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Via event-driven molecular dynamics simulations and experiments, we study the packing-fraction and shear-
rate dependence of single-particle fluctuations and dynamic correlations in hard-sphere glasses under shear. At
packing fractions above the glass transition, correlations increase as shear rate decreases: the exponential tail
in the distribution of single-particle jumps broadens and dynamic four-point correlations increase. Interestingly,
however, upon decreasing the packing fraction, a broadening of the exponential tail is also observed, while
dynamic heterogeneity is shown to decrease. An explanation for this behavior is proposed in terms of a competition
between shear and thermal fluctuations. Building upon our previous studies [Chikkadi et al., Europhys. Lett. 100,
56001 (2012)], we further address the issue of anisotropy of the dynamic correlations.
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I. INTRODUCTION

The relation between the dynamics of structural rearrange-
ment and response in driven amorphous materials has been
a subject of growing interest in the past decade [1–6]. A
central issue in this context is the growth of spatial correlations
upon approaching the glass transition (see, e.g., [7–12] and
references therein). In quiescent glasses, it is well estab-
lished that upon approaching the glass transition, dynamic
correlations grow; this is manifested in an increase of the
dynamic susceptibility [13] as well as strongly non-Gaussian
displacement distributions. However, extensive simulations
and experiments showed that along with the sudden increase
of the macroscopic viscosity and relaxation time, the dynamic
correlation length remains relatively small, limited to a few
particle diameters [8,10–12]. The situation changes when the
glass is driven by applied shear that forces structural rearrange-
ments [14]; such external driving can lead to avalanchelike
plastic response [4,5]. It is then interesting to elucidate how the
dynamics crosses over from the thermal regime of supercooled
liquids to the athermal limit of strongly driven glasses. Besides
the magnitude of correlations, an important issue concerns
their direction dependence: because shear introduces obvious
directionality, this should reflect itself in the microscopic
fluctuations or their correlations, setting them apart from ther-
mally induced correlations. Indeed, our recent simulations and
experiments revealed a transition from isotropic to anisotropic
correlations with increasing importance of shear [15]; this
observation is in qualitative agreement with the anisotropic
correlations observed in the athermal limit of two-dimensional
Lennard-Jones glasses [16] and at finite temperatures [17].
These anisotropic correlations might play a central role in the
shear-banding transition of glasses as suggested in [14].

Hard-sphere systems have been widely used as model
systems to elucidate the dynamics of glasses because of their
conceptual simplicity. These systems have been particularly
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valuable to obtain experimental insight into the microscopic
dynamics. While the small molecular length scales make the
direct observation of microscopic fluctuations in molecular
glasses a difficult task, the situation is more favorable in
the case of colloidal particles with diameters of the order
of 1 μm thanks to the development of modern confocal
microscopy techniques [18,19]. This technique has been fine
tuned in recent years to allow simultaneous tracking of the
trajectories of a large number of particles (up to N = 106). We
have recently combined this promising experimental tool with
computer simulations to study the emergence of anisotropy of
correlations in hard-sphere colloidal glasses [15]. A systematic
investigation of the effect of shear versus packing fraction
(the fraction of the system volume occupied by particles) on
the microscopic fluctuations and their correlations, however,
remained elusive; this would provide deeper insight into the
nature of the dynamic arrest of glasses and the response to
applied shear.

In this paper, we build upon our earlier studies and
investigate the shear-rate and packing-fraction dependence of
dynamic fluctuations and correlations in hard-sphere glasses.
We present event-driven molecular dynamics simulations and
experimental observations of particle dynamics in sheared
supercooled liquids and glasses at shear rates from the thermal
to the shear-dominated regime.

We find that upon decreasing the shear rate, the exponential
tail of the single-particle displacement distributions broadens,
and we show that this broadening is linked to the increase of
dynamic heterogeneity [20,21] as proposed in [22]. In contrast
to this, upon increasing the packing fraction at constant shear
rate, dynamic correlations grow but the exponential tail of
the displacement distributions becomes narrower. We interpret
this in terms of a competition between shear-induced and
inherent thermally induced dynamics. Finally, we address the
question of the direction dependence of spatial correlations.
We find a consistent direction dependence in both simulations
and experiments: isotropic correlations in the thermal regime
go over into anisotropic correlations when shear dominates
the relaxation. Besides this agreement, however, the decay
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of correlations has a different functional form. While an
exponential decay perfectly describes our simulation data, a
power-law behavior is found in the experiments. This longer-
range power-law decay is in qualitative agreement with the
much larger correlation volume measured in the experiments.
A possible reason for this discrepancy can be hydrodynamic
interactions, which are present in the experiments, but not
accounted for in the simulations.

The paper is organized as follows: In Sec. II, we provide
details of the simulations and the experimental system. We then
present simulation results on the structure and single-particle
displacements in Sec. III A, investigate the relation between
single-particle displacements and dynamic correlations in
Sec. III B, and elucidate the functional form of the correlations
in Sec. III C. Section IV is devoted to the experimental results.
We investigate the structure and single-particle displacements
in Sec. IV A and the dynamic correlations in Sec. IV B, and
elucidate the functional form in Sec. IV C. Final discussions
and conclusions are then presented in Sec. V.

II. SIMULATION MODEL AND EXPERIMENTAL SYSTEM

Our simulation model is a polydisperse (11%) hard-sphere
system of mass m = 1 and average diameter σ = 0.8. We
perform event-driven molecular dynamics (MD) simulations
using DynamO [23], and we do not observe any crystallization.
Lengths are measured in units of the average particle diameter
σ . We use Lees-Edwards boundary conditions to have a
time-dependent shear strain γ = t γ̇ , where γ̇ varies from
4 × 10−5 to 10−2. With periodic boundary conditions on
the coordinates xi , yi , and zi in an L × L × L system, the
position of particle i in a box with strain γ is defined as
ri = (xi + γ zi,yi,zi). The packing fraction is tuned from
below to above the glass transition point, which, for the
present polydisperse system, is located at a packing fraction of
φg ≈ 58.5% [24]. The quiescent properties of this system have
been studied extensively in [25]. The temperature is fixed at
T = 1 via velocity rescaling. We present all the measurements
after 100% shearing to ensure that the system has reached the
steady state.

For the experimental measurements, we use a hard-sphere
suspension consisting of sterically stabilized polymethyl-
methacrylate particles suspended in a mixture of cycloheptyl
bromide and cis-decalin that matches both the density and
refractive index of the particles. The particles have a diameter
of σ = 1.3 μm, with a polydispersity of 7%. The particle
volume fraction is fixed at φ ∼ 0.6. We apply shear with con-
stant shear rates in the range of 1.5 × 10−5 to 2.2 × 10−4 s−1,
corresponding to Péclet numbers γ̇ τ between 0.3 and 2.2,
respectively. Here, the structural relaxation time τ = 2 × 104

s was determined from the mean-square displacement of the
particles. More experimental details can be found in [14].

III. SIMULATION RESULTS

A. Structure versus single-particle dynamics

We first elucidate the glass structure and single-particle
displacements in the simulations. From linear response theory
it is well known that in a system under shear the pair
distribution function cannot be fully isotropic, since it would

then correspond to zero stress. Some, even though slight,
amount of anisotropy is thus always present in the structure
of a sheared system. In order to highlight this property, we
determine via both computer simulations and experiments
the pair distribution function g(r,θ ) along different spatial
directions. Given that a particle is at the origin of the coordinate
system, g(r,θ ) is the probability density for finding another
particle a distance r apart from the origin along the direction
θ with respect to the flow (in the shear plane). Similarly
to previous experiments on colloidal suspensions [26] and
computer simulations on a Lennard-Jones glass [3], we observe
in Fig. 1(a) an enhanced peak along the compression axis (θ =
135◦) and a weaker one along the extension axis (θ = 45◦).
Furthermore, not quite unexpectedly, the peak position along
the compression (extension) axis is shifted to slightly smaller
(larger) distances. Interestingly, no detectable difference could
be found for g(r) along the x, y, and z directions.
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FIG. 1. (Color online) (a) The pair distribution function along
various directions. Interestingly, the difference between the principal
coordinate directions (θ = 0◦ and θ = 90◦) is hardly detectable. Al-
beit small, the anisotropy is, however, well resolved when comparing
the extension and compression directions (θ = 45◦ and θ = 135◦) in
the shear plane (spanned by the flow and shear gradient directions). (b)
Distribution function of single-particle displacements Gs(�x,�t),
determined along different directions as indicated. Obviously, no
signature of anisotropy is visible in this quantity. Solid lines are
exponential fits. The dashed line is a quasi-Gaussian fit.
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Since the local packing structure of an amorphous system
strongly influences its dynamic behavior [27], it is interesting
to check whether this anisotropy has an effect on the distribu-
tion of single-particle displacements. In this context, it must
be mentioned that, in the presence of flow, the displacement
of a particle consists of an affine part, which reflects the
deterministic motion with the macroscopic velocity field, and
a nonaffine part, which constitutes the random part of the
dynamics. Of course, when investigating the single-particle
distribution, it is the nonaffine part of particle displacements
which is used.

In order to obtain nonaffine displacements, we proceed as
follows [28]. For each particle, we follow nearest neighbors in
time and determine the best affine tensor � that transforms the
nearest-neighbor vectors di = ri − r0 over the time interval
δt . This is done by minimizing D2 = (1/n)

�n
i=1[di(t + δt) −

(I + �) · di(t)]2, where I is the identity matrix. D2 reflects the
mean-square deviation from a local affine deformation, and is
an excellent measure of local plasticity [29]. The nonaffine
displacements of the particles are determined both (i) via
subtraction of the local flow,

d rna = r(t + δt) − r(t) −
� t

0
dt ′u(t ′,r(t ′)), (1)
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FIG. 2. (Color online) (a) The self part of the van Hove function
along the flow and vorticity directions (x and y) for different strain
intervals. (b) Same as in (a) but now normalized by the width of the
distribution function.
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FIG. 3. (Color online) Mean-squared displacements at a packing
fraction of φ = 0.61 and a shear rate of γ̇ = 10−4. The vertical dashed
lines mark the range of strains used in Fig. 2.

where u(t,r(t)) is a coarse-grained displacement field [28],
and (ii) as d rna = r(t + δt) − r(t) − � · r(t). It is assumed in
(ii) that the coordinate center is at rest. We have verified that
these two definitions give identical results as long as the shear
is homogeneous across the channel [30]. In the general case
of heterogeneous shear, however, the first definition is used.

Applying the above procedure, we have determined the
distribution of nonaffine displacements, also called the self part
of the van Hove function Gs(�x,�t), along various spatial
directions. As seen from Fig. 1(b), in contrast to the pair
distribution, the single-particle displacements seem to be quite
insensitive to shear-induced anisotropy, in agreement with
previous reports [31]. In marked contrast to this observation,
as will be shown below, the situation is quite different for the
spatial correlations of the displacements.

When computing the displacement distributions, a question
arises regarding a possible dependence of the results on the
selected time or strain interval. Here we show that there is
a range of strain intervals where the shape of Gs(�x,�t) is
essentially unchanged (Fig. 2). As a survey of the mean-square
displacement (MSD) (see Fig. 3) clearly shows, the selected
strain interval corresponds to the time domain where particles
start to leave the cage but still are partially trapped (departure
from the plateau in the MSD). We expect significant changes
in Gs(�x,�t) for both shorter and longer strain intervals. For
shorter times, particles move essentially unperturbed along
straight lines (ballistic motion) and since the velocity distri-
bution is a Maxwellian, the distribution of the displacements
�r = v�t is also a Maxwellian (Gaussian). In the limit of
long times, on the other hand, particles leave the cage and
their motion becomes uncorrelated to that of their neighbors
so that again a Gaussian distribution is established [22].

B. Single-particle displacements and dynamic heterogeneity

We are now in the position to study the effect of shear
rate and packing fraction on the displacement distribution.
The effect of shear rate is demonstrated in Fig. 4(a). We
observe a Gaussian central part and a perfect exponential
decay at large displacements; this exponential tail broadens
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FIG. 4. (Color online) Effect of shear rate on (a) Gs(�z) and
(b) χ4. The exponential tail becomes broader as γ̇ decreases. This
is accompanied by a corresponding increase of the maximum value
of the dynamic susceptibility, a measure of dynamic heterogeneity in
the system.

with decreasing shear rate. Broad non-Gaussian tails in the
self part of the van Hove function have also been observed
in [22]. The exponential form of the tail and its universal
character have been recently addressed in [22] where a simple
model based on the idea of dynamic heterogeneity has been
proposed, which could reproduce this important feature with
only a few fit parameters. The central idea behind the approach
proposed in [22] is that the particles in the system can be
divided into slow and fast groups. While the former perform
essentially vibrational motion in the cage formed by their
neighbors, the more mobile particles make comparably large
jumps (of the order of the cage size). Despite the fact that the
distributions of single-particle displacements in both cases are
Gaussian (with different underlying length and time scales), an
exponential tail with logarithmic corrections can be deduced
for the Gs(�x,�t) of the entire system [22].

This motivates us to seek an interpretation of our ob-
servations in terms of dynamic heterogeneity. The observed
broadening would imply that dynamic heterogeneity becomes
enhanced at lower γ̇ . A way to test this idea is to compute the
so-called correlation volume for dynamic correlations. There
are a number of ways of determining the correlation volume.

Two well-known possibilities are the overlap function [12]
and the peak value of the four-point susceptibility of density
fluctuations, χ4 [21]. Here, we choose the second option and
determine χ4 = N [〈f 2

q (t)〉 − 〈fq(t)〉2]. In this expression, N

is the particle number and fq(t) = N−1 �N
i=1 exp{iq · [ri(t) −

ri(0)]} is the incoherent scattering function at wave vector q.
Results on χ4 are plotted in Fig. 4(b). In agreement with the
above-described picture, the maximum value of χ4 increases
with decreasing shear rate. This observation is also in line
with early studies of Yamamoto and Onuki who showed
evidence for the growing length of dynamic correlations upon
decreasing shear rate in a binary mixture of soft-core particles
[32].

The effect of packing fraction is addressed in Fig. 5. We
show Gs and χ4 for a range of packing fractions at a fixed
shear rate of γ̇ = 10−4. Again, a Gaussian central part and a
perfect exponential decay at large displacements are found in
all the cases shown. Note that, upon decreasing the packing
fraction, one expects a decrease of correlations but an increase
of particle mobility. We thus expect that the probability for
a jump of a given length will increase upon decreasing φ,
while the maximum of χ4 will decrease. This expectation is
confirmed by the data shown in Fig. 5.
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order to better highlight the functional dependence, the same data are presented both in a log-log scale (a) and (b) and in a log-linear plot
(c) and (d). In (d), the angle-dependent long-time limit of CD2 (�r) is subtracted from the data.

C. Spatial correlations of displacements

In this section, we focus on the direction dependence of
dynamic correlations. To do so, we use the scalar quantity
D2 introduced above, which is actually a byproduct of the
calculation of nonaffine displacements. In order to study spatial
correlation between nonaffine displacements, we define the
function [14]

CD2 (�r) = 〈D2(r + �r)D2(r)〉 − 〈D2(r)〉2

〈D2(r)2〉 − 〈D2(r)〉2
. (2)

The function CD2 (�r) provides a measure of correlations
between nonaffine displacements at two points in space
separated by a vector �r = (δx,δy,δz). Here, we determine
the directional dependence of this correlation function by
projecting the distance vector �r along different directions
with respect to the flow. To avoid unnecessary fluctuations,
we average the correlation over the angular width π/60. It
is also worth mentioning that, as shown above in the case of
Gs(�x,�t), we have explicitly checked that the correlation
function CD2 is insensitive to the specific value of the strain
δγ , as long as it is in the intermediate regime (data not shown).

Results on CD2 are depicted in Fig. 6 for two characteristic
packing fractions of φ = 0.58 (supercooled state) and φ =
0.61 (glass) for a shear rate of γ̇ = 4 × 10−5. As seen from
this plot, the correlation of plastic activity is fully isotropic in
the supercooled state, while marked anisotropy is visible in the

glassy phase (φ = 61). This is an important observation since
it tells us that, even in the steady state where a colloidal glass
is considered to be completely shear melted, it is possible
to distinguish a glass from a supercooled liquid by purely
dynamical measurements, i.e., without referring to any static
property of the system.

In order to highlight the functional form of CD2 (�r), we
have illustrated the above data both in log-linear and in log-log
scale. As visible from panels (a) and (b), strong deviations
from the power law are observed both in the supercooled state
and in the glass. This is in line with our previous report at
a slightly higher shear rate [15]. Interestingly, plotting the
same data in the log-linear scale reveals perfect exponential
decay both in the supercooled state [Fig. 6(c)] and in the
glassy phase [Fig. 6(d)]. We are not aware of any theoretical
explanation for this exponential decay, and will show below
that this in fact contrasts with the experimental observations. A
possible interpretation of the different behavior of correlations
in simulations and experiments is also given below.

IV. EXPERIMENTAL RESULTS

A. Structure versus single-particle displacements

We complement our simulations with experimental mea-
surements of particle displacements in colloidal glasses. We
first elucidate changes in the glass structure under shear by
showing experimentally measured pair distribution functions
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FIG. 7. (Color online) Experimental pair distribution function (a)
and particle displacements (b) at a shear rate of γ̇ τ = 2.2. The main
panel in (a) shows the pair distribution function along the extension
(−π/4) and compression (π/4) directions in the shear plane. A clear
difference is observed. The inset shows the pair distribution function
in the flow-vorticity plane. No significant difference between the
directions is observed. (b) Particle displacements in the shear plane
along the indicated directions with respect to the flow axis, as well as
along the vorticity direction. Good overlap is observed.

in Fig. 7(a). As in the simulations, in Fig. 7(a), main panel, we
observe an enhanced peak along the compression direction,
and a weaker one along the dilation direction, demonstrating
a small distortion of the structure in the shear plane. On
the other hand, no significant difference is observed in the
flow-vorticity plane, as shown in the inset, again in agreement
with the simulations. Note that because of the lower resolution
of the confocal microscope in the vertical (flow gradient)
direction, the absolute peak values in the main panel and
inset are different. This is also the reason why we cannot
directly compare directions with different inclinations to the
vertical (flow gradient) direction. Nevertheless, comparison of
directions with the same inclination to the vertical axis such
as those shown in Fig. 7(a) is meaningful, and indeed shows a
small structural distortion similar to the simulations.

Despite the small anisotropy of the structure, the displace-
ments of the particles are surprisingly isotropic, again in
agreement with the simulations. To show this, we determine
the nonaffine displacements by subtracting contributions from
the mean flow according to Eq. (1). We show the nonaffine
displacements resolved along various directions with respect

FIG. 8. (Color online) Experimentally measured particle dis-
placements for increasing strain intervals. (a) Probability of particle
displacements along the flow (open symbols) and vorticity (closed
symbols) directions. (b) Same as in (a), but now normalized by the
width of the distribution. The robust shape of the distribution function
indicates robust behavior of the glass in the investigated time domain.

to the flow direction in Fig. 7(b). The data show that
the distributions overlap, indicating that the single-particle
displacements are isotropic. This is further confirmed when
we investigate displacements for different strain intervals; the
corresponding distributions of displacements, resolved along
the flow and vorticity directions, are indicated in Fig. 8. The
data show that the two distributions overlap for all strain
intervals, again indicating the isotropy of the single-particle
displacements. In fact, as in the simulations, the displacement
distributions remain robust for all investigated strain intervals
as shown by the overlap of the rescaled curves in Fig. 8(b).
The collapse of the data indicates that the strain intervals
all probe a similar time domain, where the particles exhibit
essentially similar diffusive characteristics. The mean-square
displacement of the particles (data not shown) shows that this
time domain corresponds to the onset of the diffusive regime,
similarly to the regime addressed by the simulations, as shown
in Fig. 3.

B. Single-particle displacements and dynamic heterogeneity

As in the simulations, we use the full time-dependent
particle trajectories to determine the corresponding displace-
ment distributions and their dynamic correlations. We plot
the results for three different shear rates spanning Péclet
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FIG. 9. (Color online) Experimentally measured displacement
distribution (a) and dynamic susceptibility (b) plotted for increasing
shear rate. The exponential tail in (a) becomes broader as γ̇ decreases,
as in the simulations. This is accompanied by an increase of the
dynamic susceptibility as shown in (b).

numbers from 0.3 to 2.2 in Fig. 9. In agreement with the
simulations, the displacement distributions show a broadening
of the exponential tail with decreasing strain rate indicating
increasing dynamic heterogeneity [Fig. 9(a)]. This increasing
dynamic heterogeneity is confirmed by measurement of the
dynamic susceptibility as shown in Fig. 9(b). At the smallest
applied strain rate, the dynamic susceptibility rises to values
larger than ∼300, indicating long-range correlated motion.
Due to the limited acquisition speed of the three-dimensional
imaging, however, small strain intervals are not accessible for
the fastest strain rate and the maximum dynamic susceptibility
lies outside the accessible window. While the results in Fig. 9
are in qualitative agreement with the simulations shown in
Fig. 4, the absolute value of the dynamic susceptibility ob-
served here is much larger than in the simulations. Obviously,
this discrepancy cannot be explained by a packing-fraction
effect as the overview over different packing fractions in
Fig. 5(b) shows. A possible origin of this discrepancy is the
hydrodynamic interaction between the particles which can
have an influence on the collective dynamics at intermediate
times, where the particles are rattling in the cage formed by
their neighbors.

We are aware of the fact that the externally imposed
shear rates studied in our experiments are far too low to
give rise to macroscopically measurable lubrication forces

so that the rheology of the system is largely independent
of lubrication interactions. Regarding spatial correlations
of particle displacements, however, the following argument
may nevertheless be relevant. A colloidal particle of 1 μm
diameter has a thermal velocity of the order of vthermal ∼√

kBT /mColloid ∼ 10−3m/s. On the other hand, at high packing
fractions considered in our studies, the surface-to-surface
distance of two neighboring colloids is of the order of 10%
of their diameter, i.e., d12 ∼ 10−7 m. A thermal motion of a
colloidal particle with respect to its neighbor thus gives rise to
a local shear rate of the order of γ̇ ∼ vthermal/d12 ∼ 104/s,
many orders of magnitude higher than the applied shear
rate. The resulting hydrodynamic interactions can give rise to
longer-range correlations. However, we shall emphasize that a
colloidal particle has a quasideterministic motion only within
a time interval comparable to the velocity autocorrelation
time. Using standard relations, one finds τVACF ∼ m/ζ ∼
ρ4πR3/3/(6πηR) = 2R2/(9ν) [where ζ is the friction co-
efficient, ρ is the density of the ambient fluid (solvent), η

is the the solvent viscosity, R is the colloid’s radius, and
ν = η/ρ is the kinematic viscosity of the solvent]. Using
typical values of ν = 10−6 m2/s (water) and R = 10−6 m,
one obtains τVACF ≈ 2 × 10−7 s, corresponding to a distance
of ∼2 × 10−10 m. The question thus arises whether, within
this deterministic part of the motion, the presence of the
solvent gives rise to a correlation between the motion of two
neighboring colloidal particles. Solvent-mediated momentum
transfer across a channel of width L takes a time of the
order of τmomdiff ≈ L2/(8ν) (see, e.g., [33]). We thus obtain
τmomdiff/τVACF = (L/R)2. Using L ≈ 0.1R, we see that the
momentum transfer occurs sufficiently fast to give rise to a
correlation between deterministic displacements of colloidal
particles. It nevertheless remains to be clarified to what extent
these correlations influence the type of correlations considered
here, which relate displacements on significantly larger length
scales.

Another point to be mentioned here is that the boundary
conditions on the surface of a particle differ in simulations
and experiments. While in experiments the stick boundary
condition holds, perfect slip holds in simulations. As a result,
tangential forces which may give rise to additional effects are
absent in our simulations.

C. Spatial correlations

Finally, we elucidate the direction dependence of the
dynamic correlations. We do so by determining the full
three-dimensional correlation function from the measured
particle trajectories, as was done previously in the simulations.
Again, we use the nonaffine part of the displacements [Eq. (2)]
to be unaffected by contributions from the mean flow. To
smooth the experimental data, this time we choose angular bins
of width π/18 around the specific directions. The resulting
correlation functions are shown in Fig. 10. We distinguish
two regimes: the thermal regime, where γ̇ τ < 1 and particle
motion is dominated by thermal fluctuations [Figs. 10(a)
and 10(c)], and the regime γ̇ τ > 1, where particle displace-
ments are dominated by the applied shear [Figs. 10(b) and
10(d)]. The data reveal a characteristic change of the decay of
correlations similar to that observed in the simulations: corre-
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FIG. 10. (Color online) Experimental correlation functions of nonaffine displacements in the thermal (γ̇ τ = 0.3) (a), (c) and shear-
dominated (γ̇ τ = 2.2) (b), (d) regimes, in double-logarithmic (upper row) and half-logarithmic (lower row) representations. The correlation
functions are resolved along the indicated directions with respect to the flow direction in the shear plane.

lations exhibit isotropic decay in the thermal and anisotropic
decay in the shear-dominated regime. In the latter case, the
anisotropic decay is characterized by a slower decay in the
flow and a faster decay in the flow-gradient direction. In
contrast to the simulations, however, the functional forms
of the decay appear different. The experimental data in
Fig. 10 suggest a power-law decay of correlations, whereas the
simulations indicate an exponential decay. This slower decay is
in qualitative agreement with the larger values of χ4 observed
before: larger values of χ4 indicate that dynamic correlations
span more particles, and are therefore more extended in
space, in agreement with the power-law decay observed in
the experiments. As mentioned above, a possible reason
for these longer-ranged spatial correlations may be solvent-
mediated hydrodynamic interactions, which are present in
experiments but not accounted for in our event-driven MD
simulations.

V. CONCLUSION

Our simulations and experiments reveal interesting proper-
ties of displacement fluctuations in sheared glasses. While the
glass structure and single-particle displacement fluctuations
remain essentially isotropic, interesting features arise in
the correlations of these displacements in terms of their
anisotropy, volume-fraction, and strain-rate dependence. Our
detailed analysis of simulation and experimental data shows

that within the range of shear rates studied here, dynamic
correlations grow with decreasing applied strain rate. This
is mirrored in an increasing non-Gaussian behavior of the
displacement distributions. Furthermore, correlations grow
with increasing packing fraction. An interesting transition
arises with respect to the symmetry of correlations: while
correlations decay isotropically in the thermal regime, they
become anisotropic when shear dominates the displacements.
We find overall good qualitative agreement between the
simulations and experiments; however, the range of dynamic
correlations differs significantly as evidenced by a short-range
exponential decay of correlations in the simulations, and
a longer-range power-law-like decay in the experiments. A
possible reason for this discrepancy is given in terms of local
hydrodynamic interactions which are present in the colloidal
system but fully absent in simulations. Further work is needed
to investigate the origin of this discrepancy more closely.
Since this interpretation is based on hydrodynamic effects
arising from short-living cage-rattling motion of particles,
temperature may also play a role since it directly influences
this type of particle motion. Finally, we note that, within the
intermediate time domain considered, our observations are
robust. However, outside this time domain, in the ballistic
regime of much smaller and the diffusive regime of much
longer time scales, correlations should become short ranged
again; this behavior should thus be similar to the behavior of
dynamic correlations in quiescent glasses.

022129-8



SINGLE-PARTICLE FLUCTUATIONS AND DIRECTIONAL . . . PHYSICAL REVIEW E 88, 022129 (2013)

ACKNOWLEDGMENTS

S.M. is financially supported by the Max-Planck Society.
P.S. acknowledges support by a VIDI Fellowship from the
Netherlands Organization for Scientific Research (NWO).

ICAMS acknowledges funding from its industrial sponsors,
the state of North-Rhine Westphalia, and the European
Commission in the framework of the European Regional
Development Fund (ERDF).

[1] A. S. Argon, Acta Mater. 27, 47 (1979).
[2] F. Varnik, L. Bocquet, J.-L. Barrat, and L. Berthier, Phys. Rev.

Lett. 90, 095702 (2003).
[3] K. Miyazaki, D. R. Reichman, and R. Yamamoto, Phys. Rev. E

70, 011501 (2004).
[4] A. Lemaitre and C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).
[5] K. Martens, L. Bocquet, and J.-L. Barrat, Phys. Rev. Lett. 106,

156001 (2011).
[6] S. Mandal, M. Gross, D. Raabe, and F. Varnik, Phys. Rev. Lett.

108, 098301 (2012).
[7] C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer,

Nature (London) 399, 246 (1999).
[8] P. Scheidler, W. Kob, and K. Binder, Europhys. Lett. 59, 701

(2002).
[9] J. Baschnagel and F. Varnik, J. Phys.: Condens. Matter 17, R851

(2005).
[10] P. Ballesta, A. Duri, and L. Cipelletti, Nat. Phys. 4, 550

(2008).
[11] F. Varnik and K. Binder, Int. J. Mater. Res. 100, 1494 (2009).
[12] W. Kob, S. Roldan-Vargas, and L. Berthier, Nat. Phys. 8, 164

(2012).
[13] L. Berthier, Physics 4, 42 (2011).
[14] V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall,

Phys. Rev. Lett. 107, 198303 (2011).
[15] V. Chikkadi et al., Europhys. Lett. 100, 56001 (2012).
[16] C. E. Maloney and M. O. Robbins, Phys. Rev. Lett. 102, 225502

(2009).
[17] A. Furukawa, K. Kim, S. Saito, and H. Tanaka, Phys. Rev. Lett.

102, 016001 (2009).

[18] R. Besseling, E. R. Weeks, A. B. Schofield, and W. C. K. Poon,
Phys. Rev. Lett. 99, 028301 (2007).

[19] P. Schall, D. A. Weitz, and F. Spaepen, Science 318, 1895 (2007).
[20] M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[21] L. Berthier et al., Dynamical Heterogeneities in Glasses, Col-

loids, and Granular Media (Oxford University Press, Oxford,
2011).

[22] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99,
060604 (2007).

[23] M. Bannerman, R. Sargant, and L. Lue, J. Comput. Chem. 32,
3329 (2011).

[24] P. N. Pussey et al., Philos. Trans. R. Soc., A 367, 4993 (2009).
[25] S. R. Williams, I. K. Snook, and W. van Megen, Phys. Rev. E

64, 021506 (2001).
[26] X. Cheng, H. McCoy, J. N. Israelachvili, and I. Cohen, Science

333, 1276 (2011).
[27] W. Götze, Complex Dynamics of Glass-Forming Liquids-A

Mode-Coupling Theory (Oxford University, Oxford, 2009).
[28] C. Goldenberg, A. Tanguy, and J. L. Barrat, Europhys. Lett. 80,

16003 (2007).
[29] M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
[30] V. Chikkadi and P. Schall, Phys. Rev. E 85, 031402 (2012).
[31] F. Varnik, in Proceedings of the Fifth International Workshop on

Complex Systems, Sendai, Japan, 2007, edited by M. Tokuyama,
I. Oppenheim, and H. Nishiyama, AIP Conf. Proc. No. 982
(American Institute of Physics, Melville, NY, 2007), p. 160.

[32] R. Yamamoto and A. Onuki, Phys. Rev. E 58, 3515 (1998).
[33] F. Varnik, D. Dorner, and D. Raabe, J. Fluid Mech. 573, 191

(2007).

022129-9

http://dx.doi.org/10.1016/0001-6160(79)90055-5
http://dx.doi.org/10.1103/PhysRevLett.90.095702
http://dx.doi.org/10.1103/PhysRevLett.90.095702
http://dx.doi.org/10.1103/PhysRevE.70.011501
http://dx.doi.org/10.1103/PhysRevE.70.011501
http://dx.doi.org/10.1103/PhysRevLett.103.065501
http://dx.doi.org/10.1103/PhysRevLett.106.156001
http://dx.doi.org/10.1103/PhysRevLett.106.156001
http://dx.doi.org/10.1103/PhysRevLett.108.098301
http://dx.doi.org/10.1103/PhysRevLett.108.098301
http://dx.doi.org/10.1038/20406
http://dx.doi.org/10.1209/epl/i2002-00182-9
http://dx.doi.org/10.1209/epl/i2002-00182-9
http://dx.doi.org/10.1088/0953-8984/17/32/R02
http://dx.doi.org/10.1088/0953-8984/17/32/R02
http://dx.doi.org/10.1038/nphys1000
http://dx.doi.org/10.1038/nphys1000
http://dx.doi.org/10.3139/146.110209
http://dx.doi.org/10.1038/nphys2133
http://dx.doi.org/10.1038/nphys2133
http://dx.doi.org/10.1103/Physics.4.42
http://dx.doi.org/10.1103/PhysRevLett.107.198303
http://dx.doi.org/10.1209/0295-5075/100/56001
http://dx.doi.org/10.1103/PhysRevLett.102.225502
http://dx.doi.org/10.1103/PhysRevLett.102.225502
http://dx.doi.org/10.1103/PhysRevLett.102.016001
http://dx.doi.org/10.1103/PhysRevLett.102.016001
http://dx.doi.org/10.1103/PhysRevLett.99.028301
http://dx.doi.org/10.1126/science.1149308
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1103/PhysRevLett.99.060604
http://dx.doi.org/10.1103/PhysRevLett.99.060604
http://dx.doi.org/10.1002/jcc.21915
http://dx.doi.org/10.1002/jcc.21915
http://dx.doi.org/10.1098/rsta.2009.0181
http://dx.doi.org/10.1103/PhysRevE.64.021506
http://dx.doi.org/10.1103/PhysRevE.64.021506
http://dx.doi.org/10.1126/science.1207032
http://dx.doi.org/10.1126/science.1207032
http://dx.doi.org/10.1209/0295-5075/80/16003
http://dx.doi.org/10.1209/0295-5075/80/16003
http://dx.doi.org/10.1103/PhysRevE.57.7192
http://dx.doi.org/10.1103/PhysRevE.85.031402
http://dx.doi.org/10.1103/PhysRevE.58.3515
http://dx.doi.org/10.1017/S0022112006003715
http://dx.doi.org/10.1017/S0022112006003715



