Chromatographic profiling: From samples to information
Peters, S.

Citation for published version (APA):
Peters, S. (2013). Chromatographic profiling: From samples to information

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Content

Chapter 1

General Introduction 7
- Experimental design 11
- Sample preparation 12
- Chromatographic analysis 13
- Data pre-processing 14
- Data analysis 16
- Biological interpretation 18
- Final remarks 18

References 19

Chapter 2

An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography / mass spectrometry with in-liner derivatisation 21

- 2.1. Introduction 23
- 2.2. Experimental 25
- 2.3. Results and discussion 27
- 2.4. Conclusions 40

References 41

Chapter 3

Parameter selection for peak alignment in chromatographic sample profiling: Objective quality indicators and use of control samples 43

- 3.1. Introduction 45
- 3.2. Theory 47
- 3.3. Instrumentation and Methods 50
- 3.4. Results and discussion 54
- 3.5. Conclusions 63

References 64
Chapter 4

Development of an algorithm for peak detection in comprehensive two-dimensional chromatography

4.1. Introduction 67
4.2. Theory 69
4.3. Experimental 84
4.4. Results and discussion 85
4.5. Conclusions 91

References 93

Chapter 5

A new method for the automated selection of the number of components for deconvolving overlapping chromatographic peaks

5.1. Introduction 97
5.2. Theory 99
5.3. Experimental 103
5.4. Results and discussion 105
5.5. Conclusions 111

References 111

Chapter 6

Trend analysis of time-series data: a novel method for untargeted metabolite discovery

6.1. Introduction 115
6.2. Experimental 117
6.3. Results and discussion 123
6.4. Conclusions 133

References 134
Chapter 7 137
Untargeted metabolite discovery in kinetic data from multi-dose intervention studies
7.1. Introduction 139
7.2. Experimental 141
7.3. Results and discussion 147
7.4. Conclusions 158
References 158

Chapter 8 161
Development of a resolution metric in comprehensive two-dimensional chromatography
8.1. Introduction 163
8.2. Theory 166
8.3. Experimental 177
8.4. Results and discussion 179
8.5. Conclusions 185
References 186

Summary 189

Samenvatting 193

Dankwoord 197

Author’s publications on chromatography 201