Inactivate the two-faced HDAC-brake: Cell cycle regulation and tumor suppression by histone deacetylases HDAC1 and HDAC2

Wilting, Roel

Citation for published version (APA):
Wilting, R. H. (2013). Inactivate the two-faced HDAC-brake: Cell cycle regulation and tumor suppression by histone deacetylases HDAC1 and HDAC2

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
EPIGENETIC MECHANISMS IN TUMORIGENESIS, TUMOR CELL HETEROGENEITY AND DRUG RESISTANCE

Drug Resistance Updates 2012

Roel H. Wilting and Jan-Hermen Dannenberg

Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Division of Gene Regulation, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
ABSTRACT

Resistance of cancer cells to chemotherapeutics and emerging targeted drugs is a devastating problem in the treatment of cancer patients. Multiple mechanisms contribute to drug resistance such as increased drug efflux, altered drug metabolism, secondary mutations in drug targets, and activation of downstream or parallel signal transduction pathways. The rapid kinetics, the reversibility of acquired drug resistance and the absence of genetic mutations suggest an epigenetic basis for drug insensitivity. Similar to the cellular variance seen in the human body, epigenetic mechanisms, through reversible histone modifications and DNA methylation patterns, generate a variety of transcriptional states resulting in a dynamic heterogeneous tumor cell population. Consequently, epigenomes favoring survival in the presence of a drug by aberrant transcription of drug transporters, DNA-repair enzymes, and proapoptotic factors render cytotoxic and targeted drugs ineffective and allow selection of rare drug-resistant tumor cells. Recent advances in charting cancer genomes indeed strongly indicate a role for epigenetic regulators in driving cancer, which may result in the acquisition of additional (epi)genetic modifications leading to drug resistance. These observations have important clinical consequences as they provide an opportunity for “epigenetic drugs” to change reversible drug-resistance-associated-epigenomes to prevent or reverse nonresponsiveness to anti-cancer drugs.

Keywords: acquired drug resistance/tumor heterogeneity/epigenetics/oncogenic histone modifications/epigenetic therapy
INTRODUCTION

Resistance acquired upon drug treatment (“acquired drug resistance”) is a major problem in the treatment of many diseases, including cancer. World-wide, an estimated 7.5 million cancer patients die each year, many of them due to failed anti-cancer therapies as a consequence of acquired resistance to cytotoxic chemotherapeutics and targeted drugs (Boyle P, 2008). Thus, understanding the mechanisms causing unresponsiveness to anti-cancer drugs will dramatically improve the design of therapies aimed at preventing the selection of drug-resistant tumor cells. Consequently, such therapies may significantly reduce cancer mortality rates. With the rise of targeted drug therapies it has become increasingly evident that genetic mutations are a critical component of acquired drug resistance. However, genetics are not sufficient in explaining the relatively rapid appearance, or the reversibility of nonresponsiveness to drug treatment. In addition, the lack of genetic mutations in drug targets and activated parallel pathways suggested a role for nongenetic mechanisms in acquired drug resistance (Glasspool et al., 2006). This review will focus on the role of chromatin biology in tumorigenesis and in nongenetic acquired drug resistance.

TUMOR HETEROGENEITY AND EPIGENETICS

Until now, several mechanisms underlying acquired drug resistance have been uncovered including increased drug efflux, enhanced drug metabolism, inactivation of apoptotic pathways, secondary mutations in drug targets, and activation of downstream or parallel pathways (Redmond et al., 2008). The basis for these mechanisms has been attributed to increased genetic instability and accelerated mutation rate in tumor cells, providing genetic diversity that allows selection of cells with a survival advantage during drug treatment.

Although a genetic basis for acquired drug resistance contributes to anti-cancer therapy failure, a number of observations imply a nonmutational contribution to drug nonresponsiveness. First, the high prevalence of drug resistance suggests that acquisition of mutations cannot solely account for this phenomenon. Secondly, the reversibility of acquired drug resistance has been described in patients receiving retreatment upon a drug free period. Third, a substantial number of drug resistant tumors do not harbor mutations in drug targets or activated pathways. Finally, despite the notion that tumors arise through clonal expansion of cells that have acquired genetic alterations advantageous for proliferation, survival, and metastasis (Hanahan and Weinberg, 2011), there is large variability in malignancy and drug resistance of individual cells (Gupta et al., 2011; Shipitsin et al., 2007). A basis for this variability may be found in the different transcriptional network states produced by the same cancer genome, in a similar fashion as transcriptional network states realize a variety of cell types in the body by one genome. It has been suggested that reversible transcriptional network states controlled by DNA- and chromatin-modifications play a role in generating dynamic heterogeneity required for differentiation (Chang et al., 2008). Similarly, heterogeneity in a tumor cell population, based on dynamic variation in epigenome configurations, is thought to provide a nongenetic variance source for selection of drug resistant cells (Brock et
Indeed, tumors exhibit extensive genetic and nongenetic heterogeneity within the tumor cell population (Fraga et al., 2005; Seligson et al., 2005). A nongenetic basis for tumor cell heterogeneity and acquired drug resistance has long been neglected. With the discovery of “cancer stem cells” or “tumor initiating cells,” tumor heterogeneity is more appreciated and has raised new questions with respect to treatment outcome. Although many questions remain about the concept of tumor stem cells and their contribution to tumorigenesis, it has become evident that these cells are intrinsically more resistant to various anti-cancer drugs, either by increased drug efflux, inability to execute apoptosis, enhanced DNA repair, different protein dynamics or by displaying a quiescent cell cycle state (Cohen et al., 2008; Eyler and Rich, 2008; Frank et al., 2010). As epigenetics has a crucial role in cell fate determination (Ji et al., 2010; Mikkelsen et al., 2007; Sarmento et al., 2004), it has been proposed that DNA and histone modifications may drive nongenic heterogeneity resulting in the establishment of tumor initiating cells and/or drug resistant cells (Feinberg et al., 2006).

Epigenetics, defined as changes in gene expression that are independent of changes in the DNA sequence and persist over many cell divisions, has been recognized as an important factor in generating nongenic heterogeneity (Chang et al., 2008). Although gene expression is controlled by multiple mechanisms, covalent modifications of DNA and histones are at the heart of regulating gene transcription. Epigenetic changes affect gene transcription by modulating the packaging of chromatin, thereby regulating the accessibility of DNA to sequence-specific transcription factors (van Steensel, 2011). In addition, combinations of epigenetic marks are “read” by specialized protein modules present in transcription complexes, and are consequently “translated” into a biological output such as switching on or off transcription (Taverna et al., 2007). Ultimately, the readout of epigenome variation dictates the diversity in cellular phenotypes of cells harboring the same genome. In a similar fashion, a specific combination of genetic and epigenetic marks may produce a drug resistant phenotype in a heterogeneous tumor cell population (Figure 3A). In order to design therapies aimed at preventing or reversing drug resistance it will be important to identify epigenetic marks and their biological consequences in drug resistant tumor cells. In the first part of this review we focus on the link between tumorigenesis and post-translational modifications of DNA and histones, in particular methylation and acetylation (Table 1). In the second part we will discuss the role of tumor cell epigenomes in mechanisms underlying drug resistance.

DNA methylation

DNA is predominantly methylated at cytosines (5-methyl-C; 5mC) by DNA methyltransferases (DNMT1, 3A, 3B and DNMT3L) (Figure 1) (Cedar and Bergman, 2011). Although methylation at transcribed regions or gene bodies is thought to facilitate transcription elongation, methylation of promoter regions is in general associated with gene silencing (Maunakea et al., 2010). Methylated cytosines can serve as docking sites for methyl-binding proteins that subsequently recruit co-repressor complexes resulting in gene silencing (Jones et al., 1998; Nan et al., 1998). Other functions besides gene regulation have been attributed to cytosine methylation such
Table 1. Histone modifications and related modifying enzymes associated with tumorigenesis, patient prognosis and drug resistance.

<table>
<thead>
<tr>
<th>Histone modification</th>
<th>Enzymes</th>
<th>Relative level in cancer</th>
<th>Role in cancer</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3K9ac</td>
<td>KAT2, KAT12, SIRT6</td>
<td>Reduction</td>
<td>Tumor progression</td>
<td>Seligson et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Park et al. 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good patient prognosis</td>
<td>Zhen et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Barlési et al. 2007</td>
</tr>
<tr>
<td>H3K14ac</td>
<td>KAT2, KAT3, KAT6, KAT7, KAT10, KAT12</td>
<td>Reduction</td>
<td>Drug resistance</td>
<td>Sharma et al. 2010</td>
</tr>
<tr>
<td>H3K18ac</td>
<td>KAT2, KAT3, KAT12</td>
<td>Reduction</td>
<td>Tumor progression</td>
<td>Seligson et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tumor recurrence</td>
<td>Seligson et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Manuyakorn et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good patient prognosis</td>
<td>Tzao et al. 2009</td>
</tr>
<tr>
<td>H3K56ac</td>
<td>KAT3B</td>
<td>Gain</td>
<td>Tumorigenesis</td>
<td>Liu et al. 2010</td>
</tr>
<tr>
<td>H4K16ac</td>
<td>KAT5, KAT8, SIRT1, SIRT2</td>
<td>Reduction</td>
<td>Drug resistance</td>
<td>Hajji et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transformation</td>
<td>Fraga et al. 2005</td>
</tr>
<tr>
<td>H2A/H4R3me2</td>
<td>PRMT1, PRMT5</td>
<td>Gain</td>
<td>Tumor recurrence</td>
<td>Seligson et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Seligson et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tumorigenesis</td>
<td>Barlési et al. 2007</td>
</tr>
<tr>
<td>H3K4me2/3</td>
<td>PRMT6, KMT2, KMT7, KDM1, KDM2, KDM5</td>
<td>Reduction</td>
<td>Drug resistance</td>
<td>Sharma et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tumor recurrence</td>
<td>Seligson et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient survival</td>
<td>Manuyakorn et al. 2010</td>
</tr>
<tr>
<td>H3K9me2/3</td>
<td>KMT1, KMT8, KDM1, KDM3, KDM4</td>
<td>Gain</td>
<td>Invasion, metastasis</td>
<td>Bracken et al. 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Chen et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drug resistance</td>
<td>Braig et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient survival</td>
<td>Manuyakorn et al. 2010</td>
</tr>
<tr>
<td>H3K9me3</td>
<td>KMT1, KMT8, KDM3, KDM4</td>
<td>Gain</td>
<td>Tumor progression</td>
<td>Bachman et al. 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tumor recurrence</td>
<td>Nguyen et al. 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Nguyen et al. 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Good patient prognosis</td>
<td>Ye et al. 2007</td>
</tr>
<tr>
<td>H3K27me3</td>
<td>KMT6, KDM6</td>
<td>Reduction</td>
<td>Senescence</td>
<td>Shen et al. 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Wei et al. 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apoptosis</td>
<td>Müller-Tidow et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pluripotency</td>
<td>Wu et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor patient prognosis</td>
<td>Yu et al. 2007</td>
</tr>
<tr>
<td>H4K20me3</td>
<td>KMT3B, KMT5</td>
<td>Reduction</td>
<td>Transformation</td>
<td>Fraga et al. 2005</td>
</tr>
</tbody>
</table>
Histone and DNA methylation enzymes involved in tumorigenesis and drug resistance
Histone H3 and H4 lysine (K) and arginine (R) residues present in the N-terminal tail, or histone core (H3K79) are targeted by methyltransferases (KMTs; in black) and demethylases (KDMs; in red). DNA methylation takes place at cytosine residues in GC-rich nucleotide stretches and is modulated by DNA methyltransferases (DNMTs) and enzymes that modify methylated cytosines. As preventing chromosomal instability by methylation of repetitive genomic sequences dispersed over the genome (Bird, 2002). Long-term silencing of genes is normally only associated with inactive X-linked genes, imprinted genes and germ cell-specific genes. In particular, CpG islands, cytosine and guanine-rich DNA sequences, are frequently hypermethylated in tumor cells, which can result in silencing of tumor suppressor genes (De Smet et al., 1999; Herman et al., 1994; Merlo et al., 1995).

The observation that indirect inhibition of DNA methyltransferases using the nucleoside analog 5-azacytidine (5-aza-CR) resulted in re-expression of silenced genes and inhibited tumor cell growth by inducing differentiation, has resulted in the use of 5-aza-CR (Vidaza) and 5-aza-dCR (Decitabine) as therapeutic agents in the treatment of myelodysplastic syndromes (MDS). In addition, direct inhibition of DNMTs using small molecule inhibitors targeting specific DNMTs are being developed (Foulks et al., 2011). Despite their clinical efficacy the clinical relevant transcriptional targets of these compounds remain unclear.

Studies in mice and men suggested that reduction or mutational inactivation of DNMTs may have adverse effects. Mice expressing reduced levels of Dnmt1 developed with high incidence thymic lymphomas due to hypomethylation of pericentric heterochromatin, suggesting that reduced Dnmt1 levels may result in chromosome missegregation and consequently genomic instability (Gaudet et al., 2003). Although no DNMT1 mutations have been identified in human malignancies, DNTM3B mutations are associated with the immune deficiency, centromere instability and facial anomalies.
(ICF) syndrome. In addition, elevated levels of DNMT3B have been observed in tumors, in part due to amplification of DNMT3B (Simó-Riudalbas et al., 2011). Moreover, the discovery of highly recurrent, heterozygous somatic DNMT3A mutations in MDS and acute myeloid leukemia (AML), which are correlated with poor prognosis, provides another cautionary note on inhibiting DNA methyltransferases in anti-cancer therapy (Ley et al., 2010). Acquired drug resistance has been associated with selection of cells displaying hypomethylation of drug efflux gene promoters, hypermethylation of promoter regions of proapoptotic genes, or altered promoter methylation patterns of DNA repair genes (see below). In addition, the poor prognosis profile of MDS and AML patients carrying somatic DNMT3A mutations may attest to increased acquired drug resistance due to DNA methylation changes that generate cells with a drug resistance favorable epigenome. Therefore, characterization of a drug-resistance associated DNA methylome may guide the design of therapeutics aimed at targeting DNA methylation either through 5mC nucleoside analogs or direct and indirect inhibitors of DNMTs.

DNA demethylation

Until now, DNA demethylases have not been identified and DNA demethylation is thought to occur through passive dilution during replication. However, active mechanisms have been discovered which prime 5mCs by hydroxylation, deamination and/or oxidation, which are subsequently removed by DNA repair mechanisms. Until now three enzyme families are known to be involved in active demethylation (Figure 1). Priming of the methylated cytosines is conducted by ten-eleven translocation (TET1, 2 and 3) enzymes to form 5-hydroxy methyl cytosine (5hmC), which function has not been fully characterized (Bhutani et al., 2011). Intriguingly, TET2 is a frequent target of mutations in hematopoietic malignancies suggesting that one TET family member has a tumor suppressor function possibly by affecting 5hmC modifications and generating a (locally) hypermethylated cancer epigenome (Delhommeau et al., 2009; Langemeijer et al., 2009). Cytidine deaminases (AID/APOBEC) are a second class of enzymes able to modify 5mC or 5hmC into 5-methyluracil or 5-hydroxymethyluracil. Eventually, replacement of the intermediate forms of methylated cytosines into unmethylated cytosines is initiated by the UDG family of base excision repair (BER) glycosylases (TDG/SMUG1). Since hyper- and hypomethylation of promoter regions is involved in drug resistance, studies aimed at correlating modified methylation of cytosine and prognosis upon treatment may provide a hint whether the enzymes involved in generating modified forms of 5mC are involved in unresponsiveness to drugs.

HISTONE MODIFICATIONS

A vast variety of biological processes ranging from gene transcription to DNA repair are regulated at the nucleosomes, the basic unit of chromatin consisting of DNA and an octamere of small basic histone proteins (H2A, H2B, H3 and H4). The interaction between DNA and histone proteins is tightly regulated by histone modifications predominantly at the N-terminal tails of histone proteins extruding from the nucleosome core (Figure 1
and 2). Post-translational modifications (PTMs) of histones are diverse, reversible, and delicately balanced by an expanding set of histone modifying enzymes. Currently known histone modifications exist in many forms and include acetylation, methylation, phosphorylation, propionylation, butyrylation, N-formylation, ubiquitylation, sumoylation, citrullination, proline isomerization, and ADP ribosylation (Cohen et al., 2011). The recent identification of 67 previously unknown PTM sites in histones as well as tyrosine hydroxylation and lysine crotonylation indicates the vast complexity that can be achieved by combinations of histone PTMs (Tan et al., 2011b).

Lysine acetylation

Acetylation of lysine residues at histone tails is catalyzed by lysine acetyl transferases (KATs), also known as histone acetyl transferases (HATs; for nomenclature see (Allis et al., 2007)). Acetyl groups neutralize the positive charge of lysines, resulting in a loose DNA-nucleosome association that increases DNA accessibility for transcription factors and subsequent transcriptional activity. KATs are divided in three major families based on sequence similarities: GNAT-, p300/CBP-, and the MYST-family. Additional KATs have been identified and are classified as a separate group of enzymes due to their sequence divergence from other KATs (Sadoul et al., 2011). Although KATs are predominantly located in the nucleus, an increasing number of studies report nucleocytoplasmic transport of these enzymes suggestive of cytoplasmic substrates and functions for KATs (Sadoul et al., 2011). Indeed, the identification of numerous acetylation sites in approximately 2000 proteins supports the notion that KATs regulate also the acetylation status of a large number of nonhistone proteins (Choudhary et al., 2009; Zhao, 2010).

Several KATs have been implicated in tumorigenesis. KAT2 (GCN5) activated the BRCA1 and TP53 tumor suppressors as well as the oncogenic activity of c-MYC (Gamper and Roeder, 2008; McMahon et al., 2000; Oishi et al., 2006). KAT8 (MOF) is known to acetylate TP53 at lysine residue 120 (K120) together with KAT5 (TIP60) (Sykes et al., 2006; Tang et al., 2006). Furthermore, loss of histone H4 lysine 16 acetylation (H4K16ac), which is specifically regulated by KAT8, is a common hallmark of human cancer (Fraga et al., 2005; Taipale et al., 2005) (Figure 2). KAT3A (CREBBP) and KAT3B (EP300) regulate the function of TP53, RB, E2F and MYB proteins, which play an important role in tumorigenesis (Chan et al., 2001; Gu and Roeder, 1997; Martínez-Balbás et al., 2000; Tomita et al., 2000). These findings were further corroborated by studies in KAT3A and KAT3B mutant mice which show that KAT3A and -3B can act as tumor suppressors of hematological malignancies (Kung et al., 2000). Moreover, KAT3A and -3B loss-of-function mutations were identified in various human cancers (Bryan et al., 2002; Kishimoto et al., 2005; Miller and Rubinstein, 1995; Muraoka et al., 1996). In addition, oncogenic translocations involving KAT3A and KAT3B have been observed in hematological malignancies such as AML, myeloid/lymphoid or mixed lineage leukemia (MLL) (Iyer et al., 2004). KAT3A point mutations were also identified in acute lymphoblastic leukemia (ALL) and bladder cancer (Gui et al., 2011; Pasqualucci et al., 2011). Interestingly, analysis of
relapsed ALL found KAT3A mutations in 18.3% of nonresponders, which were either present at diagnosis or acquired at relapse. Several mutations acquired at relapse were detected in sub-clones at diagnosis, suggesting that the mutations may confer resistance to therapy (Mullighan et al., 2011). These results suggest that inactivation of KAT3A and KAT3B may change the epigenomic landscape of cancer cells thereby promoting tumorogenesis and resistance in ALL. Indeed, acetylation of lysine 18 on histone H3 (H3K18ac) was impaired in cells expressing tumor associated mutant KAT3A (Figure 2). Interestingly, loss of H3K18ac is correlated with tumor grade and poor prognosis in patients with prostate, pancreatic, lung, breast and kidney cancer (Elsheikh et al., 2009; Manuyakorn et al., 2010; Seligson et al., 2009; Seligson et al., 2005). Moreover, H3K18 hypoacetylation is associated with an increased risk of tumor recurrence in patients with low-grade prostate cancer (Seligson et al., 2005), suggesting that this histone modification may be involved in acquired drug resistance. In contrast, studies in esophageal squamous cell carcinoma and glioblastoma patients correlated H3K18 hypoacetylation with better prognosis, suggesting that H3K18ac status may effect tumorogenesis or drug sensitivity in an cell-type dependent manner (Liu et al., 2010; Tzao et al., 2009).

Figure 2. Histone acetylation sites and enzymes linked to tumorigenesis and drug resistance. Lysine acetyl transferases (KATs; in black) target various lysine residues at the histone H3 and H4 N-terminal tail or histone core (H3K56). Acetylated lysines are deacetylated by histone deacetylases (HDACs and SIRTs; in red).
Lysine deacetylation

Acetylation of lysine residues is counteracted by histone deacetylases (HDACs), which restore the positive charge of lysine residues resulting in a tightly packed chromatin configuration and subsequently transcriptionally inactive gene regions. Based on sequence homology HDACs can be divided in four classes: class I HDACs (HDAC1, 2, 3, and 8) are homologous to *Saccharomyces cerevisiae* Rpd3, class II HDACs (HDAC4, 5, 6, 7, 9, 10) share high homology with yeast Hda1, while HDAC11 is the sole member of class IV HDACs and shares homology with both classes (Gao *et al*., 2002; Gregoretti *et al*., 2004; Haberland *et al*., 2009; Yang and Seto, 2008). Class III HDACs are homologous to yeast Sir2 and require NAD⁺ as a cofactor for deacetylation, in contrast to class I, II and IV HDACs, which hydrolyze acetyl groups using Zn as a cofactor (Haigis and Guarente, 2006). HDACs are present in distinct protein complexes associated with gene repression such as NuRD, SIN3A, Co-REST (HDAC1 and 2), and SMRT/N-CoR (HDAC3) (Yang and Seto, 2008). Class I HDAC complexes also harbor other histone modifying enzymes such as histone demethylases KDM1, KDM4A, and KDM5A (Klose *et al*., 2007; Shi *et al*., 2004; Tong *et al*., 1998; You *et al*., 2001; Zhang *et al*., 2005).

Although no HDAC mutations have been identified in human cancers, hypoacetylation is a hallmark of various human malignancies. Global loss of H4K16ac occurs in various primary tumors simultaneously with loss of trimethylation at histone H4 lysine 20 (H4K20me3) and DNA hypomethylation (Figure 1 and 2) (Fraga *et al*., 2005; Seligson *et al*., 2005). Furthermore, H4K16ac loss correlates with tumor progression and it is associated with chemotherapy resistance (Elsheikh *et al*., 2009; Fraga *et al*., 2005; Hajji *et al*., 2010). The prognostic value of elevated levels of SIRT1, a H4K16ac targeting deacetylase, in various cancers may therefore relate to the induction of drug resistance (Chen *et al*., 2005; Hida *et al*., 2007; Huffman *et al*., 2007) (Figure 2).

Class I HDACs are recruited by a variety of oncogenic fusion proteins involved in hematological malignancies, including PML-RAR and AML-ETO (Amann *et al*., 2001; Gelmetti *et al*., 1998; Grignani *et al*., 1998). The observation that many proteins involved in tumorigenesis, such as TP53, RB, E2F1, and oncogenic fusion proteins are modified by HDAC-controlled acetylation underscores the role of HDACs as regulatory proteins during tumorigenesis. Moreover, increased levels of HDAC2, responsible for deacetylation of histone H3 lysine 56, and histone H4 lysines K5, K8, K12 and K16, were observed upon loss of the adenomatosis polyposis coli (APC) tumor suppressor gene in a mouse colon cancer model (Figure 2). Inhibition of HDACs using valproic acid (VPA) reduced the number of adenomas in these mice, suggesting a tumor-initiating role for HDAC2 in colon cancer. HDAC3, which deacetylates histone H3 lysines K9 and K14, and histone H4 lysines K5, K12 and K16, is implicated in tumorigenesis by virtue of its binding to the transcriptional corepressor NCOR which in turn binds BCL6, a protein frequently mutated in diffuse B-cell lymphoma (DBCL) (Ahmad *et al*., 2003; Bhaskara *et al*., 2008; Bi and Ye, 2010) (Figure 2). Besides recruitment of HDAC3 by oncogenic fusion proteins, HDAC3 is frequently deleted in breast cancer and MDS (Ebert, 2009; Johannsdottir *et al*., 2006). Moreover, liver-specific deletion of HDAC3
in mice increased the incidence of hepatocellular carcinoma (HCC), suggesting a tumor suppressive function for HDAC3, probably by inducing genomic instability (Bhaskara et al., 2008).

Targeting histone deacetylases using small molecule inhibitors such as trichostatin A (TSA), sodium butyrate (NaBu) and valproic acid (VPA) was shown to induce differentiation and apoptosis of a variety of tumor cell lines (Richon et al., 1998). Ultimately, these observations let to the FDA approval of the HDAC inhibitors (HDACi) SAHA (Vorinostat/Zolinza) and romidepsin (Istodax) for the treatment of cutaneous T-cell lymphoma (CTCL) (Prince et al., 2009). In addition, a variety of HDACi are currently being tested as a monotherapy or in combination with existing anti-cancer therapies of various human malignancies.

Histone methylation

While acetylation is found exclusively at lysine residues, histone methylation occurs at lysine and arginine residues of the histone tails. In contrast to acetylation and phosphorylation, histone methylation does not substantially change the amino acid charge, but does increase their hydrophobicity. Histone methylation leads to activation or repression depending on which residues are modified and the number of methyl groups present. These histone methylation states exhibit a genome-wide distribution pattern in which combinations of marks are linked to transcriptionally active regions, for instance monomethylation of H3K9 (H3K9me) and trimethylation of H3K4 (H3K4me3), while others associate with repression of transcription, such as trimethylation of H3K9 (H3K9me3) and H3K27 (H3K27me3) (Figure 1) (Barski et al., 2007). In embryonic stem cells bivalent modification patterns exist, consisting of large areas of repressive H3K27 methylation harboring smaller regions of activating H3K4 methylation, which repress gene transcription, but keep these genes poised for action. These bivalent domains are seen as a mechanism in which the chromatin state controls cellular plasticity and thereby determines cell fate (Bernstein et al., 2006; Mikkelsen et al., 2007). This suggests that global histone modification patterns could be involved in tumorigenesis and therefore may play a role in specific characteristics of tumor cells, such as drug resistance (Feinberg et al., 2006).

Arginine methylation

Methylation of histones is performed by protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). The family of PRMTs consists of eleven enzymes, of which PRMT1, 4, 5, and 6 are known histone methyltransferases. Compared to lysine methylation, arginine methylation is underexplored and therefore, little is known about the influence of histone arginine methylation on cancer and drug resistance (Bedford and Clarke, 2009). Nevertheless, PRMT1 was identified as an essential component of the MLL-oncogenic fusion proteins, highlighting the role of arginine methyltransferases in tumorigenesis (Cheung et al., 2007). Others have identified PRMT5 as an arginine methyltransferase affecting the target gene specificity of TP53 and apoptosis (Jansson et al., 2008). In addition, PRMT5 seems to act as a SNAIL co-repressor of E-cadherin,
thereby inducing epithelial-mesenchymal transition which is a hallmark of metastasis (Hou et al., 2008). Indeed, overexpression of PRMT5 induces anchorage-independent growth and elevated PRMT5 levels are found in gastric and hematological malignancies (Kim et al., 2005; Wang et al., 2008). Moreover, high levels of dimethylated H4R3, a mark for active transcription, correlated with poorly differentiated prostate cancer and was associated, in combination with other histone marks, with poor patient prognosis and tumor recurrence (Seligson et al., 2005). In contrast, oncogenic JAK2 kinases were shown to phosphorylate and inactivate PRMT5, resulting in global reduction of H2A/H4R3 methylation, suggesting a context dependent function of PRMT5 in tumorigenesis (Liu et al., 2011) (Figure 1).

Lysine methylation

Lysine methylation, predominantly at the N-terminus of histone tails, is regulated by a large number of histone/lysine methyltransferases (HMTs/KMTs) and lysine demethylases (KDMs). An increasing number of these proteins is found mutated, overexpressed, or mislocated in human malignancies.

Although no mutations so far have been identified in KMT1A or KMT1B (SUV39H1/2), which specifically trimethylate H3K9 (Figure 1), both proteins have been linked to tumorigenesis by their ability to physically interact with the retinoblastoma tumor suppressor (RB) and repress promoters by recruiting heterochromatin protein 1 (HP1) (Nielsen et al., 2001). Association of KMT1A and the oncogenic pro-myeloid leukemia retinoic acid receptor fusion protein (PML-RAR) suggests a tumor promoting function in leukemia (Carbone et al., 2006). In mice, simultaneous inactivation of KMT1A and -B resulted in profound chromosomal instability and consequently B-cell lymphomagenesis (Peters et al., 2001). A tumor suppressive function for KMT1A was further supported by the observation that KMT1A plays a critical role in providing thymocytes with an H3K9me3 dependent senescence fail-safe mechanism to inhibit oncogenic transformation upon oncogenic insults. Furthermore, KMT1A seems to determine the cellular response upon treatment with chemotherapeutics; loss of KMT1A prevents activation of a senescence checkpoint, suggesting that H3K9 methylation may be a critical determinant of acquired drug resistance (Braig et al., 2005).

Recurrent amplifications of genomic regions harboring the KMT1E (SETDB1) H3K9 methyltransferase (Figure 1) have been identified in melanomas carrying BRAF^{V600E} mutations. Using a zebrafish melanoma model it was shown that KMT1E collaborates with oncogenic BRAF in driving melanomagenesis probably by regulating HOX gene expression (Ceol et al., 2011). Another member of the SET methyltransferase gene family, KMT3A (SET2D) a histone H3 lysine 36 methyltransferase (Figure 1), was recently found to be inactivated in clear cell renal cell carcinoma (ccRCC) (Dalgliesh et al., 2010; Sun et al., 2005).

KMT6 (EZH2), a H3K27 methyltransferase (Figure 1), which is part of the polycomb repressive complex 2 (PRC2) is considered an oncogene as it is overexpressed in various solid tumors and is associated with invasion and progression of tumors (Kleer et al., 2003; Min et al., 2010; Varambally et al., 2002; Wagener et al., 2010). Indeed, primary
prostate cancer samples displayed a tumor-specific H3K27me3 genome-wide pattern, which correlated with repression of genes involved in embryonic stem cell biology and with poor prognosis (Yu et al., 2007). Notably, also loss of H3K27me3 has been observed in various human malignancies such as prostate, ovarian, breast, and pancreatic cancer and correlated with poor prognosis (Wei et al., 2008). Although these result may seem contradictory, increased or reduced H3K27me3 may have context-dependent consequences. Moreover, other substrates besides H3K27me3 may play a significant role in specific tumor types. Nevertheless, in general aberrant H3K27 trimethylation correlated with poor prognosis of patients. A possible mechanism underlying the role of KMT6 and H3K27me3 in tumorigenesis could be silencing of tumor suppressor genes. Indeed, overexpression of KMT6 resulted in H3K27me3 mediated repression of tumor suppressors including CDKN2A, CDKN2B, CDKN1B, CDKN1C, CDH1, DAB2IP, BRCA1, and ADRB2 (Bracken and Helin, 2009; Cao et al., 2008; Gonzalez et al., 2009; Min et al., 2010; Ougolkov et al., 2008; Yang et al., 2009). Surprisingly, massive parallel DNA sequencing of follicular lymphoma (FL) and the germinal center subtype of diffuse large B-cell lymphoma (DLBCL) revealed somatic KMT6 mutations (Morin et al., 2010). Although initially considered loss-of-function, a recent study indicated a dominant role for tumor associated KMT6 mutations. KMT6^{Y641F} in the presence of wild-type KMT6 resulted in decreased affinity for un- and monomethylated H3K27 and enhanced conversion of dimethylated into transcription repressive trimethylated H3K27. In line with these results, increased H3K27 trimethylation was found in tumor samples carrying tumorigenic KMT6 mutations (Yap et al., 2011). These findings are another demonstration of genetic mutations in chromatin modifying enzymes generating altered epigenomes that will affect a variety of biological processes including those involved in drug sensitivity.

KMT2 family enzymes (SET1A-B, MLL and ASH1) are responsible for the methylation of histone H3 at lysine 4 (H3K4) (Figure 1). Trimethylation of H3K4 is associated with active gene transcription. Gene rearrangement of MLL (KMT2A-E) is one of the most common chromosomal abnormalities in human leukemia (Chi et al., 2010; Krivtsov and Armstrong, 2007). As a result of in frame chromosomal translocations, the MLL N-terminus is fused to one of more than 50 partners, including members of the AF and ENL family of proteins, such as AF4, AF9, AF10, and ENL (Krivtsov and Armstrong, 2007). Multiple studies have shown a tumor-initiating role of these fusion proteins by regulating the expression of HOX genes, which results in blocking differentiation and stimulating oncogenic transformation (Chi et al., 2010). MLL fusion proteins interact directly or indirectly with KMT4 (DOT1L), a histone H3 lysine 79 (H3K79) methyltransferase and drive acute myeloid leukemia in a KMT4 methyltransferase activity dependent manner (Okada et al., 2005; van Leeuwen et al., 2002) (Figure 1). Interaction of oncogenic MLL fusion proteins and KMT4 resulted in upregulation of leukemia relevant genes including HOXA9 and concomitant increase of H3K79 methylation at the promoters of these genes, which correlated with transcriptional activity (Okada et al., 2005). Recently, a KMT4 small molecule
inhibitor (EPZ004777) was shown to selectively eradicate leukemic cells bearing the MLL gene translocation while having little effect on non-MLL-translocated cells (Daigle et al., 2011). Furthermore, administration of the KMT4 inhibitor increased to some extend the survival of mice xenografted with a MLL tumor cell line, indicating that inhibition of the histone modifier KMT4 may serve as a targeted therapeutic against MLL. The possibility of treating leukemia harboring oncogenic MLL fusion proteins with epigenetic drugs took an exiting turn with the development of small molecule inhibitors targeting members of the bromodomain and extraterminal (BET) subfamily of human bromodomain proteins (BRD2, BRD3 and BRD4) (Filippakopoulos et al., 2010). Bromodomain containing proteins associate with acetylated chromatin and facilitate transcriptional activation by recruiting transcriptional activators including MLL-fusion partners (Dawson et al., 2011). BET-inhibitors (BET-i) were shown to be effective against mouse and human MLL-fusion leukemias by inducing cell cycle arrest and apoptosis. Mechanistically, BET-i inhibited transcription of cancer relevant genes such as BCL2, C-MYC, and CDK6, through displacement of BET proteins from chromatin (Dawson et al., 2011; Delmore et al., 2011; Zuber et al., 2011). The notion that many human malignancies require the oncoprotein C-MYC for tumor maintenance provides opportunities for BET-inhibitors as epigenetic drugs in the treatment of a variety of tumors (Delmore et al., 2011; Soucek et al., 2008).

Lysine demethylation

Histone methylation is counteracted by lysine-specific demethylases (KDMs). Two classes of histone demethylases have thus far been identified. KDM1A (LSD1) and KDM1B (LSD2) comprise the KDM1 class, which are FAD-dependent amine oxidases and demethylate only mono- and dimethylated lysines. The Jumonji C (JmjC) domain is a signature motif for the second class of demethylases, which consists of thirty Fe(II) and 2-oxoglutarate-dependent enzymes. Proteins in this class are subdivided based on JmjC domain sequence homology and the overall architecture of additional motifs (Pedersen and Helin, 2010). Demethylase activity has been observed for several of these proteins, of which the majority targets methylated lysines, although JMJD6 demethylates histone H3 arginine 2 (H3R2) and histone H4 arginine 3 (H4R3) (Chang et al., 2007) (Figure 1).

Similar to histone methyltransferases, aberrant function of histone demethylases is associated with cancer, indicating that a balanced control of chromatin configuration is imperative for normal cell growth. For example, downregulation of KDM1 (LSD1), a subunit of the NuRD transcriptional repressive complex, was observed in breast carcinomas and may correlate with metastatic potential of these tumors (Wang et al., 2009b). However, in specific tissues, such as in the prostate and testis, KDM1 is present in a chromatin-associated complex together with the androgen receptor (AR) and demethylates the repressing histone marks mono- and dimethyl-H3K9 and thereby promotes gene activation of AR target genes (Metzger et al., 2005) (Figure 1). These observations suggest a role for KDM1 in androgen responsive tissues such
as brain, prostate and testis. Indeed, KDM1 expression correlated with aggressive prostate cancer possibly by constitutive activation of AR-mediated growth signals (Kahl et al., 2006). Furthermore, others found strong expression of KDM1 in poorly differentiated neuroblastoma (Schulte et al., 2009). Inhibition of KDM1 using small molecule inhibitors or KDM1 shRNAs increased H3K4 methylation and inhibited tumor growth (Metzger et al., 2005) (Figure 1). In addition, KDM1 was found to suppress TP53 activity by demethylation of dimethylated TP53 lysine 370, thereby preventing interaction between TP53 and 53BP1 (Huang et al., 2007). These results suggest that KDM1 can either repress or activate gene transcription, depending on the proteins it interacts with, underlining the ambiguous nature of KDMs.

While KDM1 removes mono- and dimethyl groups, jumonji-domain-containing demethylases remove mono-, di-, and trimethyl groups (Klose and Zhang, 2007). Mislocalization of jumonji domain demethylases has been observed in various cancer types. A subset of AML patients presented with chromosomal translocations involving nucleoporin 98 (NUP98) and the H3K4me2/3 recognizing PHD motif of KDM5A (JARID1A/RBP2) or PHF23 (Wang et al., 2009a) (Figure 1). The oncogenic potential of such fusion proteins relies on the PHD-motif mediated H3K4me2/3 recognition and the inability to remove this histone mark as well as concomitant inhibition of KMT6-mediated H3K27 tri-methylation (H3K27me3) (Figure 1). The increase in H3K4me2/3 and reduction of H3K27me3 subsequently enforces the expression of genes critical for hematopoietic development leading to leukemia (Cui et al., 2009; Wang et al., 2009a). Recently, direct evidence was provided showing that increased KDM5A levels were sufficient to acquire resistance to cytotoxic and targeted drugs (see below, (Sharma et al., 2010)).

KDM5B (JARID1B/PLU-1) overexpression was found in advanced stages of prostate cancer and breast cancer where it induced the removal of H3K4me2/3 leading to repression of several tumor suppressor genes, including BRCA1 (Xiang et al., 2007b; Yamane et al., 2007) (Figure 1). Repression of tumor suppressor genes by histone demethylases seems to be a recurrent theme, since KDM2B (JHDM1B/FBXL11) erased dimethylation of histone H3 lysine 36 (H3K36me2) and/or H3K4me3, leading to repression of the p14ARF, p15INK4B, and p16INK4A cell inhibitory protein encoding CDKN2A/B locus in T-cell lymphomas (He et al., 2008; Tzatsos et al., 2009) (Figure 1). In agreement with the role of this locus as an anti-tumorigenic fail-safe mechanism, expression of KDM2B and the related KDM2A (JHDM1A/FBXL10) inhibit replicative- and oncogene-induced-senescence, thereby promoting tumorigenesis.

In addition to misregulation of KDMs by overexpression and chromosomal translocation, somatic inactivating mutations of KDM6A (UTX) have been found in various tumors, particularly in multiple myeloma and clear cell renal cell carcinoma (ccRCC) (Dalgliesh et al., 2010; van Haaften et al., 2009). Both KDM6A and KDM6B (JMJD3) were shown to have H3K27me3 demethylating activity (Agger et al., 2007) (Figure 1). Therefore, the tumorigenic potential of KDM6A mutations may relate to the inability to remove the repressive H3K27me3 mark at distinct genomic loci (van
In addition, KDM6B contributed to the activation of the \textit{Cdkn2a} locus (expressing p16ink4a and p19arf) upon oncogenic BRAF and RAS expression, suggesting that inactivation of H3K27me3 demethylases may inactivate a tumor protective fail-safe mechanism (Agger \textit{et al}., 2009). Indeed, downregulation of KDM6B expression levels was found in various hematological malignancies. In contrast, others have reported overexpression of KDM6B in Hodgkin’s lymphoma and prostate cancer progression (Anderton \textit{et al}., 2011; Xiang \textit{et al}., 2007a), suggesting that KDM6B may have cell type specific substrates, which require either gain- or loss-of-function to provide a proliferative selective advantage during tumorigenesis.

Inactivating somatic KDM5C (JARID1C/SMCX) mutations were discovered in primary ccRCC. In these tumors, KDM5C mutations predominantly co-occurred with mutations in the von Hippel-Lindau (VHL) tumor suppressor, and correlated with the transcriptional alteration of a specific ccRCC gene signature (Dalgliesh \textit{et al}., 2010). Finally, the jumonji-only histone demethylase KDM8 (JMJD5), an H3K36me2 demethylase, was shown to be overexpressed in breast, thyroid, adrenal, bladder, uterine, and liver related cancers (Hsia \textit{et al}., 2010) (Figure 1). Inhibition of KDM8 in breast cancer cell lines resulted in a cell cycle arrest, suggesting that KDM8 is essential for tumor cell proliferation. Mechanistically, KDM8 was shown to compete with class I HDACs in transcriptional regulation. Demethylation of H3K36me2, a repressive mark, resulted in loss of HDAC1 chromatin binding and consequently increased histone acetylation and active transcription of proliferation genes such as cyclin A1 (Hsia \textit{et al}., 2010). While these results suggest a tumor-promoting function for KDM8, others identified KDM8 loss-of-function retroviral integrations in murine B-cell lymphomas. Consistent with studies in \textit{C.elegans} (Pothof \textit{et al}., 2003), downregulation of KDM8 in fibroblasts resulted in an increased mutation frequency, suggesting that KDM8, at least in this setting, suppresses genome instability and can be considered a tumor suppressor (Suzuki \textit{et al}., 2006).

EPIGENETICS AND DRUG RESISTANCE

Histone PTMs are recognized by proteins harboring one or more specialized structures, such as chromo- (methylation), bromo- (acetylation), BCRT (phosphorylation), and PHD-domains (methylation) (Chi \textit{et al}., 2010). Among these proteins are SWI/SNF, ISWI, CHD, and INO80 chromatin remodeling proteins, which in turn move, destabilize, eject or restructure nucleosomes, thereby changing chromatin structure and adding an extra layer of regulation (Clapier and Cairns, 2009). The combination of DNA and histone modifications provide an enormous nongenetic diversity, allowing a level of specificity that is required for the execution of a variety of biological processes including cell-type specific transcription, replication, and DNA-repair (Baylin and Jones, 2011). Intriguingly, recent efforts in mapping genetic alterations by whole genome or exome sequencing of a variety of human malignancies yielded evidence that DNA and histone modifying enzymes as well as nucleosome remodelers are frequently mutated and contribute to tumorigenesis (Delhommeau \textit{et al}., 2009; Gui \textit{et al}., 2004; Jiao \textit{et al}., 2009).
2011; Jones et al., 2010; Langemeijer et al., 2009; Ley et al., 2010; Nikoloski et al., 2010; Pasqualucci et al., 2011; van Haaften et al., 2009; Varela et al., 2011; Versteeghe et al., 1998; Wang et al., 2009a). These studies not only establish a critical role for epigenetics as a driving force in tumorigenesis, but also provide a rational for epigenomic changes and nongenetic heterogeneity observed in tumor cells (Table 1). The establishment of tumor epigenomes not only initiates tumorigenesis, but also allows the acquisition of additional genetic and epigenetic changes that deregulate many biological processes, including those favoring survival in the presence of a particular drug. Moreover, “misinterpretation” of chromatin states by mutated PTM readers will contribute to transcriptional states that induce nongenetic drug resistance. The dependency of such transcriptional states on reversible histone modifications encourages the design and development of epigenetic drugs to reverse tumor epigenomes to a state that is incompatible with cellular life or a drug responsive state.

Mechanisms involved in acquired drug resistance are increased drug efflux, inactivation of proapoptotic genes, perturbed DNA repair, activation of parallel or downstream signal transduction pathways, and secondary mutations in drug targets. Although these mechanisms are associated with genetic alterations, several studies indicated a role for DNA and histone modifications in driving increased drug efflux, silencing of apoptotic genes, and perturbed DNA repair (Table 1, Figure 3B).

MULTIDRUG RESISTANCE BY EPIGENETIC REGULATION OF ABCB1

Increased expression of P-glycoprotein (Pgp; ABCB1) is a well-known mechanism involved in acquired drug resistance (Borst and Elferink, 2002; Sarkadi et al., 2006). Pgp belongs to the ATP binding cassette (ABC) transporter superfamily, which facilitates increased efflux of chemotherapeutic drugs from tumor cells resulting in drug insensitivity to various agents (Senior et al., 1995). Tumors with intrinsically low expression levels of Pgp generally respond well to chemotherapy. Expression of the Pgp encoding gene ABCB1 or Multi Drug Resistance 1 (MDR1), is often induced upon chemotherapy, followed by subsequent upregulation of ABCB1 protein expression (Baker et al., 2005; Hu et al., 1999). Treatment of murine Brca1−/−; p53−/− breast cancer with doxorubicin, docetaxel or the poly (ADP-ribose) polymerase inhibitor olaparib, resulted in acquired drug resistance correlating with upregulation of Abcb1 RNA levels (Pajic et al., 2009; Rottenberg et al., 2007). Additional treatment of this murine breast cancer model with the topoisomerase inhibitor topotecan resulted in acquired drug resistance due to upregulation of the Bcrp/Abcg2 drug transporter. Genetic deletion of Abcg2/Bcrp in the Brca1−/−; p53−/− mouse breast cancer indeed increased the overall survival of topotecan treated animals, but did not eradicate tumors indicating that additional mechanisms are involved in acquired drug resistance (Zander et al., 2010). Studies in patients with AML revealed that drug treatment induced ABCB1 expression was observed already 4 hours upon the start of chemotherapy (Hu et al., 1999). Moreover, in four out of five patients with unresectable pulmonary metastases, increased ABCB1 mRNA levels were detected only 50 minutes after doxorubicin treatment (Abolhoda
et al., 1999). In addition, progressive drug resistance correlated with the increase of \(\text{ABCB1} \) expression and the intensity of the chemotherapy in neuroblastoma (Keshelava et al., 1998). In conclusion, the kinetics and dose-dependent induction of \(\text{ABCB1} \) upon drug treatment favors a role for immediate transcriptional activation of \(\text{ABCB1} \) over selection of a tumor subpopulation expressing high \(\text{ABCB1} \) levels.

The question remains, which factors cause the induction of \(\text{ABCB1} \) expression and in particular which chromatin changes at the promoter region affect \(\text{ABCB1} \) expression upon drug treatment? Hypo- and hypermethylated DNA has been found at the \(\text{ABCB1} \) promoter in different (tumorigenic) contexts. While the \(\text{ABCB1} \) promoter in normal bladder cells is hypomethylated, tumor cells of this tissue usually contain a hypermethylated \(\text{ABCB1} \) promoter. Interestingly, upon chemotherapy, methylation of the \(\text{ABCB1} \) promoter reverted to its hypomethylated state and correlated with overexpression of the \(\text{ABCB1} \) gene in tumors of the bladder and similar observations were made in AML patient samples (Nakayama et al., 1998; Tada et al., 2000).

Figure 3. Reversible nongenetic tumor heterogeneity as a source for drug resistance. A. Tumors consist of a heterogeneous cell population, which display different drug sensitivities. Whereas the bulk of the tumor cell population is sensitive towards drug treatment (light shaded population) rare populations of cells exhibiting either nonreversible genetic drug resistance (orange population), or reversible nongenetic drug resistance (dark green population) are present before treatment. B. Treatment of a heterogeneous tumor cell population with cytotoxic or targeted drugs will eradicate the majority of tumor cells (light shaded). A rare subpopulation of tumor cells (dark green in A and B) will survive due to nongenetic drug resistance. Mechanisms implicated in nongenetic drug resistance include epigenetic changes resulting in gene transcription of drug transporters (\(\text{ABCB1} \)) proapoptotic genes (\(\text{DAPK}, \text{APAF-1} \)), DNA repair proteins (\(\text{MLH1}, \text{MGMT}, \text{FANCF} \)) and histone modifiers (\(\text{KDM5A} \)). In addition, a reduction in H3K4me and H3K14ac histone marks has been observed in drug resistant cells, which may be linked to MEK and IGF-1R signal transduction pathway activation. In addition, cells harboring (secondary) genetic changes in drug targets or parallel pathways (orange population) will be maintained in the drug resistant population. Withdrawal of the drug treatment resulting in a drug-free period ("drug holiday") may restore susceptibility for the primary cytotoxic/targeted therapy by reversal of drug resistance associated epigenetic marks. Alternatively, in the absence of the selective pressure of the drug, cells harboring an epigenome that enforces a proliferative advantage and drug sensitivity will grow out. C. Treatment of nongenetic drug resistant tumor cell populations with cytotoxic or targeted...
drugs in combination with epigenetic drugs, such as inhibitors of histone deacetylases (HDACi), DNA methyl transferases (DNMTi), histone methyltransferases (EPZ004777), and bromodomain proteins (BET-i), may reverse a drug resistant epigenome into a drug sensitive epigenome thereby rendering tumor cells sensitive to the cytotoxic/targeted drug. Still, hard-wired genetic resistant tumor cells may arise (orange cell population). D. In order to prevent the latter cells to arise upon treatment, a drug regimen in which a cytotoxic drug in combination with an epigenetic drug may be used. The rational for using this treatment plan is to debulk the tumor by cytotoxic drugs which will kill the majority of the tumor cell population. Moreover, using this approach will avoid selection for genetic drug resistance towards targeted therapy. Simultaneous treatment with an epigenetic drug may sensitize surviving cells to a targeted drug, which is subsequently administered (E) thereby eradicating eventually all tumor cells including genetic resistant cells.

Hypomethylation of the promoter of the \textit{ABCG2/BCRP} drug transporter also increased expression in response to chemotherapy, suggesting that this is a general mechanism to regulate ABC transporter expression in response to drug treatment (Bram et al., 2009).

How chemotherapeutic drugs induce hypomethylation of the \textit{ABCB1} promoter is still not fully understood and different mechanisms have been postulated (Baker and El-Osta, 2004). For instance, chemotherapeutic drugs could induce active DNA demethylation by yet unknown DNA demethylases. Alternatively, chemotherapeutics could select for a small tumor subpopulation harboring hypomethylated \textit{ABCB1} promoters. A model involving passive demethylation has been proposed in which tethering of methylases involved in DNA methylation (such as DNMT1) to the DNA is inhibited, resulting in a lack of methylation. Finally, changes in key chromatin remodeling complex activities could have an impact on the methylation status of the \textit{ABCB1} promoter, or lead to alleviated repression at the \textit{ABCB1} promoter, resulting in induced \textit{ABCB1} expression. There are indications that the histone modifying complexes
are recruited to the methylated ABCB1 promoter serving its transcriptional repression. For instance, MeCP2, a well known Methyl-CpG-binding protein (MBP) (Nan et al., 1997), binds to hypermethylated DNA at the ABCB1 promoter (El-Osta et al., 2002) and may serve as a docking platform for nucleosome modifiers and remodelers, such as SWI/SNF, HDAC1, HDAC2, and mSIN3, thereby altering the chromatin state of gene promoters and subsequently transcription (Harikrishnan et al., 2005; Jones et al., 1998; Nan et al., 1998). Although a direct interaction of these co-repressors with the ABCB1-promoter-bound MeCP2 has not been described, ABCB1 expression is induced upon inhibition of HDAC activity or by overexpression of the p300/CREB lysine acetyl transferase (KAT3B) (Baker et al., 2005; Jin and Scotto, 1998; Tabe et al., 2006). While HDACi treatment had a relative small effect on ABCB1 expression in human T-cell acute lymphoblastic leukemia cells, combined inhibition of DNA methylation and HDAC activity did induce ABCB1 expression, supporting a repressive role of the MeCP2/HDAC complex in regulation of ABCB1 expression (El-Osta et al., 2002). Removal of HDAC inhibition dramatically reduces ABCB1 protein level, albeit with slow kinetics over a time period of 6 days, suggesting that other factors are involved in regulation of ABCB1 expression (Xiao et al., 2005).

In response to HDACi treatment acetylation levels of histones H3 and H4, and methylation levels of H3K4 were increased at the ABCB1 promoter (Baker et al., 2005; Xiao et al., 2005). In analogy, H3 acetylation, but not H4 acetylation and H3K4 methylation, was increased at the ABCB1 promoter upon chemotherapy and preceded the ABCB1 expression, suggesting that H3 promoter acetylation is involved in drug-treatment induced ABCB1 expression (Baker et al., 2005). In contrast, trimethylation of H3K4 at the ABCB1 promoter was found to be dependent on the methyltransferase KMT5A (MLL1). Knockdown of KMT5A decreased the constitutive expression of ABCB1 and sensitized cancer cells to chemotherapeutic agents (Huo et al., 2010).

In addition to ABCB1, breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 8 (MRP8) expression levels are also found upregulated upon HDACi treatment (Hauswald et al., 2009). These findings suggest that HDACs are recruited to the methylated promoter and mediate transcriptional repression of drug transporters, including ABCB1, BCRP and MRP8.

Collectively, these data indicate that drug-treatment-induced ABCB1 expression occurs at the transcriptional level, which is mediated by DNA methylation and histone acetylation at the ABCB1 promoter and can contribute to acquired resistance to anticancer therapies (Figure 3B).

EPIGENETIC SILENCING OF PROAPOPTOTIC GENES IN DRUG TOLERANCE

Drug treatment in anti-cancer therapy often leads to tumor cell death, i.e. apoptosis. Genetic or epigenetic perturbations resulting in a defective execution of an apoptotic response could potentially result in drug tolerant tumor cells. Indeed, genetic mutations as well as epigenetic changes in proapoptotic genes are a hallmark of human
malignancies (Hanahan and Weinberg, 2011). Although it remains controversial whether these mutations contribute to drug resistance (Borst et al., 2001), stochastic epigenetic silencing of proapoptotic genes in a fraction of the total tumor cell population may allow selection of these cells upon drug treatment. Indeed, several proapoptotic genes were found to be silenced by promoter methylation upon drug treatment, including death associated protein kinase 1 (DAPK1) and apoptotic peptidase activating factor 1 (APAF-1).

Cell-cycle arrest or apoptosis are promoted by tumor suppressor gene TP53 in response to chemotherapy treatment, and as a consequence TP53 loss can induce drug resistance. Caspase-9 and its cofactor Apaf-1 are essential downstream effectors of p53 during Myc-induced apoptosis. Consistently, inactivation of caspase-9 and Apaf-1 can substitute for the loss of p53 in Myc-driven oncogenic transformation (Soengas et al., 1999). Indeed, loss of APAF-1 expression is frequently observed in metastatic melanomas retaining TP53. APAF-1 negative melanoma cells were unable to execute an apoptotic program in response to TP53 activation, resulting in chemotherapy resistance. Loss of APAF-1 in metastatic melanoma occurred through genomic loss or epigenetic silencing. In the latter case APAF-1 expression was restored by the DNA-methylation inhibitor 5-aza-dC, resulting in enhanced chemosensitivity and rescue of the apoptotic defects associated with APAF-1 loss (Soengas et al., 2001). In addition, others have reported increased APAF-1 expression in ovarian cancer cell lines treated with HDACi, suggesting a contribution in APAF-1 silencing by histone deacetylases (Tan et al., 2011a). Surprisingly, APAF-1 negative melanoma cells did not display hypermethylation of the APAF-1 promoter indicating that APAF-1 expression is regulated by an indirect DNA methylation dependent mechanism (Soengas et al., 2001). While APAF-1 promoter methylation was not apparent in multiple myeloma (Chim et al., 2007), transitional cell carcinomas of the bladder and ccRCC harbored hypermethylated APAF-1 promoters which correlated with tumor stage and tumor grade (Christoph et al., 2006a; Christoph et al., 2006b). In conclusion, downregulation of proapoptotic APAF-1 expression is correlated with resistance to chemotherapeutics, yet the mechanism underlying APAF-1 mediated-drug resistance seems to be dependent on cell type and TP53 status (Figure 3B).

Reduced expression or inactivation of the proapoptotic DAPK1 by genetic or epigenetic mechanisms is found in human malignancies (Michie et al., 2010; Raval et al., 2007). DAPK kinases induce apoptosis by phosphorylating serine and threonine residues in substrates contributing to apoptosis induced by interferon-γ, FAS, tumor necrosis factor-α TNFα, TNF-related apoptosis-inducing ligand (TRAIL), and anoikis (Michie et al., 2010). In addition, DAPK1 suppresses MYC- and E2F-induced oncogenic transformation by activating p19ARF-p53-dependent apoptosis (Raveh et al., 2001). Furthermore, DAPKs play a critical role in inhibiting cell migration and invasion of cancer cells (Kuo et al., 2006). Reintroduction of DAPK expression suppressed the metastatic potential of lung cancer in a mouse model underlining the tumor suppressing capabilities of the DAPKs (Inbal et al., 1997).

Loss of DAPK1 expression in tumors is caused by either homozygous gene deletion, loss of heterozygosity or hypermethylation of a CpG region in the 5’ UTR (Bialik and
Kimchi, 2004). Epigenetic silencing of DAPK was found in the majority of sporadic chronic lymphocytic leukemia (CLL) (Raval et al., 2007). These results were supported by DAPK1 promoter methylation in a wide range of human tumor types in which DAPK silencing correlated with tumor progression, histo-pathological staging, increased metastasis and high tumor recurrence (Bialik and Kimchi, 2004; Chaopatchayakul et al., 2010; Christoph et al., 2006b; Raval et al., 2007; Sugita et al., 2011; Tada et al., 2002; Toyooka et al., 2003; Voso et al., 2010). However, in AML and MDS the extent of DAPK promoter methylation is a matter of debate since some studies identified this as a very rare event, contradicting previous studies (Claus et al., 2011; Voso et al., 2010). DAPK expression could be restored in tumor cells by demethylating agent 5-aza-dCR or HDACi, indicating that DAPK silencing involves DNA-methylation and histone acetylation (Christoph et al., 2006b; Toyooka et al., 2003; Wu et al., 2010a; Zhang et al., 2006). A higher prevalence of DAPK, FAS and TRAILR1 promoter hypermethylation in cervical carcinomas nonresponsive to drug treatment, suggested that epigenetic downregulation of DAPK expression in part may contribute to drug resistance (Chaopatchayakul et al., 2010). Indeed, HDACi-mediated restoration of DAPK expression in human gastric and lung cancer cell lines increased chemosensitivity to anticancer drugs (Wu et al., 2010a; Zhang et al., 2006). In conclusion, the use of epigenetic drugs capable of restoring DAPK expression, in combination with DNA-damaging agents, is an exciting approach in the treatment of DAPK negative, chemoresistant cancers (Figure 3B and C).

EPIGENETIC REGULATION OF DNA REPAIR GENES IN DRUG TOLERANCE

Inactivation of mismatch repair genes (MMR) leads to unrepaired deletions in mono- and dinucleotide repeats, resulting in variable repeat lengths, referred to as microsatellite instability (MSI), a hallmark of tumors with inactivated MMR genes (Aaltonen et al., 1993). Germline mutations of mismatch repair genes such as MSH2, MLH1, and PMS2 are frequently found in hereditary nonpolyposis colon cancer (HNPCC) (Lynch et al., 2009). MMR deficient human cancer cell lines tolerated alkylating agents, suggesting that loss of MMR could cause chemotherapy resistance (Anthoney et al., 1996). MSI in tumors can only in part be explained by mutations in MMR genes such as MLH1, MSH2, MSH3, and PMS2 (Peltomäki, 2003). In less than 10% of all sporadic uterine endometrial carcinomas (UEC) MSI was associated with mutations in MMR genes, suggesting that mutations in genes regulating MMR proteins or epigenetics could contribute to inactivation of MMR gene expression. Indeed mutations affecting MSH2 protein degradation were identified in a variety of cancers including ALL and colon cancer (Diouf et al., 2011). Epigenetic driven inactivation of MMR was illustrated by the identification of MLH1 promoter hypermethylation in various tumors and as an early event in endometrial tumorigenesis, which correlated with drug resistance and predicted poor overall survival (Esteller et al., 1998; Strathdee et al., 1999). However, an association between clinical response and MMR status in primary tumors was not
observed (Helleman et al., 2006), even though MLH1 silencing was correlated with tumor relapse during chemotherapy (Gifford et al., 2004).

The ability to measure MLH1 promoter methylation status in plasma DNA from ovarian cancer patients provided a noninvasive method to monitor the potential acquisition of drug resistance during drug treatment (Gifford et al., 2004). Examination of plasma DNA of patients with epithelial ovarian cancer for methylation of the MLH1 promoter before chemotherapy and at relapse revealed increased MLH1 promoter methylation at relapse. Moreover, 25% of the samples from patients with a relapse had MLH1 methylation that was not detected in matched prechemotherapy plasma samples. Acquisition of MLH1 methylation in plasma DNA at relapse predicted poor overall survival of patients (Gifford et al., 2004). These results strongly suggest that selection favors tumor cells with repressed MLH1 during chemotherapy, resulting in a drug resistant tumor, which provides a rational for the use of epigenetic drugs to restore MLH1 expression and abolish drug resistance (Figure 3B and C).

O^6^-Methylguanine DNA-methyltransferase (MGMT) encodes the DNA-repair O^6^-alkylguanine-DNA-alkyltransferase (AGT), which removes alkylating lesions at position O^6^ of guanine (Verbeek et al., 2008). DNA damage induced MGMT expression facilitates DNA-repair and is a possible mechanism to acquire resistance against alkylating agents. Overexpression of MGMT in various mouse model studies suppressed tumor development due to enhanced DNA damage repair (Gerson, 2004). In contrast, MGMT knockout mice, displayed increased sensitivity towards alkylating chemotherapeutics providing genetic evidence for a role of MGMT in drug responsiveness (Glassner et al., 1999). Although the precise mechanism of DNA damage induced MGMT expression is still unclear (Gerson, 2004; Verbeek et al., 2008), the MGMT promoter region contains transcription factor recognition sequences that explain induction of MGMT expression by glucocorticoids, cyclic AMP, and protein kinase C activators. Hypermethylation of specific CpG regions in the MGMT promoter resulting in the silencing of MGMT expression has been described in primary human tumors, such as glioma, lymphoma, retinoblastoma, breast, and prostate tumors (Esteller et al., 1999; Kang et al., 2002; Watts et al., 1997). Remarkably, a reduction of MGMT promoter methylation was acquired upon chemotherapy treatment resulting in MGMT expression, and increased AGT activity rendering the cytotoxic drugs ineffective (Chan et al., 1992; Fritz and Kaina, 1992). In line with these results, studies in patients with glioma, glioblastoma, nonHodgkin lymphoma, or male germ cell tumors identified MGMT promoter methylation as a marker for chemotherapy sensitivity: tumor cells with hypermethylated MGMT promoters responded better to chemotherapy, and these patients showed improved survival compared to patients with hypomethylated MGMT promoters (Esteller et al., 2000; Koul et al., 2004; Weller et al., 2010). As a result, MGMT promoter methylation status is an established molecular marker in clinical trials, which is predictive for the response to alkylating chemotherapy and radiotherapy (Kesari et al., 2009; Riemenschneider et al., 2010; Weller et al., 2010; Wick et al., 2009). In conclusion, elevated MGMT expression, caused by MGMT promoter hypomethylation is a strong mediator of acquired drug resistance, suggesting
that MGMT silencing or AGT inhibition has the potential to sensitize tumors for chemotherapy (Figure 3B and C).

Another DNA repair pathway that is linked to chemotherapy resistance involves the Fanconi anemia (FA) group of proteins. FA germ-line mutations result in chromosomal instability leading to congenital defects, bone marrow failure, and increased cancer susceptibility (D’Andrea, 2010). The Fanconi-BRCA1/2 molecular pathway plays an important role in DNA repair and is necessary for the normal cellular response to interstrand DNA cross-linking agents like cisplatin, mitomycin C, and diepoxybutane (D’Andrea, 2010). Until now, fifteen FA proteins have been identified, of which eight assemble into a core complex upon DNA damage (Kim et al., 2011; Stoepker et al., 2011). Monoubiquitination of FANCD2 and FANCI results in chromatin recruitment into nuclear DNA-repair foci. In addition, recruitment of the core complex by FANCM to the site of DNA damage results in BRCA1/2 (BRCA2 is also known as FANCD1) mediated DNA repair via homologous recombination (Deans and West, 2011).

Somatic mutations or epigenetic silencing of the FA pathway is observed in a variety of tumors (D’Andrea, 2010; Tischkowitz et al., 2003). Fancf deficiency causes increased ovarian tumor incidence in mice and in mouse embryonic fibroblasts it resulted in an aberrant response to DNA crosslinking agents (Bakker et al., 2012). Hypermethylation of the FANCF promoter was found in primary ovarian adenocarcinomas, ovarian granulosa-cell tumors, cervical cancer, non-small cell lung cancers (NSCLC), and squamous-cell head and neck cancers (Dhillon et al., 2004; Marsit et al., 2004; Narayan et al., 2004; Taniguchi et al., 2003). In ovarian, glioma, and pancreatic cancer cell lines, FANCF promoter methylation resulted in decreased gene expression and was associated with increased sensitivity to cisplatin and other DNA cross-linking agents (Chen et al., 2007; Taniguchi et al., 2003). Conversely, restoration of FANCF expression by 5-aza-dC-mediated promoter hypomethylation resulted in cisplatin resistance (Taniguchi et al., 2003). In conclusion, treatment of cancer patients with DNA crosslinking agents, such as cisplatin and alkylating agents may result in tumor relapse by selection for FANCF expressing tumors cells with hypomethylated FANCF promoters (Figure 3B). Measuring promoter methylation status of FA genes during chemotherapy may therefore be a suitable approach to monitor drug resistance (D’Andrea, 2010).

Evidently, epigenetic regulation of genes involved in drug efflux, apoptosis, and DNA repair contributes to acquired drug resistance. However, the chromatin biology underlying the epigenetic regulation remains largely unknown. Consequently, manipulating the expression of such genes to improve drug sensitivity or reverse drug resistance is restricted. Future studies aimed at decoding drug resistance associated histone marks, corresponding histone modifiers, and nucleosome remodelers will increase our knowledge of critical players in epigenetic-driven drug resistance.

CHROMATIN-MEDIATED DRUG RESISTANCE

Although the nongenetic transcriptional changes seen in drug resistant tumors, as described above, are clearly linked to altered epigenetic regulation of genes, the
underlying epigenetic mechanisms are largely unknown (Glasspool et al., 2006). While the treatment of chronic myeloid leukemia (CML), harboring the BCR-ABL fusion oncogene, with the targeted drug imatinib (Gleevec) shows unprecedented clinical efficacy and increased survival, a third of the patients require alternate therapy due to nonresponsiveness of the tumor cells (Roychowdhury and Talpaz, 2011; Sellers, 2011). Secondary mutations in BCR-ABL, which render imatinib ineffective (Gorre et al., 2001), can only explain drug resistance to imatinib in 30% of the cases. The relative short time in which drug resistance to imatinib occurs (< 1 year) combined with upregulation of relevant ERK and AKT pathways suggest a role for nongenetic heterogeneity driving drug resistance.

A similar pattern is observed in the treatment of melanomas harboring BRAFV600E mutations with BRAF inhibitors (PLX4032). Despite an initial response, virtually all patients develop resistance due to reactivation of the RAF-MEK pathway, activation of alternative signaling pathways, or chromatin regulating events (Bollag et al., 2010; Flaherty, 2010; Johannessen et al., 2010; Sharma et al., 2010; Smalley, 2010). Similar observations have been made in the treatment of NSCLC carrying epidermal growth factor receptor (EGFR) activating mutations, with EGFR tyrosine kinase inhibitors (TKI). Remarkably, NSCLC patients who experienced a “drug-holiday” upon developing EGFR TKI resistance responded well to retreatment with EGFR TKI (Becker et al., 2011; Kurata et al., 2004; Yano et al., 2005). These observations suggested a reversible, epigenetic basis for the EGFR TKI resistance phenotype (Figure 3A and B).

Indeed, a recent study provided intriguing mechanistic insight into the epigenetics underlying acquired resistance for EGFR TKI, such as erlotinib and gefitinib in NSCLC (Sharma et al., 2010). Although EGFR TKI or chemotherapeutics were very effective in eradicating the majority of NSCLC tumor cells carrying an activating EGFR mutation, a very small percentage (0.3%) of rare, quiescent cells survived TKI treatment even at drug concentrations 100 times the IC50. Interestingly, this rare drug resistant cell population was observed in a variety of tumor cell lines upon cytotoxic and targeted drug treatment ranging from 0.3 to 5.5 % of the total population, suggesting that nongenetic-mediated drug resistance may be a widespread mechanism across various malignancies and treatment modalities.

Although the resistant cells, dubbed “drug-tolerant persisters” (DTPs) were enriched for CD133 and CD24 stem cell markers, uniformity of expression was lost as soon as DTPs resumed proliferation in the presence of TKI. Proliferating DTPs (referred to as DTEPs, “drug-resistant expanded persisters”) displayed a stem cell marker expression profile, which reflected the heterogeneity of the parental tumor cell line. Whether DTPs can be considered cancer stem cells or have functional cancer stem cell properties remains unclear. Using a genetic mouse mammary tumor model, it was shown that cisplatin-treated tumor remnants that allow regrowth of the mammary tumors were not enriched for tumor initiating cells (TICs; defined by CD24 and CD49f mammary stem cell markers), suggesting that TICs do not provide a mechanism for drug resistance (Pajic et al., 2010). Prolonged low dose cisplatin treatment of mouse mammary tumors in another mouse model did result in the enrichment of CD29; CD24
double positive TICs in cisplatin resistant tumors. Although these opposite results may relate to experimental differences it is also conceivable that rapid and dynamic epigenetic variations may drive the transition of TICs into more differentiated tumor cells and vice versa (Gupta et al., 2011).

A nonmutational basis for EGFR TKI drug resistance was suggested by the frequency at which DTPs exist in a heterogeneous tumor cell population (0.3-5.5%), the absence of secondary mutations in EGFR (like T790M), ERBB3 activation or MET amplification, and de novo appearance of DTPs in single-cell-derived tumor cell line clones. Moreover, prolonged passaging of DTEPs in drug free medium restored TKI sensitivity and therefore implied a reversible, possibly epigenetic-based drug resistance. Comparative gene expression analysis of the parental tumor cell line and DTEPs revealed a nonrandom distribution of differential expressed genes, suggesting global chromatin changes in the resistant cells. Sharma et al. (Sharma et al., 2010) identified KMD5A (also known as JARID1A and RBP2) among the genes specifically upregulated in DTEPs. KMD5A is a histone demethylase targeting H3K4me2/3, which is a histone modification that marks open chromatin and active genes (Christensen et al., 2007; Iwase et al., 2007; Klose and Zhang, 2007; Secombe et al., 2007) (Figure 1). In concordance, EGFR TKI resistant cells displayed reduced H3K4me2/3, a histone mark correlated with poor prognosis (Seligson et al., 2005).

Notably, others identified enrichment of KDM5B (JARID1B) expressing, slow cycling cells upon treatment of melanoma cells with cytotoxic- or BRAFV600E-targeting drugs. Interestingly, KDM5B expression marked a dynamic, temporarily distinct tumor subpopulation of slow-cycling cells, which were essential for tumor growth (Roesch et al., 2010). These results suggest that the H3K4 demethylases KDM5A and KDM5B both contribute to nongenetic tumor heterogeneity and drug resistance, which may suggest interplay between these enzymes.

Since KDM5A is found in complexes harboring HDACs, also reduced levels of acetylated histone H3 lysine 14 (H3K14ac) were found in TKI resistant cells. In line with these observations, drug resistant cells of various tumor cell lines were extremely sensitive to RNA-interference-mediated inactivation of KDM5A or pharmacological inhibition of KDM5A-associated HDACs, while the parental tumor cell lines remained unaffected. Consequently, treatment of these cell lines with a combination of TKI and HDACi prevented the development of drug resistance. Although it remains unclear what drives the expression of KDM5A in EGFR TKI resistant cells, these results provided important molecular insight into the epigenetic mechanisms underlying drug resistance and simultaneously yield an exiting therapeutic approach to counteract acquired drug resistance (Figure 3B and C).

The different HDACi sensitivity of the parental and drug resistant cells could be explained by a differential DNA-damage response. In contrast to the parental cell population, HDACi induced γ-H2AX, a marker of DNA damage, only in drug resistant cells in a checkpoint dependent manner. How reduced H3K4 methylation and acetylation cause drug resistance and sensitize drug resistant cells for HDACi-induced DNA damage remains unclear. Treatment of tumor cells with HDACi prior to incubation
with EGFR TKI did not reduce drug resistance, probably because nonresistant cells constantly generate drug resistant cells. These observations illustrate the dynamic nature of a tumor population and are in line with other studies addressing the plasticity of tumor cell populations (Gupta et al., 2011).

Remarkably, inhibitors of the insulin growth factor 1 receptor (IGF-1R) severely suppressed drug resistant outgrowth in combination with EGFR TKI, cisplatin, and BRAF inhibitor treatment. Drug resistant cells displayed increased IGF binding protein 3 (IGFBP3), as well as increased IGF-1R phosphorylation providing a rational for the inhibitory effects of IGF-1R inhibitors. Even more interesting, IGF-1R inhibitors reduced KDM5A levels and concomitantly increased H3K4me2 levels, suggesting a direct link between the IGF signal transduction pathway and KDM5A. Although the cause and direction of the relationship between KDM5A and IGF signaling in drug resistant cells is unclear, the IGF-1R pathway has been linked to drug resistance and poor prognosis in various malignancies (Casa et al., 2008; Pollak, 2008). The rise of drug resistant cells in the presence of EGFR TKI and an IGF-1R inhibitor harboring secondary genetic mutations in EGFR indicated that drug resistance through genetic means is still selected for (Sharma et al., 2010) (Figure 3C). Therefore, the design of treatment modalities that circumvent selection pressure for second site mutations in the drug target will be important to prevent genetic based drug resistance. In general, combining chemotherapy or targeted drugs to eradicate the majority of the tumor cells (“debulking”) with epigenetic drugs such as HDACi, DNMTi, BETi or inhibitors of pathways affected by a drug resistant epigenome (inhibitors of IGF-1R, MGMT, MLH1) may inform future anti-cancer treatment regimens to prevent tumor relapse (Figure 3D and E).

Nuclear cloning has taught us that differentiated cells can be reprogrammed into pluripotent stem cells by erasing the epigenetic memory that drives a particular phenotype. In a similar fashion the studies mentioned above teach us that drug resistant cells can be reprogrammed into drug-sensitive cells by erasing the epigenetic memory that dictates a drug resistant phenotype using epigenetic drugs.

FUTURE PERSPECTIVES

To increase the survival rates of cancer patients will be impossible without improving the efficacy of cytotoxic and targeted anti-cancer drugs. Since drug resistance is the major cause of treatment failure it will be vital to avoid nonresponsiveness towards current and future treatment modalities. The important contribution of DNA- and histone modifications in drug resistance implicates the possibility to prevent or abolish drug resistance by reverting the cancer epigenome of nonresponsive cells to a drug responsive state. The development of various “epigenetic” drugs will provide us with the tools for studying the reversibility of drug resistance in vitro, in mouse models, and clinical trials. Still, our understanding of the epigenetic mechanisms that drive cells into a drug resistant state is in its infancy and requires additional research (Table 1). Efforts in charting the epigenome of normal and diseased cells will provide a platform to obtain
insight into the drug resistance epigenome (Abbott, 2011; American Association for Cancer Research Human Epigenome Task Force European Union, 2008). However, the epigenome of a tumor biopsy or primary tumor cell line will only provide the average of a heterogeneous tumor cell population, which does not reflect a drug resistant epigenome. Therefore, it will be imperative to determine the epigenetic landscape of the rare population of drug resistant cells in order to identify the histone modifiers and nucleosome remodelers that render anticancer drugs ineffective. The results obtained from these studies will allow the design of new and enhanced drugs that change the epigenetic landscape of nongenetic drug resistant cells to a drug sensitive state.

Furthermore, it will be key to identify the transcriptional targets or nonhistone substrates sufficient to sustain the drug resistant state. The use of loss-of-function or gain-of-function genetic screens has shown the ability to uncover factors underlying acquired drug resistance (Huang et al., 2009; Mullenders and Bernards, 2009). Finally, the design of anti-cancer therapies that combine tumor debulking strategies using cytotoxic or targeted drugs with drug sensitivity inducing “epigenetic drugs” (Figure 3), will allow us to attack a heterogeneous tumor cell population from multiple angles, thereby minimizing the chance for drug resistant cells to escape and generate a drug resistant tumor.

ACKNOWLEDGEMENTS
We thank Dr. Richard M. Heideman for critically reading this manuscript. We apologize to our colleagues whose work was not cited due to space constraints. Funding for R.H.W and J.H.D is provided by the Dutch Cancer Society (KWF 2007-3978) and the Netherlands Organization for Scientific Research (NWO-VIDI).

REFERENCES

prognostic factors, and patient outcome. Cancer Res. 69, 3802-3809.

90. Glassner, B.J., Weeda, G., Allan, J.M., Broekhof, J.L., Carls, N.H., Donker, I., Engelward, B.P., Hampson, R.J.,

106. He, J., Kallin, E.M., Tsukada, Y.-I. and Zhang, Y., 2008. The H3K36 demethylase Jhdm1b/Kdm2b regulates...

neuroendocrine tumors. Science 331, 1199-1203.

official journal of the American Society of Clinical Oncology 28, 1358-1365.

177. Pasqualucci, L., Dominguez-Sola, D., Chiarenza, A., Fabbri, G., Grunn, A., Trifonov, V., Kasper, L.H., Lerach, S., Tang, H., Ma, J., Rossi, D., Chadburn, A., Murty, V.V., Mullighan, C.G., Gaidano,

242. Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang,

