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CHAPTER 1  

 

Measurement bias and multidimensionality;  

an illustration of bias detection in multidimensional 

measurement models  

 

Abstract Restricted factor analysis can be used to investigate measurement bias. A 

prerequisite for the detection of measurement bias through factor analysis is the correct 

specification of the measurement model. We applied restricted factor analysis to two 

subtests of a Dutch cognitive ability test. These two examples serve to illustrate the 

relationship between multidimensionality and measurement bias. We conclude that 

measurement bias implies multidimensionality, whereas multidimensionality shows up as 

measurement bias only if multidimensionality is not properly accounted for in the 

measurement model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Jak, S., Oort, F.J. & Dolan, C.V. (2010). Measurement bias and 

multidimensionality; an illustration of bias detection in multidimensional measurement 

models. Advances in Statistical Analysis, 94, 129-137. 
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INTRODUCTION 

In the presence of measurement invariance, systematic differences between observed test 

scores are attributable to true differences in the trait(s) that the test measures.  A test is 

measurement invariant with respect to V, if the following conditional independence holds: 

 

 f1 ( X | T = t , V = v ) = f2 ( X | T = t ),                                                               (1) 

 

where X is a set of observed variables, T is a set of attributes measured by X, and V is a 

set of variables other than T, possibly violating measurement invariance. Function f1 is the 

conditional distribution function of X given values of t and v, and f2 is the conditional 

distribution function of X given t. If the conditional independence does not hold (i.e., if f1 

≠ f2), the measurement of T by X is said to be biased with respect to V. In the presence of 

measurement bias, differences between observed test scores may not represent true 

differences between respondents. 

The principle of conditional independence (PCI) was introduced by Mellenbergh (1989) to 

define item bias (or differential item functioning), with X representing a test item, T a 

latent trait, and V some group membership. Yet Mellenbergh emphasized the generality of 

the definition: X, T, and V may be measured on the nominal, ordinal, interval or ratio level, 

they may be latent or manifest, and their relationships may be linear or nonlinear. In their 

review of statistical methods for the detection of measurement bias, Millsap and Everson 

(1993) distinguished between latent variable methods (with latent T ) and observed variable 

methods (with observed T), but they only considered group membership as possible V. 

Oort (1991) showed that a whole range of measurement issues can be subsumed under the 

PCI. Relevant measurement issues only differ in what is substituted for X (e.g., item 

responses, test scores), T (e.g., one or more latent traits), and V (e.g., other items, other 

latent traits, group membership, time of measurement occasion, socio-demographic 

variables). Oort called variables V potential violators of unbiased measurement (hence the 

symbol V). Meredith (1993) used the PCI to define weak measurement invariance and 

factorial invariance across populations defined by V, and called V a selection variable. 

Structural equation modeling (SEM) with latent variables provides flexible means to test 

measurement invariance, i.e., measurement issues related to the PCI-based definition of 

unbiased measurement can be investigated using SEM. Most typically, the X variables are 

observed variables (item scores or test scores) and the T variables are continuous latent 

variables. The V variables can be group membership in multigroup data, time index in 

longitudinal data (see King-Kallimanis, Oort & Garst (2010) for an example), or any other 
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variable, observed or latent. Different SEM methods to detect measurement bias with 

respect to each of these types of V have been proposed.  

If measurement bias is investigated with respect to a nominal V representing groups (e.g., 

treatment versus control group, men versus women), then we can use multigroup factor 

analysis (MGFA) with structured means (Sörbom, 1974). In the multigroup method, 

specific manifestations of bias can be investigated by testing across group constraints on 

intercepts (uniform bias) and factor loadings (nonuniform bias); see Vandenberg and 

Lance (2000) for a review. Similarly, measurement bias in longitudinal data (e.g., response 

shift) can be investigated using longitudinal factor analysis (Oort, 2005). 

Another way to detect bias, with respect to any variable (e.g., age, gender, personality trait, 

attitude, mood), is by conducting restricted factor analysis (RFA) as proposed by Oort 

(1992, 1998).  In the RFA method, uniform bias can be investigated by testing the 

significance of direct effects of exogenous variables (V) on the observed variables (X).  In 

effect, the RFA method is equivalent with using multiple indicator multiple cause (MIMIC) 

models to detect measurement bias (Muthén, 1989), the only difference being that in 

MIMIC models the V variables have causal effects on the T variables, whereas in the RFA 

method V and T variables are merely associated. Advantages of RFA (and MIMIC analysis) 

over multigroup factor analysis (MGFA) are that it is not necessary to categorize 

continuous V variables into groups, and that bias can be investigated with respect to 

several violators simultaneously. 

A prerequisite for the detection of measurement bias through any of these SEM methods 

is the correct specification of the measurement model. The definition of unbiasedness 

based on PCI features distributions of X conditional on T. This requires the relationship 

between X and T, including the dimensionality of T, to be correctly specified. 

Misspecification of the dimensionality of T in the measurement model may lead spurious 

bias results (Ackerman, 1992). 

In this paper, we present two examples of measurement bias detection through RFA. We 

focus on the specification of the measurement model, and discuss explicitly the 

relationship between multidimensionality and measurement bias. 

 

METHOD 

The RFA method is used to study measurement invariance of the “Q1000 Capaciteiten 

Hoog” with respect to age and gender. This is a commercial test, designed to measure 

cognitive abilities of highly educated people (Meurs HRM, Woerden, The Netherlands). 

The test consists of seven subtests, with a total of 137 dichotomous items (scored 0 for 

incorrect, 1 for correct). The test was administered to 1617 respondents (961 men and 656 
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women, 17 to 63 years of age, m = 37.9, sd = 9.0) as part of a selection procedure for a 

traineeship in Dutch government. All respondents were highly educated (BA level at least). 

Here we present the results for two subtests, Mathematical ability and Spatial visualization 

ability. Prior to investigating measurement bias, we first established the measurement 

model. Subsequently, we applied the RFA method to investigate bias with respect to 

gender and age. 

 

ESTABLISHING THE MEASUREMENT MODEL 

We first fitted a one-factor model in both subtests. Standardized residuals and 

modification indices (MIs, this is equivalent to using Lagrange Multiplier tests; Muthén & 

Muthén, 2006) were used to guide specification search. To guard against capitalizing on 

chance, the MIs were tested at a Bonferroni adjusted level of significance (nominal alpha 

of 5% was divided by p(p -1)/2, where p is the number of items in the subtest). We only 

permitted modifications that were amendable to substantive interpretation. 

 

DETECTING MEASUREMENT BIAS 

Once we established the measurement models, we added gender and age to the model as 

exogenous variables. Gender and age were allowed to correlate with each other and with 

the ability factor(s), but all direct effects of gender and age on the test items were fixed to 

zero. Measurement bias was evaluated by testing these zero direct effects, using MIs. If the 

largest of the MIs was significant at a Bonferroni adjusted alpha level (nominal alpha of 5% 

was divided by pq, where p and q are numbers of items and exogenous variables), the direct 

effect was set free to be estimated. The associated item was then considered biased. This 

procedure was repeated until none of the remaining fixed direct effects was significant (at a 

re-adjusted level of significance, i.e., dividing nominal alpha by pq - r, where r is the number 

of direct effects set free).  

 

STATISTICAL ANALYSIS 

As the items of the ability tests are dichotomous, we fitted our models to a matrix of 

tetrachoric correlations, using weighted least squares with adjusted mean and variance 

(WLSMV) as implemented in Mplus 4.2 (Muthén & Muthén, 2006). WLSMV provides 

asymptocically correct standard errors and an adjusted χ2 statistic (Muthén, du Toit and 

Spisic 1997). All MIs and χ2 difference tests were re-scaled to improve the approximation 

of the χ 2 distribution (Satorra & Bentler, 2001).  

In addition to the adjusted χ2 statistic, the root mean squared error of approximation 

(RMSEA) and the expected cross validation index (ECVI) were used as measures of 
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overall goodness-of-fit (Browne & Cudeck, 1993). RMSEA values smaller than 0.05 

indicate close fit, and values smaller than 0.08 are still considered satisfactory. Confidence 

intervals around the RMSEA values and ECVI values were calculated with the freely 

available computer program NIESEM (Dudgeon, 2003). 

 

RESULTS 

MATHEMATICAL ABILITY 

Mathematical ability is measured with 12 worded, four-choice math problems. Although 

the overall goodness-of-fit of the one-factor model was reasonable (χ2 = 329.55, df = 48, p 

< .01, RMSEA= .060 [90% CI: .053, .067], ECVI = .241 [90% CI: .208, .279]), significant 

MIs identified correlated residuals. All items with correlated residuals were at the end of 

the test. Apparently, time constraints caused respondents to hurry through the last part of 

the test, so that the results were affected by speed as well as mathematical ability. We 

added a second factor, labeled “Speed”, to account for the extra shared variance in the last 

six items. The fit of this two-factor model is close (χ2 = 63.50, df = 43, p = .02, 

RMSEA= .017 [90% CI: .007, .026], ECVI = .083 [90% CI: .072, .099]). 

Using this measurement model, we added gender and age as exogenous variables (Figure 2). 

We found a positive correlation between gender and mathematical ability (r = 0.34), 

indicating higher mathematical ability for men, and a negative correlation between age and 

speed (r = -0.20), indicating that older people are slower, which may have affected their 

test performance. Two items showed bias. Age had a significant direct effect on Item 1 (β 

= .12), indicating that the item is easier for older people: In a subgroup of equally able 

respondents, older respondents perform better on Item 1. Item 2 was found to be biased 

with respect to both age (β = -.12) and gender (β = -.13): For respondents with equal 

ability, this item was easier for women, and easier for younger people. 

We did not find an immediate explanation for Item 1, which was about chicken farmers 

and their relative numbers of chickens. Item 2 was a worded problem about employees’ 

preferences of what to do at an upcoming office party. To solve the item, one must 

assume that half of the male employees prefer dancing over bowling. Perhaps the older 

male respondents have been distracted more than other respondents by the unusual gender 

role behaviour. 
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Figure 1 Mathematical ability measured by worded problems. 

Notes: All figures denote standardized parameter estimates; apostrophes indicate non-significance; N = 

1617; model fit: χ2 = 103.79, df = 58, p < .01, RMSEA= .022 [90% CI: .015, .029], ECVI = .122 [90% CI: 

.108, .143].  

 

SPATIAL VISUALIZATION ABILITY 

The Spatial visualization ability test consists of 17 items. Each item pictures a three-

dimensional cube with different patterns on each of its planes. Through mental rotation, 

respondents have to choose from four options which other cube is a rotation of the first 

cube. 

The overall goodness-of-fit of the one-factor model is reasonable: χ2 = 750.64, df = 95, p 

< .01, RMSEA= .065 [90% CI: .061, .070], ECVI = .537 [90% CI: .485, .594]). However, 

MIs identified 15 covariances among the item residuals of three subsets of items.  

Inspection of item content showed that the three groups of items differed in the number 

of mental rotations needed to solve the items. We modeled this property by adding three 

factors to the general ability factor, hypothesizing that different mental capacities are 

required to solve problems that require different numbers of rotations. The fit of this four-

factor model was good: χ2 = 133.02, df = 87, p < .01, RMSEA= .018 [90% CI: .012, .024], 

ECVI = .165 [90% CI: .148, .187]). 
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We added gender and age as exogenous variables to the revised measurement model 

(Figure 2). Significant positive correlations between gender and general visual-spatial ability 

(r = .15), specific single rotation ability (r = .12), and double rotation ability (r = .13) 

indicated that men do slightly better than women. Negative correlations between age and 

general visual-spatial ability r = -.24), single rotation ability (r = -.18) and triple rotation 

ability (r = -.10) seemed to indicate that the associated skills deteriorate with increasing age. 

None of the items was found to be biased with respect to age or gender. 

 

 

 

Figure 2 Spatial visualization ability measured by cube rotation problems. 

Notes: All figures denote standardized parameter estimates; apostrophes indicate non-significance; for visual 

clarity, residual variances are not shown, and variables gender and age are pictured twice; N = 1617; model 

fit: χ2 = 165.54 with df = 107, p < .05, RMSEA= .018 [90% CI: .013, .023], ECVI = .206 [90% CI: .187, 

.231]. 

 

DISCUSSION 

We applied RFA to detect measurement bias with respect to age and gender to two 

subtests of a Dutch cognitive ability test. We also applied the MGFA method to the 

cognitive ability data, categorizing age into two age groups and conducting separate 

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17
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analyses to investigate bias with respect to gender and age.  Here, the MGFA and RFA 

methods yielded very similar results, but the MGFA method does have some 

disadvantages. In our example, gender and age were correlated (men were older). When we 

use MGFA to separately investigate bias with respect to gender and age then it might be 

difficult to distinguish gender bias from age bias. Investigation of gender and age group 

bias simultaneously in MGFA would involve the comparison of at least four smaller 

groups (younger women, older women, younger men, older men). Besides complicating 

the procedure and the interpretation of the results, this also means less precise parameter 

estimates and loss of statistical power. 

Limitations of the RFA method generally come from the measurement bias definition 

being far more general. For example, in the RFA method T is operationalized as a 

continuous latent variable, whereas in the definition T can be a discrete latent variable, as 

in latent class analysis (also incorporated in SEM; Muthén & Muthén, 2006), or T can be 

an observed variable, as in some of the older bias detection methods such as the Mantel-

Haenszel procedure (Holland & Thayer, 1988) and the logistic regression procedure 

(Swaminathan & Rogers, 1990). Furthermore, in the RFA method only linear conditional 

independence can be tested, and the method is not readily suited to detect nonuniform 

bias (although the RFA method can be extended with latent moderated structures; see 

Barendse, Oort & Garst, 2010). In the MGFA method nonuniform bias can be 

investigated by testing across group constraints on factor loadings. Still, when we applied 

the MGFA method to our cognitive ability data we did not find any nonuniform bias. 

In the present research we relied on modification indices for model modification, and we 

tested these at a Bonferroni adjusted level of significance to prevent chance results. Saris, 

Satorra, & Van der Veld, (2009) suggested to use modification indices in combination with 

the expected parameter change, and to take the statistical power of the modification index 

into account as well. This is generally worthwhile, but does not lead to other results in our 

examples, as the model modifications were already justified substantively and we checked 

whether the modifications changed the parameter estimates substantially. 

In practice it may be difficult to find the true cause of apparent bias, because there may be 

many possible violators of the measurement model operating simultaneously. Even if all 

possible violators are known, it will not be possible to operationalize and measure all 

possible causes of measurement bias. For example, in the worded math problem about 

office parties we conjecture that the apparent sex and age bias is really caused by the 

unusual gender role behaviour in the text of the worded problem. As we have no measure 

of “familiarity with unusual gender role behaviour” available, we can only detect bias with 

respect to sex and age. Researchers of measurement bias should be aware of this problem, 

and always try to investigate bias with respect to as many possible violator variables as 
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available. One of the advantages of the RFA method is that bias can be detected with 

respect to multiple possible violators simultaneously. 

 

MEASUREMENT BIAS AND MULTIDIMENSIONALITY 

The present examples serve to illustrate the relationship between measurement bias and 

multidimensionality.  In both examples we rejected the one-dimensional factor model in 

favour of a multidimensional factor model. In the first example, if we ignored the speed 

factor, we found age bias in the last items of the test, which would have been difficult to 

interpret. In the multidimensional model it is clear that the last items (also) measure speed 

and that age is correlated with speed.  In the second example, the specific rotation factors 

that vary in their correlations with gender and age could have been mistaken for bias in the 

associated items. In one of the other Q1000 cognitive ability tests, a 37-item vocabulary 

test, measurement bias detection yielded multiple items that favoured younger respondents 

(results not shown here). Inspection of item content showed that these biased items all 

inquired after the meaning of words with English origin. The biasing factor was therefore 

taken to be familiarity with English language, which is assumed to be inversely related with 

age. 

In general, the interpretation of apparent measurement bias involves reflection on possible 

biasing factors. In the one-dimensional model, all items are really affected by two factors: 

the single common factor and an item-specific residual factor, as in Spearman’s (1928) 

original “two-factor theory”. If all residual variance was really only random error variance 

then measurement bias would be absent by definition. But if the residual variance also 

contains structural variance then this may stem from a biasing factor. If multiple items in a 

test are affected by the same biasing factors, these factors may surface as additional 

common factors, as was the case with speed in the mathematical ability test, the specific 

rotation factors in the spatial-visual test, and English language familiarity in the vocabulary 

test.  However, if the residual factors do not share any structural variance, then the 

hypothesis of unidimensionality will not be rejected, although measurement bias may still 

be present. Oort (1991) used the definition of measurement bias to define 

unidimensionality as the absence of measurement bias with respect to any variable that 

might be relevant in whatever context the test is used. Following Lord and Novick’s (1968) 

notion of  “complete latent space”, we can define k-dimensionality as the number of 

dimensions of T that is needed to achieve statistical independence of all items X. Modeling 

all k dimensions guarantees the absence of measurement bias. 

With the RFA method, if we operationalize the biasing factor as one of the variables V, we 

can detect bias with respect to the nuisance factor itself. In the mathematical ability 

example, we might consider speed to be a biasing factor, and the effects of the speed 

factor on Items 7 through 12 as measurement bias. Instead of the speed factor as an 
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additional T in a multidimensional measurement model, the speed factor then features as a 

latent V in a model with a unidimensional T. This once more shows that 

multidimensionality and measurement bias really address the same problem. Measurement 

bias in a unidimensional model may disappear in a multidimensional model. The other way 

around, misspecification of the dimensionality of T in the measurement model may lead to 

spurious findings of bias. 

In conclusion, measurement bias and multidimensionality are related, but not equivalent. 

Measurement bias implies multidimensionality, but multidimensionality shows up as 

measurement bias only if multidimensionality is not properly accounted for in the 

measurement model. 


