Complex networks and agent-based models of HIV epidemic
Zarrabi, N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction

1.1 Background and Motivation .. 1
 1.1.1 HIV Epidemic ... 3
 1.1.2 HIV Dynamics ... 4

1.2 Modeling HIV Dynamics ... 5
 1.2.1 Phylogenetic Analysis 6
 1.2.2 Agent-based Models 7
 1.2.3 Complex Network Models 7

1.3 Thesis Overview .. 9

2 Modeling HIV-1 Intracellular Replication 11

2.1 Introduction .. 12

2.2 Modeling HIV-1 intracellular replication 13
 2.2.1 Cell infection ... 14
 2.2.2 Cell states and transitions 16

2.3 Model Implementation: Two different approaches 17
 2.3.1 Stochastic Rate-Based Approach 17
 2.3.2 Stochastic diffusion-based Approach 22

2.4 Simulation Results ... 26

2.5 Conclusions ... 29
Combining Epidemiological and Genetic Networks Signifies the Importance of Early Treatment in HIV-1 Transmission

3.1 Introduction

3.2 Results

3.2.1 Characteristics of the study population

3.2.2 Filter-reduction method and network construction

3.2.3 Analyzing characteristics of the contact network

3.2.4 Constructing the hypothetical transmission networks

3.2.5 Transmission network and phylogenetic clusters

3.2.6 Factors associated with super-spreaders

3.2.7 Comparison with random networks

3.3 Discussion

3.4 Materials and Methods

3.4.1 The Data

3.4.2 Phylogenetic analysis

3.4.3 Filtering process in the filter-reduction method

3.4.4 Network visualization

3.A Appendix Chapter 3

3.A.1 Tables

3.A.2 Figures

Combining Social and Genetic Networks to Study HIV transmission in Mixed Risk Groups

4.1 Introduction

4.2 Combining Social and Genetic Networks

4.2.1 Filter-Reduction Method

4.2.2 Overlaying Networks

4.3 Transmission Between Risk Groups

4.4 Conclusions and Future Directions

Complex Agent Networks: An Emerging approach for Modeling Complex Systems

5.1 Introduction

5.2 Formal definition of CANs

5.2.1 The agent node model

5.2.2 Networks of agent interactions
5.3 Applying CANs to modeling infectious diseases
 5.3.1 Modeling host agent nodes
 5.3.2 Measurements of the spreading of infectious diseases
5.4 Other Examples of CANs
 5.4.1 Ecological examples
 5.4.2 Economical and social examples
5.5 Research Issues

6 Summary and Conclusions
Samenvatting
Acknowledgments
Bibliography