na behandeling 8.4% lager in de metformine groep (95% BI 13.5% tot 3.3%; $p<0.001$). Alhoewel dit statistisch significant is, heeft het waarschijnlijk geen klinische relevantie. We vonden geen statistisch significant verschil tussen metformine en placebo behandeling in alle andere biomarkers.

Concluderend vonden wij geen klinisch en statistisch significante verbetering van biomarkers van het metabole syndroom onder invloed van kortdurende metformine behandeling bij vrouwen met PCOS die voor de eerste keer behandeld werden.

In onze gerandomiseerde studie stopten vrouwen die metformine kregen vaker vroegtijdig met de behandeling door bijwerkingen dan vrouwen die placebo
kregen. Om het effect van metformine gebruik op algemeen welbevinden te bestuderen, onderzochten we “kwaliteit van leven” (HRQoL) bij de vrouwen die hadden meegedaan aan onze studie. In hoofdstuk 6 tonen we de resultaten. De scores van de vragenlijst werden getransformeerd naar een schaal van 0 tot 100, waarbij hogere scores meer klachten en lagere kwaliteit van leven betekenden. De algemene scores bij het begin van het onderzoek waren respectievelijk 25 versus 24 voor de metformine versus de placebo groep. In de “intention to treat” analyse vonden we verschillen tussen de groepen betreffende lichamelijke klachten en algemeen welbevinden. Lichamelijke klachten waren statistisch significant vaker aanwezig bij de vrouwen in de metformine groep in vergelijking met de vrouwen in de placebo groep. De toename in lichamelijke klachten in de metformine groep werd verklaard door bijwerkingen typisch voor metformine. Het was het duidelijkst aanwezig in week 1 (gemiddeld verschil 12 (95% BI 8 tot 16) en nog steeds aanwezig in week 16 (gemiddeld verschil 7 (95% BI 2 tot 12). Algemeen welbevinden was statistisch significant verminderd in de metformine groep vergeleken met de placebo groep (gemiddeld verschil 13 (95% BI 6 tot 20).

De constatering dat metformine meer belastend is voor vrouwen met PCOS dan placebo, versterkt onze aanbeveling dat CC alleen en niet CC plus metformine de eerste keus is in deze patiënten populatie. Een apart onderzoek is nodig om evidence based aanbevelingen te doen voor de vrouwen ouder dan 28 jaar met een hoge WHR.

Samenvattend zijn de belangrijkste resultaten van dit proefschrift: de toevoeging van metformine aan CC bij vrouwen met PCOS die voor de eerste keer behandeld worden, verhoogd hun zwangerschapskansen niet, leidt mogelijk wel tot een hogere kans op zwangerschap bij vrouwen die ouder zijn en een hogere WHR hebben, verbetert nauwelijks het metabole profiel, maar geeft wel een verminderde kwaliteit van leven.
Aanbevelingen voor toekomstig onderzoek

De belangrijke klinische vraag is niet of metformine “werkt”, maar of het beter werkt dan CC alleen in het verhogen van de kans op een levend geboren kind in vrouwen met PCOS die voor het eerst behandeld worden met CC. Daarnaast is een belangrijke vraag of metformine toegevoegd aan CC een hogere kans op een levend geboren kind geeft bij vrouwen die voor de eerste keer behandeld worden met CC, of aan vrouwen die CC resistent zijn.

Als we willen achterhalen of metformine een betere zwangerschapskans geeft bij vrouwen die ≥28 jaar zijn en een hoge WHR hebben, zal een IPD meta analysis gedaan moeten worden.

Ondanks het feit dat er veel studies zijn gedaan die surrogaat parameters voor hart- en vaatziekten testen, en dat sommige reviews het antwoord hebben geprobeerd te vinden, hebben we nog steeds geen goed bewijs dat vrouwen met PCOS, later in hun leven, een hoger risico op hart- en vaatziekten hebben. Grote, lange termijn, voldoende statistisch robuuste, follow up studies van vrouwen die PCOS hebben volgens de ESHRE/ASRM criteria, zijn nodig om dit te evalueren. Pas als dit is vastgesteld, kunnen we een juiste aanpak van het probleem, zoals levensstijladviezen of farmacologische behandeling, testen om te kijken of dit het (mogelijke) risico verlaagd.

Gezien de wereldwijde pandemie van obesitas en de simultane stijging van diabetes en cardiovasculaire complicaties, is het nodig om deze risico’s in vrouwen met PCOS op korte termijn te onderzoeken en te vergelijken.
References

