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Abstract: It has been argued several times in the past that the structure of the entropy

formula for general non-extremal asymptotically flat black holes in four dimensions can

be understood in terms of an underlying conformal symmetry. A recent implementation

of this idea, carried out by Cvetič and Larsen, involves the replacement of a conformal

factor in the original geometry by an alternative conformal factor in such a way that the

near-horizon behavior and thermodynamic properties of the black hole remain unchanged,

while only the asymptotics or “environment” of the geometry are modified. The solution

thus obtained, dubbed “subtracted geometry”, uplifts to an asymptotically AdS3×S2 black

hole in five dimensions, and an AdS/CFT interpretation is then possible. Building on this

intuition we show that, at least in the static case, the replacement of the conformal factor

can be implemented dynamically by means of an interpolating flow which we construct

explicitly. Furthermore, we show that this flow can be understood as the effect of irrelevant

perturbations from the point of view of the dual two-dimensional CFT, and we identify

the quantum numbers of the operators responsible for the flow. This allows us to address

quantitatively the validity of CFT computations for these asymptotically flat black holes

and provides a framework to systematically compute corrections to the CFT results.

Keywords: Gauge-gravity correspondence, Black Holes in String Theory, AdS-CFT Cor-

respondence

ArXiv ePrint: 1210.7695

c© SISSA 2013 doi:10.1007/JHEP04(2013)084

mailto:m.baggio@uva.nl
mailto:J.deBoer@uva.nl
mailto:J.I.Jottar@uva.nl
mailto:d.r.mayerson@uva.nl
http://arxiv.org/abs/1210.7695
http://dx.doi.org/10.1007/JHEP04(2013)084


J
H
E
P
0
4
(
2
0
1
3
)
0
8
4

Contents

1 Introduction 1

2 The STU model 3

2.1 Static ansatz 4

2.2 Diagonalizing the non-linear system: decoupled modes and a family of static

black hole solutions 6

2.3 The “original” and “subtracted” geometries 7

3 Interpreting the flow between the original and subtracted geometries 9

3.1 Linearized analysis 10

3.2 Perturbation theory and determination of the sources 11

3.3 Range of validity of the linear approximation 12

4 Uplifting and AdS/CFT interpretation 14

4.1 The 5d Lagrangian and equations of motion 14

4.2 Consistent Kaluza-Klein reduction 15

4.3 Asymptotically AdS3 solutions and dual operators 17

4.4 Irrelevant deformation of the CFT 18

4.5 Irrelevant mass scale and range of validity of the CFT description 21

5 Discussion 22

A Conventions and useful formulae 23

A.1 Hodge duality 23

A.2 Details of the Kaluza-Klein reduction 24

A.3 The general solution in terms of 5d and 3d fields 26

1 Introduction

Black holes and especially their entropy have always been a source of mystery in physics

and, despite decades of effort and remarkable results on this topic, a full understanding of

their properties is still lacking. The first microscopic understanding of black hole entropy

was achieved for supersymmetric three-charge black holes, where the entropy formula was

reproduced using an effective CFT description of the low-energy degrees of freedom [1].

Later developments have expanded upon this description for other extremal and near-

extremal black holes [2–4]. The Kerr/CFT program [5–7] has further provided indications

for a CFT description of the low-energy physics for (near-)extremal rotating black holes.

Even when one identifies some sort of conformal symmetry in black hole related back-

grounds, this does not need to have immediate physical implications, nor does it have to
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imply the existence of a CFT whose physics is relevant for the black hole. The connection

between the CFT and the black hole can be purely numerological, purely kinematical, ap-

proximately dynamical, or exactly dynamical. An example of the latter is the BTZ black

hole, whose physics is completely captured by that of a 2d CFT. When there is an approx-

imate dynamical equivalence the physical quantities of interest may or may not, depending

on the question, be approximately reproduced using CFT computations.1 In this paper we

will mostly be interested in this case.

Unfortunately, a systematic approach to find the approximate dynamical CFT descrip-

tion for the low-energy physics of black holes is still lacking. In general, the low energy

near-horizon modes of general black holes (as opposed to (near-)extremal ones) do not

seem to decouple from the asymptotics of the geometry, thus effectively preventing one

from being able to take a decoupling limit and find an effective CFT description of these

modes. Even so, there has been much interest in the fact that the massless wave equation

in a (general) black hole background admits a SL(2,R) symmetry when certain terms are

removed. The offending terms are indeed small and can be neglected in certain limits

(near-extremal, near extreme rotating, low energy [5, 8–11]). However reminiscent of con-

formal symmetry this approximate SL(2,R) symmetry may be, the terms “breaking” this

symmetry are not small for general black holes and thus can not justifiably be ignored. The

program of “hidden conformal symmetry” asserts that the conformal symmetry is there

after all, but it is spontaneously broken [11].

Despite these qualifications, it is intriguing that the entropy of fairly general asymp-

totically flat black holes can be cast in a form suggestive of Cardy’s asymptotic growth

of states S = 2π
√
c∆R/6 + 2π

√
c∆L/6 , even away from extremality [12, 13]. A recent

development by Cvetič and Larsen [14, 15], inspired by the approximate SL(2,R) sym-

metry of the massless scalar wave equation, provides further evidence for an approximate

CFT description of general black holes in four and five dimensions far from extremality.

They construct a so-called “subtracted” geometry, where the warp factor of the geometry

is modified. Thus, the asymptotics of the black hole are changed from asymptotically flat

to asymptotically conical [16], but its thermodynamic properties are left untouched. This

subtracted geometry can then intuitively be thought of as “putting the black hole in a

box”. In addition to providing an exact SL(2,R) symmetry of the wave equation, the

subtracted geometry can be uplifted one dimension higher to a geometry that is locally a

product of AdS3 and a two-sphere. Thus, a 2d CFT description of the subtracted black

hole is immediately obvious.

What is less obvious is the relation between the subtracted geometry and the original,

asymptotically flat one, and in particular how this relation would be visible in the CFT de-

scription. Further developments [16] have made some progress in this direction by showing

that the subtracted geometry can be obtained as a scaling limit of the original geometry.

In this paper, we wish to address this problem and provide further evidence of the 2d CFT

description of the general asymptotically flat, non-rotating, four-charge black holes in four

1In the purely kinematical case, it is only the near horizon AdS2 geometry of an extremal black hole

which agrees with the near horizon geometry of a BTZ black hole, and in the numerological case one only

has a match between the CFT entropy and the black hole entropy.
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dimensions first constructed in [17, 18] (and later extended to the rotating case in [19]).

If the 2d CFT description of the subtracted geometry is related to some IR limit of the

asymptotic flat original geometry, then it is natural to expect this original geometry to be

described by the CFT plus some irrelevant deformation.

We first construct a family of black hole solutions with various asymptotics in the STU

model in four dimensions, of which both the subtracted geometry and the original geometry

are members. With this explicit family of solutions, it is easy to find the linear perturbations

of the subtracted geometry which must be turned on to flow to the original geometry. These

perturbations can then be uplifted to perturbations of AdS3 × S2, where the standard

AdS/CFT dictionary allows us to interpret and translate them as irrelevant deformations

of the dual 2d CFT. We also explicitly determine the sources for these dimension (2, 2)

operators in the CFT: in addition to providing further insight into the CFT description of

asymptotically flat black holes, the explicit construction of these irrelevant operators and

their sources allows us to quantitatively determine the limit of the validity of the CFT

description.

The rest of the paper is organized as follows. In section 2 we review the STU model and

construct a four-parameter family of four-charged, non-rotating black holes with different

asymptotics but the same thermodynamics, and explicitly identify the original (asymp-

totically flat) and subtracted geometry as members of this family. Then, in section 3, we

perform a linear analysis to determine the perturbations needed to flow from the subtracted

to the original geometry. In section 4 we uplift the subtracted geometry and the linear

perturbations thereof to 5d; we then consistently reduce to an effective three-dimensional

description to easily identify the irrelevant operators and sources through the standard

AdS/CFT dictionary. The determination of the sources gives us a clear criterion for the

window in which the effective IR CFT description is valid. Finally, in section 5, we sum-

marize and discuss our findings. Various details of our calculations and useful formulae are

collected in the appendix.

2 The STU model

The STU model is a four-dimensional N = 2 supergravity theory coupled to three vector

multiplets [20–22]. Its Lagrangian is given by2

L4 = R?41−
1

2
Hij ?4dh

i ∧ dhj − 3

2f2
?4df ∧ df −

f3

2
?4F

0 ∧ F 0

− 1

2f2
Hij ?4dχ

i ∧ dχj − f

2
Hij ?4

(
F i + χiF 0

)
∧
(
F j + χjF 0

)
(2.1)

+
1

2
Cijk χ

iF j ∧ F k +
1

2
Cijk χ

iχjF 0 ∧ F k +
1

6
Cijk χ

iχjχkF 0 ∧ F 0 ,

where the fields f and hi (i = 1, 2, 3) are scalars, χi are pseudoscalars, and F 0 and F i are

U(1) gauge field strengths. The metric Hij on the scalar moduli space is diagonal with

entries Hii = (hi)−2, and the symbol Cijk is pairwise-symmetric in its indices with C123 = 1

2We mostly follow the notation and conventions of reference [23], which we found particularly useful.
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and zero otherwise. The hi fields are constrained by the relation h1h2h3 = 1, which must

be solved before taking variations of the action. Our conventions for Hodge duality as well

as some useful expressions can be found in appendix A.1.

In the following we shall be concerned with solutions where the pseudoscalars χi are

set to zero. This is not in general a consistent truncation, inasmuch as the pseudoscalar

equations of motion then imply the constraints

−f Hij ?4F
0 ∧ F j +

1

2
Cijk F

j ∧ F k = 0 . (2.2)

In order to fulfill these conditions we will consider solutions where F 0 is purely electric and

the F i are purely magnetic. If we restrict to this case, we can write a simpler action from

which we can derive the equations of motion, namely

S = − 1

2κ2

∫
d4x
√
|g|
[
R− e−η0

4
F 0
µνF

0µν − 1

2

3∑
i=1

(
∇µηi∇µηi +

e2ηi−η0

2
F iµνF

i µν

)]
, (2.3)

where κ2 = 8πG4 (κ has units of length), and we have introduced the shorthand notation

η0 ≡ η1 + η2 + η3 . (2.4)

The scalar fields ηi (i = 1, 2, 3) are related to the scalars in (2.1) through

hi = e
1
3
η0−ηi , (2.5)

f = e−
1
3
η0 . (2.6)

The corresponding equations of motion read3

0 = ∇µ∇µηi +
1

4

[
e−η0F 0

µνF
0µν + e−η0

3∑
j=1

(
1− 2δij

)
e2ηjF jµνF

jµν

]
, (2.7)

0 = ∇µ
(
e−η0F 0µν

)
, (2.8)

0 = ∇µ
(
e−η0+2ηiF i µν

)
, (2.9)

Gµν =
1

2

[
3∑
i=1

(
∇µηi∇νηi −

gµν
2
∇ληi∇ληi

)
+ e−η0

(
F 0 ρ
µ F 0

νρ −
gµν
4
F 0
λρF

0λρ
)

+ e−η0

3∑
i=1

e2ηi
(
F i ρµ F iνρ −

gµν
4
F iλρF

i λρ
)]
. (2.10)

2.1 Static ansatz

In the present context we will be interested in static, spherically symmetric black hole

backgrounds. As discussed above, in order to fulfill the constraint (2.2) we furthermore

3We note that the purely electric configurations of [15, 16] solve the equations of motion following from

the action obtained from (2.3) by dualizing the fields F i as F i → −eη0−2ηi
(
?4F

i
)
.
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consider an electric ansatz for F 0 and a magnetic ansatz for the F i. Explicitly, our ansatz

for the metric and matter fields reads

ds2
4 = − G(r)√

∆(r)
dt2 +

√
∆(r)

(
dr2

X(r)
+ dθ2 +

X(r)

G(r)
sin2 θ dφ2

)
(2.11)

A0 = A0
t (r) dt (2.12)

Ai = Bi cos θ dφ (2.13)

ηi = ηi(r) , (2.14)

where the constants Bi (i = 1, 2, 3) are the magnetic charges. Einstein’s equations are

easily seen to imply G(r) = γX(r), where γ = const, and also X ′′(r) = 2. Hence, without

loss of generality we set

X(r) = G(r) = r2 − 2mr . (2.15)

Given this ansatz, we first notice that the equation for F 0 implies

F 0
rt = q0

eη0

√
∆
, (2.16)

where the constant q0 is the electric charge (up to normalization). The scalar equations

then reduce to

0 =
(
r(r − 2m)η′i

)′
− eη0

2
√

∆

q2
0 +

3∑
j=1

(2δij − 1)B2
j e

2(ηj−η0)

 . (2.17)

Finally, one notices that the independent information contained in Einstein’s equations

amounts to one second order and one first order equation. These can be taken to be

0 =
∆′′

∆
− 3

4

(
∆′

∆

)2

+
(
η′1
)2

+
(
η′2
)2

+
(
η′3
)2

(2.18)

0 =

(
∆′

2∆

)2

− 2(r −m)

r(r − 2m)

∆′

∆
+

4

r(r − 2m)
+
(
η′1
)2

+
(
η′2
)2

+
(
η′3
)2

− eη0

r(r − 2m)
√

∆

[
q2

0 +
3∑
i=1

e−2(η0−ηi)B2
i

]
. (2.19)

The first of these equations is a linear combination of the (t, t) and (φ, φ) components of

Einstein’s equations, while the first order constraint is the (r, r) component.
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2.2 Diagonalizing the non-linear system: decoupled modes and a family of

static black hole solutions

Quite remarkably, it is possible to diagonalize the full non-linear system of equations. To

this end we introduce new fields φ0, φi defined as

φ0(r) =
1

2
log

(
∆(r)

m4

)
− η1(r)− η2(r)− η3(r) (2.20)

φ1(r) =
1

2
log

(
∆(r)

m4

)
− η1(r) + η2(r) + η3(r) (2.21)

φ2(r) =
1

2
log

(
∆(r)

m4

)
+ η1(r)− η2(r) + η3(r) (2.22)

φ3(r) =
1

2
log

(
∆(r)

m4

)
+ η1(r) + η2(r)− η3(r) . (2.23)

Taking suitable linear combinations of the scalar and Einstein’s equations one finds

0 =
(
r (r − 2m)φ′0(r)

)′
+ 2

(
q2

0

m2
e−φ0(r) − 1

)
(2.24)

0 =
(
r (r − 2m)φ′i(r)

)′
+ 2

(
B2
i

m2
e−φi(r) − 1

)
. (2.25)

Upon solving these decoupled equations one has the solution for the original fields ∆(r)

and ηi(r), and the solution for F 0 is then given by (2.16). Hence, we have effectively

diagonalized the full non-linear system.

We have obtained general solutions to the decoupled equations (2.24)–(2.25),4 each

of which depends on two arbitrary integration constants. These generic solutions are not

regular at the horizon r = 2m , but upon imposing regularity they reduce to

φreg
0 (r) = log

[
q2

0

4m4

(
a2

0 r + 2m
)2

1 + a2
0

]
(2.26)

φreg
j (r) = log

 B2
j

4m4

(
a2
j r + 2m

)2

1 + a2
j

 , (2.27)

where the four independent constants a0, ai parameterize a family of static black hole

solutions. Close to the horizon, one finds

φreg
0 (r → 2m) = log

( q2
0

m2

(
1 + a2

0

))
+O

(
r − 2m

)
, (2.28)

φreg
j (r → 2m) = log

(B2
j

m2

(
1 + a2

j

))
+O

(
r − 2m

)
. (2.29)

4The general static solutions of the STU model have been constructed in [24] using different techniques.

The hidden conformal symmetry of the Klein-Gordon equation on these backgrounds is studied in [25].
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Similarly, in the asymptotic region r →∞

φreg
0 (r →∞) =

{
log r2

m2 +O (1) , a0 6= 0

log
q2
0
m2 , a0 = 0

(2.30)

φreg
j (r →∞) =

{
log r2

m2 +O (1) , aj 6= 0

log
B2
j

m2 , aj = 0
(2.31)

Going back to the original fields ηi and ∆, the solution reads

∆(r) =

√
q2

0B
2
1B

2
2B

2
3

16m4

3∏
I=0

a2
I r + 2m√

1 + a2
I

(2.32)

e2η1(r) =

∣∣∣∣B2B3

q0B1

∣∣∣∣
√(

1 + a2
0

) (
1 + a2

1

)(
1 + a2

2

) (
1 + a2

3

) (a2
2 r + 2m

) (
a2

3 r + 2m
)(

a2
0 r + 2m

) (
a2

1 r + 2m
) (2.33)

e2η2(r) =

∣∣∣∣B1B3

q0B2

∣∣∣∣
√(

1 + a2
0

) (
1 + a2

2

)(
1 + a2

1

) (
1 + a2

3

) (a2
1 r + 2m

) (
a2

3 r + 2m
)(

a2
0 r + 2m

) (
a2

2 r + 2m
) (2.34)

e2η3(r) =

∣∣∣∣B1B2

q0B3

∣∣∣∣
√(

1 + a2
0

) (
1 + a2

3

)(
1 + a2

1

) (
1 + a2

2

) (a2
1 r + 2m

) (
a2

2 r + 2m
)(

a2
0 r + 2m

) (
a2

3 r + 2m
) . (2.35)

It is worth emphasizing that, depending on how many of the constants a0, ai are

non-zero, the asymptotic behavior of ∆(r) in our family of solutions can be of the form

∆(r → ∞) ∼ rγ , with γ = 0, 1, . . . , 4 . In particular, when a0 = ai = 0 (i.e. γ = 0) we

obtain an asymptotically AdS2 × S2 black hole solution. When γ 6= 0, the metric displays

a “Lifshitz-covariance” of the form t → λzt , r → λ2θ/γr , ds2 → λθds2 in the r � 2m

region, where the dynamical exponent z and the hyperscaling violation exponent5 θ are

related by θ =
(

γ
γ−2

)
z. We have checked explicitly that our family of solutions satisfies all

the coupled equations of motion. In particular, the first order constraint (2.19) is satisfied

identically, and places no restriction on the values of the constants a0, ai.

2.3 The “original” and “subtracted” geometries

The family of solutions found in section 2.2 contains as a particular case the solutions

dubbed “original” and “subtracted” in [14, 15].6 The original solution is given in terms of

functions

pI(r) = r + 2m sinh2 δI , (2.36)

5These metrics are in a sense a “global” version of the planar black brane solutions that have been

used to model condensed matter systems displaying hyperscaling violation; for some representative works,

see [26–28] and references therein.
6As we have mentioned our solutions are related to the purely electric solutions of [14, 15] by the duality

transformation F i → −eη0−2ηi
(
?4F

i
)
. In particular the conformal factor ∆(r) and the scalars η(r) are

unaffected by this transformation, and it is in this sense that we use the same terminology to refer to the

full solutions.
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(I = 0, 1, 2, 3) and it reads

∆(r) =

3∏
I=0

pI(r) (2.37)

e−ηi(r) = pi(r)

√
p0(r)

p1(r)p2(r)p3(r)
(2.38)

F 0
rt = −msinh (2δ0)

p0(r)2
. (2.39)

We then see that the original geometry is asymptotically flat in the r →∞ (i.e. r � 2m)

region. Comparing with our general solution we can easily read off the electric and magnetic

charges and the parameters aI in terms of the δI :

qorig
0 = −m sinh(2δ0) , Borig

i = m sinh (2δi) , (2.40)

aorig
I =

1

sinh(δI)
. (2.41)

Similarly, the so-called subtracted geometry is given by

∆(r) = (2m)3
[(

Π2
c −Π2

s

)
r + 2mΠ2

s

]
(2.42)

eηi(r) =
1√

∆(r)

∏
j 6=i

Bj (2.43)

F 0
tr = − 16m4

∆2(r)
ΠcΠsB1B2B3 , (2.44)

where the Bi are the magnetic charges as before, and we can read off the electric charge

as q0 = −16m4 (B1B2B3)−1 ΠcΠs.
7 This solution is asymptotically conical for r →∞ [16].

Comparing with our general solution, we learn that the subtracted geometry has

asubt
0 =

√
Π2
c −Π2

s

Π2
s

, asubt
i = 0 . (2.45)

As shown in [14], the thermodynamics of the original and subtracted solutions matches

if the parameters Πc and Πs are given as follows:

Πc =
3∏
I=0

cosh δI , Πs =
3∏
I=0

sinh δI . (2.46)

As we indicated above, depending on how many of the parameters aI are zero the

(large-r) asymptotic behavior of the conformal factor ∆(r) changes. While the asymptot-

ically flat original geometry has all aI 6= 0 and ∆orig ∼ r4 for large r (i.e. r � 2m), we

have shown that the subtracted solution has a1 = a2 = a3 = 0 and therefore the conformal

7Upon dualizing, we obtain a generalization of the solution presented in [14, 15] where we allow for a

set of four independent U(1) charges.
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Figure 1. Log plot of γ(r) ≡ d log(∆)
d log r for the general solution (2.32). The bottom red curve

with γ(r � 2m) = 1 corresponds to the subtracted geometry (a1 = a2 = a3 = 0), while the

various curves with γ(r � 2m) = 4 correspond to the original geometry with different values for

a1 = a2 = a3 ≡ 1/ sinh(δ). The different curves have increasingly larger values of δ towards the

right, so we see that the original and subtracted geometries agree over a broader range in r as the

magnetic charges B ∼ sinh(2δ) increase.

factor scales linearly ∆subt ∼ r. Figure 1 illustrates how we can smoothly interpolate be-

tween the subtracted and original geometries by dialing the parameters aI . In particular

notice that when all δi � 1 a region emerges where the two solutions match to a very good

approximation. It is in this sense that we refer to our family of solutions as an interpolating

flow, with the different curves in figure 1 corresponding to different points in the space of

couplings on a putative dual field theory. In fact, in this limit (also known as dilute-gas

approximation) one can think of the subtracted solution as coming from a decoupling limit

of the original solution, as we will discuss in the next sections.

3 Interpreting the flow between the original and subtracted geometries

In the previous section we described a four-parameter family of exact static solutions of the

STU model that interpolates between the original and subtracted geometries; depending

on the choice of parameters, this family also includes geometries with different asymptotic

behavior from that of the original geometry. We can thus view the subtracted geometry

loosely as an IR endpoint of an RG flow starting from the original geometry.

It is noteworthy that our solution implements explicitly the scaling limit discussed in [16]

that extracts the subtracted solution from the original one. In the present section we will

interpret this scaling limit as a flow between the original and subtracted geometries, while

setting the stage for the AdS/CFT discussion to follow in section 4.
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Even though (2.32)–(2.35) (with F 0 given by (2.16)) is an exact solution of the full

nonlinear equations, we find it instructive to discuss its linearized version. On the one hand

the linearized analysis makes the discussion of regularity at the horizon cleaner, since this is

related to a choice of state in the holographic context. Secondly, the sources that one gets

by linearizing our family of exact solutions do not necessarily correspond to the sources of

irrelevant perturbation theory, as we will discuss in detail below. Lastly, while in generic

situations exact solutions to the nonlinear equations are not available, the principles behind

the linearized analysis still apply. In particular, we will exhibit the existence of linearized

modes of the subtracted geometry that start the flow to the original geometry when their

sources are chosen correctly. As we will explicitly show in section 4, upon uplifting the

solutions to 5d, these modes will turn out to be dual to irrelevant operators that deform

the conformal field theory dual to the subtracted geometry.

3.1 Linearized analysis

We start our analysis by linearizing the field equations around the subtracted solution.

Since the full non-linear equations of motion are diagonalized by the fields φI in (2.20)–

(2.23), we can simply consider

φI = φsubt
I + δφI , (3.1)

where the δφI will be our linearized perturbations. The linearized equations are then

r(r − 2m)δφ′′0 + 2(r −m)δφ′0 − 2
q2

0B
2
1B

2
2B

2
3

∆2
δφ0 = 0 , (3.2)

r(r − 2m)δφ′′i + 2(r −m)δφ′i − 2δφi = 0 . (3.3)

The equations for the δφi’s are particularly simple, and we focus on those first. Changing

to a new radial variable x = r
m − 1 , these equations take the form

(1− x2)δφ′′i (x)− 2xδφ′i(x) + 2δφi(x) = 0 , (3.4)

which is a Legendre equation whose general solution is

δφi(x) = αi x+ βi

(
x

2
log

(
x+ 1

x− 1

)
− 1

)
. (3.5)

Of these two solutions, only one is regular at the horizon (which is located at x = 1),

therefore we must set βi = 0, or

δφi = αi

( r
m
− 1
)
. (3.6)

Using the same variable x, and defining the parameters b and c as

b =
Π2
c −Π2

s

2
√

2ΠcΠs

, c =
Π2
c + Π2

s

2
√

2ΠcΠs

, (3.7)

the equation for δφ0 becomes

(1− x2)δφ′′0(x)− 2xδφ′0(x) +
1

(bx+ c)2
δφ0(x) = 0 . (3.8)
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The solution that is regular at the horizon in this case is given by

δφ0 = α0
cx+ b

bx+ c
= α0

(Π2
c + Π2

s)r − 2mΠ2
s

(Π2
c −Π2

s)r + 2mΠ2
s

. (3.9)

Notice that the condition of regularity will translate into a functional relation between the

normalizable and non-normalizable modes in the standard holographic setting.

3.2 Perturbation theory and determination of the sources

In the previous section we showed that the solutions dubbed “original” and “subtracted”

fit in a four-parameter family of solutions parametrized by aI . In particular, recall that

we have

aorig
i =

1

sinh δi
, asubt

i = 0 , (3.10)

while the two a0’s are both different from zero. In order to go from the subtracted to the

original geometry, we need to “turn on” the parameters ai and change the parameter a0.

We would like to understand this in terms of a flow that is started by linearized fluctuations

around the subtracted background. This suggests that the sources αI should be directly

related to the parameters aI . However, since we are turning on an irrelevant mode, at each

order in perturbation theory higher powers of r will be generated, therefore we need to

treat the sources as infinitesimal quantities. It is easy to see that linearizing the general

solution φi around a2
i = 0, at first order in a2

i one gets:

φi = φsubt
i + a2

i

( r
m
− 1
)

+ . . . , (3.11)

and we recognize the second term on the right-hand side as being the linearized perturbation

of the previous subsection. Notice that the higher order terms do not contain terms linear

in r, so the sources obtained by linearizing in a2
i are equivalent to the sources that one

would obtain by extracting the coefficient of order r in a power-series expansion. Therefore

we should identify

αi = (aorig
i )2 =

1

sinh2 δi
. (3.12)

Analogously, we have

φ0 = φsubt
0 + (a2

0 − (asubt
0 )2)

Π2
s

Π2
c

(Π2
c + Π2

s)r − 2mΠ2
s

(Π2
c −Π2

s)r + 2mΠ2
s

, (3.13)

and as a consequence

α0 =
(

(aorig
0 )2 − (asubt

0 )2
) Π2

s

Π2
c

. (3.14)

Notice however that the sources are in general not infinitesimal. They do become infinites-

imal in the limit where the three parameters δi become very large. In fact in this limit we

obtain particularly simple expressions for the sources:

αi ≈ 4 e−2δi , (3.15)

α0 ≈ −4
∑
i

e−2δi . (3.16)
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Therefore, to leading order we have the relation:

δ∆

∆
=

1

2

∑
I

δφI = 0, (3.17)

that is, the metric is not changed to leading order in the parameters e−2δi .

Looking at the behavior of the linearized modes for very large r, one is led to the suspi-

cion that the δφi’s correspond to irrelevant perturbations while δφ0 seems to be associated

to a marginal perturbation. In section 4 we will show that this suspicion is correct (after

a suitable change of basis), and we will compute the quantum numbers of the operators in

the dual CFT2 that we need to turn on to start the flow to the asymptotically flat original

black hole. It is important to notice that these irrelevant perturbations do change the value

of the matter fields in the interior, and in particular they are finite (i.e. non zero) at the

horizon. This is in contrast to the extremal case, where irrelevant perturbations die off

quickly in the interior and do not change the value of the fields at the horizon.

Notice also that since we are turning on irrelevant deformations, there is no intrinsic

(i.e. coordinate invariant) way to extract the sources for the dual operators. Their precise

definitions must be supplemented with a perturbation scheme to compute higher order

corrections. For example, it is easy to see that our choice for the αi’s is compatible with a

scheme where the linear term in r does not receive higher order corrections; however if we

used a different radial coordinate, for example r′ = r + c where c is a constant, this would

not be true anymore. This ambiguity has an analog in quantum field theory, where the

question of whether a source of an operator receives quantum corrections or not depends

on the renormalization scheme. This ambiguity is obviously not present to leading order

in perturbation theory. We will revisit this issue at the end of section 4.3, where we will

describe other possible choices for the sources.

3.3 Range of validity of the linear approximation

In many applications, one does not have the exact solutions, and often it is even impossible

to solve the linearized equations exactly. In fact, in many interesting situations only the

linearized modes in the asymptotic region are available, and a numerical treatment becomes

necessary. It is therefore useful to investigate how one could approach this problem from

a numerical perspective; we will then be able to compare the numerical results with the

analytic results of the previous sections. The first step is to find a region that can be

identified with the asymptotic region of the subtracted geometry (that is r
m � 1) but

where the modes that start the flow to the original geometry are still small, so that they

can be treated perturbatively. From the discussion in the previous sections, it is clear that

this region should be

1 <
r

m
� 1

α
. (3.18)

where α is the smallest of the αi’s. Furthermore, we argued that the αi’s are related to

the parameters δi, so that when the latter are large, αi ≈ 4 e−2δi . As anticipated in the

previous section, this is when the three charges B1, B2, and B3 are large compared to the

fourth, q0 .
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Figure 2. The dashed red line represents the difference between the original and subtracted

fields φ1 . The solid black line is a linear function with slope 4e−2δ1 . For this plot, we chose

δ0 = δ1 = δ2 = δ3 = 15, m = 1, and the domain is r ∈ [100, 10−4e2δ1 ] .
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Figure 3. The dashed red line represents the difference between the original and subtracted fields

φ0 . The solid black line is the function 4(e−2δ1 + e−2δ2 + e−2δ3)
(Π2

c+Π2
s)r−2mΠ2

s

(Π2
c−Π2

s)r+2mΠ2
s
. For this plot, we

chose δ0 = δ1 = δ2 = δ3 = 15, m = 1, and the domain is r ∈ [100, 10−4e2δ1 ] .

Since we expect the difference between the original and subtracted solutions for the

φi’s to be linear in this intermediate region, it is possible to determine the sources for these

three modes by means of a linear interpolation, as shown in figure 2. The slope of the linear

function turns out to be 4e−2δi , perfectly matching the results of the previous section.

We can also plot φ0 and the function α0
(Π2
c+Π2

s)r−2mΠ2
s

(Π2
c−Π2

s)r+2mΠ2
s
. We see in figure 3 that the

correct source for this mode is α0 = −α1−α2−α3 = −4(e−2δ1 + e−2δ2 + e−2δ3), confirming

once again the analysis of the previous section. Before closing this section it is worth

emphasizing that, by turning on different combinations of the sources, we can also flow to

the various geometries with Lifshitz-like scaling discussed in section 2.2.
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4 Uplifting and AdS/CFT interpretation

In this section we uplift our 4d solutions to five dimensions, where an AdS/CFT interpre-

tation of the flow is possible. As shown in [14], the subtracted geometry uplifts to a BTZ

black hole, which is asymptotically AdS3×S2. The linearized perturbations of the previous

section uplift to linearized perturbations of the BTZ black hole, and we will explicitly show

them to be dual to three irrelevant scalar operators with conformal weights (h, h̄) = (2, 2).

This allows us to give a more precise description of the dynamical realization of the con-

formal symmetry for the charged 4d black holes under study, while clarifying at the same

time the limitations of this program.

4.1 The 5d Lagrangian and equations of motion

As shown in [23], the STU model (2.1) can be obtained by dimensional reduction of the

following 5d Lagrangian:

L5 = R5 ?51−
1

2
Hij ?5dh

i ∧ dhj − 1

2
Hij ?5F̃

i ∧ F̃ j +
1

6
Cijk F̃

i ∧ F̃ j ∧ Ãk, (4.1)

where Hij and Cijk are defined as in (2.1). The 4d and 5d line elements are related by

ds2
5 = f−1ds2

4 + f2
(
dz +A0

)2
, (4.2)

and the vector fields by

Ãi = χi(dz +A0) +Ai . (4.3)

The form of the hi scalars in our general four-parameter family of solutions is given

in (A.47)–(A.49). In particular, uplifting the subtracted solution (2.42)–(2.44) we discover

that the 5d scalar fields are constant in this case:8

h1
subt =

(
B2

1

B2B3

)1/3

, h2
subt =

(
B2

2

B1B3

)1/3

, h3
subt =

(
B2

3

B1B2

)1/3

. (4.4)

As anticipated, the 5d subtracted geometry asymptotes to AdS3×S2, and this will allow us

to interpret the flow we found in the four-dimensional STU theory in terms of deformations

of the CFT living on the boundary of the AdS3 factor. The strategy we will follow consists

of performing a consistent Kaluza-Klein reduction of the 5d theory on the two-sphere to

obtain an effective (2 + 1)-dimensional theory. We will discover that the solutions of this

effective theory with constant scalars correspond locally to AdS3 , and one of them uplifts

precisely to the subtracted geometry in five dimensions. Linearizing the theory around this

solution will then allow us to identify the dual operators associated with the flow between

the original and subtracted geometries.

Before proceeding further we note that the model (4.1) is slightly inconvenient in that

the scalar fields satisfy the constraint h1h2h3 = 1 which must be solved before taking

8Without loss of generality, in order to simplify the notation we assume that the magnetic charges satisfy

Bi > 0 from now on. In the general case, the absolute value of various expressions involving products of

the Bi should be considered when appropriate.
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variations of the action. Hence, we choose to work instead with unconstrained scalars Ψ

and Φ defined through [23]

h1 = e

√
2
3

Ψ
, h2 = e

− Ψ√
6
− Φ√

2 , h3 = e
− Ψ√

6
+ Φ√

2 , (4.5)

in terms of which

L5 = R5 ?51−
1

2
?5dΨ∧dΨ−1

2
?5dΦ∧dΦ−1

2
Hij (Ψ,Φ) ?5F̃

i∧F̃ j+1

6
Cijk F̃

i∧F̃ j∧Ãk . (4.6)

The equations of motion for the matter fields are then

0 = d
(
Hij ?5F̃

j
)
−
Cijk

2
F̃ j ∧ F̃ k (4.7)

0 = d
(
?5dΨ

)
− 1

2

δHij

δΨ
?5F̃

i ∧ F̃ j (4.8)

0 = d
(
?5dΦ

)
− 1

2

δHij

δΦ
?5F̃

i ∧ F̃ j . (4.9)

Similarly, Einstein’s equations read

Gµν =
1

2

[
∇µΨ∇νΨ− gµν

2
∇λΨ∇λΨ +∇µΦ∇νΦ− gµν

2
∇λΦ∇λΦ

+Hij

(
F̃ i ρµ F̃ jνρ−

gµν
4
F̃ iλρF̃

j λρ
)]

(4.10)

and we recall that the only non-vanishing components of Hij (Ψ,Φ) are given by

Hii (Ψ,Φ) =
(
hi (Ψ,Φ)

)−2
.

4.2 Consistent Kaluza-Klein reduction

The general structure of the uplifted line element (4.2) is

ds2
5 = e

η0
3 ds2

4 + e−
2η0
3
(
dz +A0

)2
(4.11)

= e
η0
3

√
∆(r)

(
dr2

X(r)
− G(r)

∆(r)
dt2 +

e−η0√
∆(r)

(
dz +A0

)2)
+ e

η0
3

√
∆(r) ds2

(
S2
)

(4.12)

where we assume that A0 has no legs on the sphere directions (i.e. it is purely electric). It is

easy to show that the subtracted geometry uplifts to a BTZ×S2 black hole. Nevertheless,

it is more convenient to take a more general route that will allow us to characterize the

general linear perturbations around the uplifted geometry. A Kaluza-Klein (KK) Ansatz

that includes all our uplifted solutions is

ds2
5 = ds2

string(M) + e2U(x)ds2 (Y ) (4.13)

F̃ i = −Bi sin θ dθ ∧ dφ (4.14)

Ψ = Ψ(x) (4.15)

Φ = Φ(x) . (4.16)
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Here, M is the (2 + 1)-dimensional “external” manifold with coordinates x = {r, t, z}, and

some metric that we keep arbitrary, and Y is the “internal” (compact) manifold, namely

the two-sphere with radius `S and coordinates y = {θ, φ}. We pick the orientation such

that the volume form on Y is vol2 = `2S sin θ dθ∧dφ . The subscript “string” in ds2
string(M)

is meant to remind us that the theory that will come out of the reduction will not be

immediately in the (2 + 1)-dimensional Einstein frame, but rather in what could be called

string frame. After performing the reduction we will translate the effective theory to

Einstein frame before performing the AdS/CFT analysis. The radius of the sphere `S is

set by the equations of motion to be:

`S = (B1B2B3)1/3 . (4.17)

Notice however that we have the freedom to rescale U in the reduction. The choice above

guarantees that the radius of the reduced 3d (locally) AdS3 metric (in the final 3d Einstein

frame) is equal to the radius of the (locally) AdS3 factor in the 5d geometry.

The details of the (consistent) KK reduction can be found in appendix A.2. Reducing

the 5d equations of motion one finds that all reference to the two-sphere drops out, and the

resulting three-dimensional equations of motion (A.17), (A.18), (A.41) and (A.42) follow

from the effective (string frame) action

Sstring = − 1

16πG3

∫
d3x
√
|g| e2U

[
R+

2

`2S
e−2U − e−4U

2

3∑
i=1

B2
i

`4S
Hii(Ψ,Φ)

+ 2 (∇U)2 − 1

2
(∇Ψ)2 − 1

2
(∇Φ)2

]
. (4.18)

The three dimensional Newton’s constant G3 is fixed in terms of the normalization of the

5d action and the volume of the internal manifold, which are in turn related to the 4d

Newton’s constant G4:

G3 =
1

4π`2S
G5 =

Rz
2`2S

G4 . (4.19)

Here, Rz is the radius of the circle on which we reduce to go from the 5d theory (4.1) to

the 4d STU model, and is in principle arbitrary. The next step consists in passing to three-

dimensional Einstein frame by performing a Weyl rescaling of the metric on M . Denoting

with a subscript (E) the quantities in Einstein frame, the transformation we need is

ds2
string(M) = e−4Uds2

(E)(M) , (4.20)

which in particular implies

R = e4U
[
R(E) + 8�(E)U − 8

(
∇(E)U

)2]
. (4.21)

It follows that the Einstein frame effective action is (after dropping a surface term)

S(E) = − 1

16πG3

∫
d3x
√
|g(E)|

[
R(E) − 6

(
∇(E)U

)2 − 1

2

(
∇(E)Ψ

)2 − 1

2

(
∇(E)Φ

)2
+

2

`2S
e−6U − e−8U

2

3∑
i=1

B2
i

`4S
Hii(Ψ,Φ)

]
. (4.22)
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In a slight abuse of notation, we will drop the subscript (E) from now on because we will

be working exclusively in Einstein frame. The equations of motion are then

Gµν = − gµν
`2S

[
−e−6U +

e−8U

4

3∑
i=1

B2
i

`2S
Hii(Ψ,Φ)

]
+

1

2
T̃µν (4.23)

0 = ∇µ∇µΨ− e−8U

2

3∑
i=1

B2
i

`4S

δHii(Ψ,Φ)

δΨ
(4.24)

0 = ∇µ∇µΦ− e−8U

2

3∑
i=1

B2
i

`4S

δHii(Ψ,Φ)

δΦ
(4.25)

0 = ∇µ∇µU −
e−6U

`2S
+
e−8U

3

3∑
i=1

B2
i

`4S
Hii(Ψ,Φ) , (4.26)

where we defined the “kinetic” part of the stress tensor as

T̃µν = ∇µΨ∇νΨ− gµν
2

(∇Ψ)2+∇µΦ∇νΦ− gµν
2

(∇Φ)2+12∇µU∇νU−6gµν (∇U)2 . (4.27)

4.3 Asymptotically AdS3 solutions and dual operators

We will consider solutions where the scalars take constant values U = Ū , Ψ = Ψ̄, Φ = Φ̄,

so that T̃µν = 0. In such a background, the equations (4.23)–(4.26) reduce to

Gµν = − Λeff gµν (4.28)

0 =

3∑
i=1

B2
i

δHii(Ψ,Φ)

δΨ

∣∣∣∣
Ψ̄,Φ̄

(4.29)

0 =
3∑
i=1

B2
i

δHii(Ψ,Φ)

δΦ

∣∣∣∣
Ψ̄,Φ̄

(4.30)

e2Ū =
1

3

3∑
i=1

B2
i

`2S
Hii(Ψ̄, Φ̄) , (4.31)

where the effective cosmological constant Λeff is given by

Λeff =
1

`2S

[
−e−6Ū +

e−8Ū

4

3∑
i=1

B2
i

`2S
Hii(Ψ̄, Φ̄)

]
= −e

−6Ū

4`2S
, (4.32)

and we used (4.31) in the last equality. In three dimensions, the only solutions to Einstein’s

equations with negative cosmological constant are locally AdS3; the effective AdS3 length

L in our case is then given by

L2 = − 1

Λeff
= 4 e6Ū`2S . (4.33)

There is in fact a unique solution to equations (4.29)–(4.31) for the scalars, given by

eŪ =

(
B1B2B3

`3S

)1/3

= 1 , eΨ̄ =

(
B2

1

B2B3

) 1√
6

, eΦ̄ =

(
B3

B2

) 1√
2

. (4.34)
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Notice in particular that Ū = 0. Comparing with (4.4)–(4.5), we see that these are precisely

the values corresponding to the subtracted geometry.9 Moreover, as it follows from (4.28),

the metric of this three-dimensional solution is locally AdS3 with radius

L = 2 e3Ū`S = 2`S = 2 (B1B2B3)1/3 . (4.35)

The Brown-Henneaux [29] central charge corresponding to the 2d theory on the boundary

of this AdS space is

c =
3L

2G3
= 12π

B1B2B3

G5
. (4.36)

From the presence of the Chern-Simons terms in the 5d theory, one expects the charges

Bi to be quantized in units of G
1/3
5 , which is basically the five-dimensional Planck length.

We will describe the global properties of the solution that corresponds to the subtracted

geometry in the following subsection.

We can determine the operator content of the dual field theory from the action (4.22):

we have the stress tensor coupling to the massless graviton, and three scalar operators that

couple to the boundary values of U , Ψ, Φ. Following the standard AdS/CFT dictionary,

in order to compute the conformal dimensions of these operators we need to obtain the

masses of the linearized bulk fields around the solution corresponding to the subtracted

geometry. Linearizing the equations we find that the fluctuations of the three bulk scalars

decouple and in fact satisfy the same equation:

0 = ∇µ∇µδF −
8

L2
δF , (4.37)

where δF stands for any of δU , δΨ, δΦ. Therefore, the masses are given by

m2
δU = m2

δΨ = m2
δΦ =

8

L2
, (4.38)

and according to the standard dictionary we conclude that the three scalar operators in

the dual theory are irrelevant, with conformal dimension ∆ = 4 .

4.4 Irrelevant deformation of the CFT

Finally, we relate the 4d modes of section 3, parametrized by the αI ’s, to the linearized

modes of the 3d theory. The scalars are

δU =
1

6m
(α1 + α2 + α3) (r −m) (4.39)

δΨ =
1

2
√

6m
(2α1 − α2 − α3) (r −m) (4.40)

δΦ =
1

2
√

2m
(α3 − α2) (r −m) , (4.41)

9For completeness, the explicit form of the 3d scalars in our general family of solutions is given in (A.53)–

(A.55).
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corresponding to non-normalizable modes. To identify the marginal mode, a little work is

required. As explained in [15], the uplifted subtracted geometry can be cast in the BTZ

form with the change of coordinates (we work in a gauge where A0 → 0 as r →∞):

ρ2 =
R2
z

`4S
∆(r) =

R2
z

`4S
(2m)3

((
Π2
c −Π2

s

)
r + 2mΠ2

s

)
(4.42)

t =
Rz
2`4S

(2m)3
(
Π2
c −Π2

s

)
t3 (4.43)

z = −Rzφ3 , (4.44)

so that the metric reads

ds2 = −
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

L2ρ2
dt23 +

L2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 + ρ2

(
dφ3 +

ρ+ρ−
Lρ2

dt3

)2

, (4.45)

with the position of the inner (ρ−) and outer (ρ+) horizons given by

ρ+ =
16m2Rz
L2

Πc , ρ− =
16m2Rz
L2

Πs . (4.46)

The left- and right-moving temperatures are then

TL =
ρ+ + ρ−

2πL2
=

8m2Rz
πL4

(Πc + Πs) , TR =
ρ+ − ρ−

2πL2
=

8m2Rz
πL4

(Πc −Πs) , (4.47)

and the black hole mass, angular momentum, entropy density and temperature are

M =
1

8G3

(
ρ2

+ + ρ2
−

L2

)
=

32m4R2
z

L6G3

(
Π2
c + Π2

s

)
(4.48)

J =
1

8G3

(
2ρ+ρ−
L

)
=

64m4R2
z

L5G3
ΠcΠs (4.49)

S =
(4πρ+)

8G3
=

8πm2Rz
L2G3

Πc (4.50)

T =
2TLTR
TL + TR

=
8m2Rz
πL4

(
Π2
c −Π2

s

Πc

)
. (4.51)

Notice that, in terms of CFT variables, the entropy of the original 4d black hole, which by

construction equals that of the BTZ black hole, can be written as

S =
π2L

3
(cTL + cTR) . (4.52)

This agrees with Cardy’s entropy formula for a CFT with central charge (4.36) on an circle

of length 2πL .

When we uplift the perturbations (3.6) and (3.9), we find that they superficially destroy

the BTZ asymptotics. This is due to the fact that all the independent perturbations in

the 4d theory involve a change in the metric. However, since the 3d linearized Einstein’s

equations decoupled from the matter fields, the solution must still be locally AdS3 and
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the uplifted perturbations must correspond to a change in the BTZ parameters up to

diffeomorphisms. Indeed, we can perform a linearized diffeomorphism

δgµν = 2∇(µξν) , (4.53)

that brings the metric to the original BTZ form, with the change of parameters:

δρ+ =
(
α0 +

∑
i

αi

)4m2Rz
L2

Πc (4.54)

δρ− = −
(
α0 +

∑
i

αi

)4m2Rz
L2

Πs . (4.55)

Incidentally, this shows that the marginal mode is non-normalizable from the AdS3 per-

spective, and that there is a non-trivial change of basis between the independent 4d modes

and the 3d modes. We can translate this into a change of mass and angular momentum of

the BTZ black hole:

δM = δ

(
ρ2

+ + ρ2
−

8G3L2

)
=
(
α0 +

∑
i

αi

)16m4R2
z

G3L6

(
Π2
c −Π2

s

)
(4.56)

δJ = 0 . (4.57)

Notice that the variations of the physical BTZ parameters vanish when

α0 = −
∑
i

αi . (4.58)

As we now explain, we can choose our sources so that they satisfy the relation above, and

this corresponds to a scheme where the entropy of the black hole does not change order by

order in perturbation theory.

Recall that the precise relation between the parameters αI and the parameters aI that

describe the family of exact black hole solutions depends on the renormalization scheme,

as explained at the end of section 3.2. The choice (3.12)–(3.13) is one possibility, but here

we will present an alternative that is more natural from the point of view of AdS/CFT.

In quantum field theory one has the freedom to redefine the sources at each order in

perturbation theory, so that

J = J0 + λJ1 + . . .+ λnJn + . . . , (4.59)

where λ is the coupling constant. It is customary to choose a scheme where

J = J0 , (4.60)

i.e. where the source is not renormalized. From the point of view of AdS/CFT, this means

that the coefficient of ρ∆−d that corresponds to the source of the dual operator does not

change at higher order in perturbation theory. This corresponds to the choice

αi =
Π2
c −Π2

s

Π2
c sinh2 δi −Π2

s cosh2 δi
≈ 4e−2δi , (4.61)
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showing once again that the leading contribution is independent of the scheme. It is possible

to do the same for the metric mode associated to the dual stress tensor, but in this context

it seems more natural to choose a scheme where the 4d metric does not change at the

horizon order by order in perturbation theory. This yields

α0 = −
3∑
i=1

αi ≈ −4
3∑
i=1

e−2δi , (4.62)

which once again agrees with the previous results to leading order in e−2δi . Notice that

this choice corresponds to keeping the physical parameters of the BTZ black hole fixed, so

that at first order the marginal mode associated to the metric is turned off. We conclude

that the flow to the original geometry is started by turning on three irrelevant operators

in the dual CFT.

4.5 Irrelevant mass scale and range of validity of the CFT description

Finally, we can determine the mass scale set by the irrelevant deformations, which rep-

resents the UV cutoff of the dual field theory. Consider the asymptotic behavior of the

field δU :

δU =
`4S
∑3

i=1 αi
3R2

z(2m)4 (Π2
c −Π2

s)
ρ2 + . . . . (4.63)

As a consequence, the source of the operator dual to U reads

JU =
L8
∑3

i=1 αi
48R2

z(2m)4 (Π2
c −Π2

s)
=

1

12π2TLTR

∑
i

αi . (4.64)

Recall that the temperature in a CFT sets an infrared cutoff, while the mass scale of

the irrelevant deformation sets an ultraviolet cutoff. Equation (4.64) shows that when the

αi’s are of order 1, the infrared cutoff and the ultraviolet cutoff are of the same order, so

that there is no regime where the conformal field theory description is meaningful. On the

other hand, when the αi’s become small (or δi � 1), an energy window appears where

perturbation theory on the CFT should be a good description of the system:

1 <
E2

TLTR
� 1

α
. (4.65)

This is the CFT analog of the condition (3.18) that we have identified in the 4d system.

We can phrase the result above in terms of standard effective field theory. The contri-

butions of irrelevant couplings to a process characterized by an energy scale E are typically

suppressed by powers of E/M , where M is the UV cutoff set by the irrelevant couplings.

In our case we have

M2 ≈ 1

α
TLTR , (4.66)

and this should be compared to the IR cutoff of the system, that is the temperature. One

way to see this is that contributions from the region E ∼M to thermal expectation values

are suppressed by a factor e−βM ; since these contributions cannot be reliably computed in
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effective field theory, we require βM � 1. In this sense, M is very large when the α’s are

small, opening up a range of energies where effective field theory becomes meaningful. It

is precisely in this region that CFT (plus perturbation theory) becomes a good description

of the system.

5 Discussion

It has been recently argued that certain questions involving the entropy and thermodynam-

ics of four-dimensional asymptotically flat non-extremal black holes can be elucidated by

replacing the original geometry by one with a different conformal factor, dubbed subtracted

geometry. The replacement modifies the asymptotics while preserving the near-horizon be-

havior of the original black hole, in such a way that the role of an underlying conformal

symmetry becomes manifest, shedding light on the form of the entropy for black holes away

from extremality [14–16]. Building on these works, we have shown that four-dimensional,

static, asymptotically flat non-extremal black holes with one electric and three magnetic

charges can be connected to their corresponding subtracted geometry by a flow which we

have constructed explicitly in the form of an interpolating family of solutions. Upon uplift-

ing the construction to five dimensions the subtracted geometry asymptotes to AdS3×S2,

and an AdS/CFT interpretation of the flow is readily available as the effect of irrelevant

perturbations in the conformal field theory dual to the AdS3 factor. In particular, we have

identified the quantum numbers of the deformations responsible for the flow and showed

that they correspond to three scalar operators with conformal weights (h, h̄) = (2, 2).

As discussed in detail in section 3 and 4, the mass scale associated to such irrelevant

perturbations becomes very large compared to the temperature when the magnetic charges

are large. In this limit, it is reasonable to expect that some dynamical questions can be

approximately answered by means of perturbation theory in the CFT2 . At least in the

static limit, our construction then puts the procedure followed in [14, 15] on a somewhat

more concrete footing. On the other hand, away from this limit the ultraviolet cutoff set

by the irrelevant deformations becomes of the same order of the infrared cutoff set by the

temperature, and the dual CFT captures an increasingly smaller subset of the dynamics,

making the usefulness of such an approach doubtful.

It would be of interest to extend our analysis to include rotating four-dimensional

black holes. Even though we do not expect any conceptual difficulties, the rotating case

is technically more challenging: in the 5d uplifted geometry the two-sphere S2 is fibered

non-trivially over AdS3 , and the modes that start the flow presumably involve non-trivial

harmonics on the sphere. This case will be addressed elsewhere. It would also be very

interesting to set up the perturbation scheme in the dual CFT2 and determine what ob-

servables of the 4d black hole can be reliably computed in terms of perturbation theory

in the irrelevant couplings. Effective field theory makes sense only up to the scale set by

the irrelevant deformations. However, our perturbations can be resummed geometrically

to all orders, allowing us to go beyond the region where perturbation theory is meaningful

and reach the asymptotically flat region. From the field theoretic perspective, it is then

natural to wonder whether this allows us to say something about the regime where effec-
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tive field theory breaks down. Similar questions can be considered for the black holes with

Lifshitz-like asymptotics that can be obtained by turning on only a subset of the irrelevant

deformations.
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A Conventions and useful formulae

A.1 Hodge duality

Let ω be a p-form in D-dimensions,

ω =
1

p!
ωµ1...µp dx

µ1 ∧ . . . ∧ dxµp . (A.1)

We define the action of the Hodge star on the basis of forms as

? (dxµ1 ∧ · · · ∧ dxµp) =
1

(D − p)!
εν1...νD−p

µ1...µp dxν1 ∧ · · · ∧ dxνD−p , (A.2)

where εµ1...µD are the components of the Levi-Civita tensor. Equivalently, in components

we find

(?ω)µ1...µD−p
=

1

p!
εµ1...µD−p ν1...νp ω

ν1...νp . (A.3)

If εµ1...µD denotes the components of the Levi-Civita symbol (a tensor density), we have

εµ1...µD =
√
|g| εµ1...µD ⇔ εµ1...µD =

(−1)t√
|g|

εµ1...µD (A.4)

where t denotes the number of timelike directions, and we have adopted the convention

that the Levi-Civita symbol ε with up or down indices is the same. The volume element is

given by

? 1 =
√
|g| dDx ≡ volD ⇒ ?volD = (−1)t1 . (A.5)

A useful observation is that, for any two p-forms A and B,

?A ∧B = ?B ∧A =
1

p!
Aµ1...µpBµ1...µp volD . (A.6)

Similarly, if φ is a scalar it follows

d?dφ = (−1)D−1∇µ∇µφ volD ⇒ ?d?dφ = (−1)t+D−1∇µ∇µφ , (A.7)

while a one-form A with field strength F = dA satisfies

?d?dA = ?d?F = (−1)t+1∇νF νλ dxλ . (A.8)
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A.2 Details of the Kaluza-Klein reduction

Here we provide further details on the reduction of the 5d theory (4.6) on the two-sphere.

We found the techniques outlined in [30] particularly useful for this purpose. As described

in the main text, our KK ansatz is

ds2
5 = ds2

string(M) + e2U(x)ds2 (Y ) (A.9)

F̃ i = −Bi sin θ dθ ∧ dφ (A.10)

Ψ = Ψ(x) (A.11)

Φ = Φ(x) , (A.12)

where M is the (2 + 1)-dimensional external manifold with coordinates x = {r, t, z} and Y

is the two-sphere with radius `S and coordinates y = {θ, φ}. We pick the orientation such

that the volume form on Y is vol2 = `2S sin θ dθ ∧ dφ .

Because the field strengths F̃ i are purely magnetic, and proportional to the volume

form of the two-sphere, the vector equations (4.7) are satisfied trivially in our ansatz and

do not yield lower-dimensional equations of motion. Let us now consider the reduction of

the scalar equations (4.8)–(4.9). In order to reduce the coupling of the scalars to the U(1)

field strengths it is useful to notice that via (A.6) our ansatz implies

?5F̃
i ∧ F̃ i =

1

2!
F̃ i µνF̃ iµν vol5 =

B2
i

`4S
e−4U(x) vol5 =

B2
i

`4S
e−2U(x) vol3 ∧ vol2 . (A.13)

Next, we note that for any one-form A with support in M

?5A = e2U(x)?3A ∧ vol2 . (A.14)

In particular, if Ψ is a scalar in M , applying this result to dΨ we find

?5dΨ = e2U(x)?3dΨ ∧ vol2 . (A.15)

The decomposition of the scalar Laplacian then follows:

d?5dΨ = e2U(x)
[
d (?3dΨ) + 2dU(x) ∧ ?3dΨ

]
∧ vol2 . (A.16)

Plugging this result together with (A.13) into (4.8)–(4.9) we find the effective 3d equations

for the scalar fields on M :

0 = d (?3dΨ) + 2dU ∧ ?3dΨ− e−4U

2

3∑
i=1

B2
i

`4S

δHii

δΨ
vol3 (A.17)

0 = d (?3dΦ) + 2dU ∧ ?3dΦ− e−4U

2

3∑
i=1

B2
i

`4S

δHii

δΦ
vol3 . (A.18)

Equivalently, in component notation we have

0 = ∇µ∇µΨ + 2∇µU∇µΨ− e−4U

2

3∑
i=1

B2
i

`4S

δHii(Ψ,Φ)

δΨ
(A.19)

0 = ∇µ∇µΦ + 2∇µU∇µΦ− e−4U

2

3∑
i=1

B2
i

`4S

δHii(Ψ,Φ)

δΦ
. (A.20)
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We now turn our attention to the reduction of the 5d Einstein’s equations (4.10). In

order to reduce the Ricci tensor, we first study the decomposition of the spin connection

and the curvature two-form. Let êM denote the 5d local Lorentz frame, and M,N, . . .

denote the flat indices on the 5d manifold. Denoting by a, b, . . . the flat indices on M , and

by α, β, . . . the flat indices on the compact manifold Y , our choice of vielbein reads

êa = ea (A.21)

êα = eUeα , (A.22)

where ea and eα are orthonormal frames for M and Y , respectively. Denoting by ωab
the spin connection associated with M and by ωαβ the spin connection appropriate to Y ,

solving the torsionless condition for the 5d spin connection ω̂ we find

ω̂ab = ωab (A.23)

ω̂αβ = ωαβ (A.24)

ω̂αa = Pa e
α , (A.25)

where we introduced the shorthand

Pa ≡ eU (∂aU) . (A.26)

It is useful to notice that ω̂aα∧ω̂αb = P aPb ηαβ e
α∧eβ = 0. Next, let Θ denote the curvature

two-form. Then, on the 5d manifold we have Θ̂M
N = dω̂MN + ω̂MP ∧ ω̂PN . Computing

the different components we find

Θ̂a
b = Θa

b (A.27)

Θ̂α
β = Θα

β − PaP aηβ[γδ
α
σ] e

σ ∧ eγ (A.28)

Θ̂α
a = δαγ (∇cPa) ec ∧ eγ . (A.29)

The antisymmetrization symbol [. . .] used above includes a factor of 1/2! , and ∇a denotes

the connection onM . From these expressions we can identify the non-vanishing components

of the Riemann tensor, defined as Θ̂M
N = 1

2!R̂
M
NPQ ê

P ∧ êQ :

R̂abcd = Rabcd (A.30)

R̂αβγδ = e−2URαβγδ − 2e−2UPaP
aδα[γηδ]β (A.31)

R̂αaβb = − δαβ e−U∇bPa (A.32)

R̂aαbβ = − ηαβ e−U∇bP a . (A.33)

In the above notation Rabcd are the components of the Riemann tensor of the external

manifold M , and Rαβγδ those of the Riemann tensor of the compact manifold Y . Finally,

for the decomposition of the Ricci tensor R̂MN = R̂PMPN we find

R̂ab = Rab − dY e−U∇bPa
= Rab − dY (∇b∇aU +∇aU∇bU) (A.34)

R̂αβ = e−2URαβ − (dY − 1) e−2UPaP
a ηαβ − e−U∇cP c ηαβ

= e−2URαβ − dY (∇aU∇aU) ηαβ − (∇a∇aU) ηαβ (A.35)

R̂aα = 0 , (A.36)

– 25 –



J
H
E
P
0
4
(
2
0
1
3
)
0
8
4

where dY is the dimension of the compact manifold (dY = 2 in our case). In particular, for

the Ricci scalar R̂ = ηMN R̂MN it follows that

R̂ = R+ e−2UR− 2dY∇a∇aU − dY (1 + dY )∇aU∇aU , (A.37)

where R is the scalar curvature on M , and R that of Y . Since the two-sphere has radius

`S we have Rαβ = ηαβ/`
2
S . Setting dY = 2 in the above expressions we find that the only

non-vanishing components in our reduction are

R̂ab = Rab − 2
(
∇b∇aU +∇aU∇bU

)
(A.38)

R̂αβ =

(
e−2U

`2S
−∇a∇aU − 2∇aU∇aU

)
ηαβ . (A.39)

The Ricci scalar is then given by

R̂ = R+
2

`2S
e−2U − 4∇a∇aU − 6∇aU∇aU . (A.40)

Using the decomposition of the Ricci tensor, from the components of the 5d Einstein’s

equations in the directions of the external manifold M we get (using flat indices on M)

Rab = 2
(
∇b∇aU +∇aU∇bU

)
+

1

2

[
∇aΨ∇bΨ +∇aΦ∇bΦ−

ηab
3
e−4U

3∑
i=1

B2
i

`4S
Hii(Ψ,Φ)

]
. (A.41)

Similarly, noting that with flat indices F̃ i Pα F̃ iβP =
(
e−4UB2

i /`
4
S

)
ηαβ , from the components

of the 5d Einstein’s equations in the directions of Y we find

∇a∇aU + 2∇aU∇aU −
e−2U

`2S
+
e−4U

3

3∑
i=1

B2
i

`4S
Hii(Ψ,Φ) = 0 . (A.42)

Since all reference to the two-sphere dropped out from the equations of motion, the pro-

posed truncation is consistent. Finally, we point out that the resulting three-dimensional

equations of motion (A.17), (A.18), (A.41) and (A.42) can be obtained from the following

effective action (in string frame):

Sstring = − 1

16πG3

∫
d3x
√
|g| e2U

[
R+

2

`2S
e−2U − e−4U

2

3∑
i=1

B2
i

`4S
Hii(Ψ,Φ)

+ 2 (∇U)2 − 1

2
(∇Ψ)2 − 1

2
(∇Φ)2

]
. (A.43)

A.3 The general solution in terms of 5d and 3d fields

In terms of the 4d fields (2.11)–(2.14), our four-parameter family of solutions was given

in (2.32)–(2.35) (with F 0 given by (2.16)). The hi fields appearing in the 5d theory (and
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also in the 4d STU model) are related to the diagonal fields (2.20)–(2.23) through

h1 = exp

[
1

6
(2φ1 − φ2 − φ3)

]
(A.44)

h2 = exp

[
1

6
(2φ2 − φ1 − φ3)

]
(A.45)

h3 = exp

[
1

6
(2φ3 − φ1 − φ2)

]
. (A.46)

Hence, in our general family of solutions (2.26)–(2.27) they read

h1(r) =

 B2
1

|B2B3|

√(
1 + a2

2

) (
1 + a2

3

)
1 + a2

1

(
a2

1 r + 2m
)2(

a2
2 r + 2m

) (
a2

3 r + 2m
)
1/3

(A.47)

h2(r) =

 B2
2

|B1B3|

√(
1 + a2

1

) (
1 + a2

3

)
1 + a2

2

(
a2

2 r + 2m
)2(

a2
1 r + 2m

) (
a2

3 r + 2m
)
1/3

(A.48)

h3(r) =

 B2
3

|B1B2|

√(
1 + a2

1

) (
1 + a2

2

)
1 + a2

3

(
a2

3 r + 2m
)2(

a2
1 r + 2m

) (
a2

2 r + 2m
)
1/3

. (A.49)

We recall that the 5d line element is given in terms of the 4d one by (4.11). Similarly, in

terms of the decoupled fields the 3d scalars are given by

U =
φ1 + φ2 + φ3

6
+ log

m

`S
(A.50)

Ψ =
1

2
√

6
(2φ1 − φ2 − φ3) (A.51)

Φ =
1

2
√

2
(φ3 − φ2) , (A.52)

so in our general solution we obtain

U(r) =
1

3
log

[
1√(

1 + a2
1

) (
1 + a2

2

) (
1 + a2

3

) ( a2
1

2m
r + 1

)(
a2

2

2m
r + 1

)(
a2

3

2m
r + 1

)]
(A.53)

Ψ(r) =
1√
6

log

 B2
1

|B2B3|

√(
1 + a2

2

) (
1 + a2

3

)
1 + a2

1

(
a2

1 r + 2m
)2(

a2
2 r + 2m

) (
a2

3 r + 2m
)
 (A.54)

Φ(r) =
1√
2

log

[∣∣∣∣B3

B2

∣∣∣∣
√

1 + a2
2

1 + a2
3

(
a2

3 r + 2m

a2
2 r + 2m

)]
. (A.55)
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[8] M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and

event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].

[9] J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy,

Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].
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