Search for WZ resonances in the fully leptonic channel using pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

DOI
10.1016/j.physletb.2014.08.039

Publication date
2014

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Search for WZ resonances in the fully leptonic channel using pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

ATLAS Collaboration*

1. Introduction

The search for diboson resonances is an essential complement to the investigation of the source of electroweak symmetry breaking. Despite the compatibility between the properties of the newly discovered particle at the LHC [1–4] with those expected for the Standard Model (SM) Higgs boson, the naturalness problem associated with a light Higgs boson suggests that the SM is likely to be an effective theory valid only at low energies. Extensions of the SM, such as Grand Unified Theories [5], Little Higgs models [6], Technicolor [7–10], more generic Composite Higgs models [11,12], or models of extra dimensions [13–15], predict diboson resonances at high masses.

This Letter presents a search for resonant WZ production in the fully leptonic decay channels WZ → $\ell\nu\ell'$ ($\ell, \ell' = e, \mu$) using 20.3 fb$^{-1}$ of pp collision data collected by the ATLAS detector at a centre-of-mass energy of $\sqrt{s} = 8$ TeV. Four possible leptonic decay channels ($\ell\ell\nu\nu$, $\ell\ell\nu\ell$, $\ell\nu\ell\nu$, and $\nu\nu\nu\nu$) are considered. To interpret the results, the extended gauge model (EGM) [16] with a spin-1 W′ boson is used as a benchmark signal hypothesis. In this model, the couplings of the EGM W′ boson to the SM particles are identical to those of the W boson, except for its coupling to WZ, which is suppressed with respect to the SM WWZ triple gauge coupling by a factor of $(m_W/m_{W'})^2$ and entails a linear relationship between the resonance width and mass. The branching ratio BR(W′ → WZ) varies between 1% and 2% for a W′ mass range 200–2000 GeV. In other scenarios, such as for leptophobic W′ bosons [17–19], the decay to a pair of gauge bosons can be a dominant channel. A narrow W′ resonance is predicted in the EGM, with an intrinsic decay width that is negligible with respect to the experimental resolutions on the reconstructed WZ invariant mass. Possible interferences between signal and SM backgrounds are assumed to be small and are neglected. Under these assumptions, the final results presented here can be interpreted in terms of any narrow spin-1 resonance for a given signal efficiency and acceptance.

A phenomenological Lagrangian for heavy vector triplets (HVT) [20] has recently been introduced, where the couplings of the new fields to fermions and gauge bosons are defined in terms of parameters. By scanning these parameters the generic Lagrangian describes a large class of models. The triplet field, which mixes with the SM gauge bosons, couples to the fermionic current through the combination of parameters $g^2 c_F/g_V$ and to the Higgs and vector bosons through $g_Y c_H$, where g is the SU(2)$_L$ gauge coupling, the parameter g_Y represents the coupling strength to vector bosons, and c_F and c_H allow to modify the couplings and are expected to be close to unity in most specific models. Two benchmark models, provided in Ref. [20], are used here as well. In Model A, weakly coupled vector resonances arise from an extension of the SM gauge group [21]. In Model B, the heavy vector triplet is produced in a strongly coupled scenario, for example in a Composite Higgs model [22]. In Model A, the branching fractions to fermions and gauge bosons are comparable, whereas for Model B, fermionic couplings are suppressed.

Direct searches for WZ resonances have been reported by several experiments. The ATLAS Collaboration reported on searches for a W′ resonance using approximately 1 fb$^{-1}$ of data for the $\ell\nu\ell'$ channel and 4.7 fb$^{-1}$ of data for the $\ell\ell\nu\ell$ channel, where j is a hadronic jet, both at $\sqrt{s} = 7$ TeV, and excluded an EGM W′ boson with mass below 0.76 TeV [23] and 0.95 TeV [24] respectively. The CMS Collaboration searched for the production of generic WZ resonances in the semileptonic final state, and obtained upper limits on the production cross section as a function of signal mass.
and width [25]. They also analyzed dijet signatures containing jets tagged as W and Z boson decays, and excluded EGM W′ bosons with masses below 1.7 TeV [26]. The advantage of the three-lepton WZ final state over its partial or fully hadronic final state counterparts is its better sensitivity at the lower end of the mass spectrum due to its significantly smaller SM backgrounds and superior mass resolution. The CMS Collaboration analyzed 5 fb⁻¹ of data at \(\sqrt{s} = 7\) TeV in the \(\ell\nu\ell'\ell'\) channel, and EGM W′ bosons with masses below 1.143 TeV [27] were excluded.

2. The ATLAS detector

The ATLAS detector [28] consists of an inner tracking detector (ID), electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer. The ID is immersed in a 2 T axial magnetic field, generated by a superconducting solenoid, and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID provides a pseudorapidity coverage of \(|\eta| < 2.5\).

The EM calorimeters are composed of interspersed lead and liquid argon, acting as absorber and active material respectively, with high granularity in both the barrel \((|\eta| < 1.475)\) and end-cap up to the end of the tracker acceptance \((1.375 < |\eta| < 2.5)\), and somewhat coarser granularity from \(|\eta| = 2.5\) to 3.2. The hadronic calorimeter uses steel and scintillator tiles in the barrel region, while the endcaps use liquid argon as the active material and copper as an absorber. The muon spectrometer (MS) is based on three large superconducting air-core toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters. Three layers of precision tracking chambers, consisting of drift tubes and cathode strip chambers, enable precise muon track measurements in the pseudorapidity range of \(|\eta| < 2.7\), and resistive-plate and thin-gap chambers provide muon triggering capability in the range of \(|\eta| < 2.4\).

3. Data and Monte Carlo modelling

The data analyzed here were collected by the ATLAS detector at the LHC in pp collisions at \(\sqrt{s} = 8\) TeV during the 2012 data-taking run. Events are selected using a combination (logical OR) of isolated and non-isolated single-lepton (e or \(\mu\)) triggers. The \(p_T\) thresholds are 24 GeV for isolated single-lepton triggers and 60 (36) GeV for non-isolated single-e (\(\mu\)) triggers. The requirement that three high-\(p_T\) leptons are in the final state gives a trigger efficiency above 99.5%. After data-quality requirements are applied, the total integrated luminosity is 20.3 fb⁻¹ with an uncertainty of 2.8% [29].

The baseline EGM W′ signals are generated with PYTHIA 8.162 [30] and the MSTW2008LO [31] parton distribution function (PDF) set. The production cross section times branching fraction (with \(W \to e\nu, \mu\nu, \tau\nu, \nu\nu\)) of all \(\tau\) decays are considered, and \(Z \to ee, \mu\mu\) are scaled to their theoretical predictions at next-to-next-to-leading order (NNLO) using Z2PROD [32], which are 1.43 pb for \(m_{W'} = 200\) GeV, 4.12 fb for \(m_{W'} = 1\) TeV, and 0.08 fb for \(m_{W'} = 2\) TeV. In the \(W \to \tau\nu\) component, only the leptonic \(\tau\) decays enter the signal acceptance, albeit slightly and only at high signal mass, whereas the \(Z \to \tau\tau\) component is totally negligible. The intrinsic decay widths of the EGM W′ scale linearly with \(m_{W'}\) at high mass and are 5.5 GeV for \(m_{W'} = 200\) GeV, 36 GeV for \(m_{W'} = 1\) TeV, and 72 GeV for \(m_{W'} = 2\) TeV. These are significantly less than the experimental resolutions, which have Gaussian widths of the order of 25 GeV for \(m_{W'} = 200\) GeV, 100 GeV for \(m_{W'} = 1\) TeV, and 180 GeV for \(m_{W'} = 2\) TeV. MC samples were produced for the EGM W′ signal from 200 GeV to 400 GeV at intervals of 50 GeV and from 400 GeV to 2 TeV at intervals of 200 GeV. An interpolation procedure is adopted to obtain the distributions for mass points between 200 GeV and 400 GeV with 25 GeV step size and from 400 GeV to 2 TeV with 50 GeV step size.

The dominant SM WZ background is modelled by POWHEG-BOX [33–36], a next-to-leading-order (NLO) event generator combined with the NLO CT10 PDF set [37]. Background events arising from \(t\bar{t}Z\) are modelled with POWHEG-BOX, while those from \(t\bar{t} + W/Z\) processes are generated with MadGraph 5.1.4.8 [38] together with the CTEQ6L1 [39] PDF set. All these events are interfaced with PYTHIA, using the AU2 tune [40] for parton showering.

The second category of background arises from photons misidentified as electrons, mainly from \(Z\gamma\) production. A photon can be misreconstructed as an electron if it lies close to a charged particle track or if the photon converts to e⁺e⁻ after interacting with the material in front of the calorimeter. This contribution is estimated using simulated \(Z\gamma\) MC events generated with SHERPA 1.4.0 [41].

Finally, a third category of background includes all other sources where one or more jets are misidentified as an isolated lepton. The contributions from these fake backgrounds are estimated using a data-driven method as described in Section 6. The contribution from events with only one jet misidentified as an isolated lepton is found to be dominant while those with more than one are found to be negligible. Thus, in this analysis the fake backgrounds are denoted by \(\ell\nu\ell'\ell' + \text{jets}\).

An overview of the major MC samples used is presented in Table 1.

Monte Carlo (MC) events are processed through the full detector simulation [42] using GEANT4 [43], and their reconstruction is performed with the same software used to reconstruct data events. Correction factors for lepton reconstruction and identification efficiencies are applied to the simulation to account for differences with respect to data. The simulated lepton four-momenta are tuned, via calorimeter energy scaling and momentum resolution smearing, to reproduce the distributions observed in data from leptonic W, Z and \(J/\psi\) decays after calibration. Furthermore, additional inelastic pp collision events are overlaid with the hard scattering process in the MC simulation and then reweighted to reproduce the observed average number of interactions per bunch-crossing in data.

4. Object reconstruction

Electron candidates are reconstructed in the region of the EM calorimeter with \(|\eta| < 2.47\) by matching the calorimeter clusters to the tracks in the ID. The transition region between the barrel and endcap calorimeters \((1.37 < |\eta| < 1.52)\) is excluded. Candidate electrons must satisfy the medium quality definition [44]
re-optimized for 2012 data-taking conditions, which is based on a set of requirements on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. The longitudinal impact parameter \(z_0 \) of the associated track with respect to the primary vertex (PV), which is defined as the vertex with the largest sum of squared transverse momenta of associated tracks, must satisfy \(|z_0 \sin \theta| < 0.5 \text{ mm} \). The transverse impact parameter \(d_0 \) of the associated track must satisfy \(|d_0/\sigma_{d_0}| < 6 \), where \(\sigma_{d_0} \) is the uncertainty on the measurement of \(d_0 \). To reduce the background due to jets misidentified as electrons, electron candidates are required to be isolated in both the calorimeter and the ID. The isolation requirements are \(R_{\text{iso}}^\text{Cal} < 0.16 \) and \(R_{\text{iso}}^\text{ID} < 0.16 \), where \(R_{\text{iso}}^\text{Cal} \) is the total transverse energy recorded in the calorimeters within a cone of size \(\Delta R = 0.3 \) around the lepton direction, excluding the energy of the lepton itself, divided by the lepton \(E_T \), and \(R_{\text{iso}}^\text{ID} \) is the sum of the \(p_T \) of the tracks in a cone of size \(\Delta R = 0.3 \) around the lepton direction, excluding the track of the lepton, divided by the lepton \(p_T \).

Muons candidates are reconstructed within the range \(|p| < 2.5\) by combining tracks in the ID and the MS. Robust reconstruction is ensured by requiring a minimum number of hits in each of the sub-detectors of ID to be associated with the reconstructed ID tracks. Moreover, the muon reconstructed track must satisfy the requirements \(|z_0 \sin \theta| < 0.5 \text{ mm} \) and \(|d_0/\sigma_{d_0}| < 3.5 \). The measured momenta in the ID and the MS are required to be consistent with each other by satisfying \(|(q/p)^\text{ID} - (q/p)^\text{MS}| < 5 \sigma \), where \((q/p)^\text{ID} \) and \((q/p)^\text{MS} \) are the charge \(q \) over momentum \(p \) in the ID and the MS respectively, and \(\sigma \) is the total uncertainty on the difference between \(q/p \) measurements in the ID and the MS. The muon isolation requirements are \(R_{\text{iso}}^\text{Cal} < 0.2 \) and \(R_{\text{iso}}^\text{ID} < 0.15 \).

When the Z boson has high momentum (\(\gtrsim 600 \text{ GeV} \)), its collimated lepton decay products can be within a cone of size \(\Delta R = 0.3 \). To maintain a high efficiency for high-mass signals the isolation requirements imposed on the leptons are modified to not include in the calculation of \(R_{\text{iso}}^\text{Cal} \) and \(R_{\text{iso}}^\text{ID} \) the energy and momenta of any close-by same-flavour leptons. For an \(m_W = 1.4 \text{ TeV} \) signal, the relative efficiency gain, with respect to the selection without modifying the isolation requirements, is of the order of 60%. Finally, to reduce photon conversion backgrounds from muon radiative, if a muon and an electron are separated by less than \(\Delta R = 0.1 \) from each other, the electron candidate is discarded.

The missing transverse momentum, with magnitude \(E_{\text{miss}}^T \), is the momentum imbalance in the transverse plane. The \(E_{\text{miss}}^T \) is calculated from the negative vector sum of the transverse momenta of all reconstructed objects, including muons, electrons, photons and jets, as well as clusters of calorimeter cells not associated with these objects [45].

Attributing the \(E_{\text{miss}}^T \) to the transverse component of the neutrino momentum, its longitudinal component (\(p_L^\nu \)) is derived by requiring that the neutrino and the lepton attributed to the W boson decay have an invariant mass equal to the pole mass of the W boson: 80.385 GeV [46]. This constraint results in a quadratic equation with two solutions for \(p_L^\nu \). If the solutions are real the one with the smaller absolute value is kept. If the solutions are complex only the real part is kept. In general, about 30% of the events are found to have complex solutions, mainly due to the \(E_{\text{miss}}^T \) resolution at the reconstruction level. The invariant mass of the \(WZ \to \ell \ell' \nu \nu' \) system is reconstructed from the four-vectors of the candidate W and Z bosons and is used as the discriminating variable for the signal.

5. Event selection

The PV of the event must have at least three associated tracks with \(p_T > 0.4 \text{ GeV} \). Candidate \(WZ \to \ell \ell' \nu \nu' \) events are then required to have exactly three charged leptons with \(p_T > 25 \text{ GeV} \) and \(E_{\text{miss}}^\ell \) > 25 GeV. Events are rejected if a fourth lepton is found with \(p_T > 20 \text{ GeV} \). At least one of the three leptons is required to be geometrically matched to an object that fired the trigger. Two opposite-sign same-flavour leptons are required to have an invariant mass \((m_{\ell\ell}) \) within 20 GeV of the Z boson pole mass: 91.1875 GeV [47]. If two possibilities exist, the pair that has \(m_{\ell\ell} \) closest to the Z boson pole mass is chosen to form the Z candidate. To suppress the Z + jets background where one jet is reconstructed as an isolated electron, the electrons used in the reconstruction of the W bosons are required to satisfy tighter identification criteria \((tight+) \) than those required for the leptons used in the reconstruction of Z boson decays \((medium) \). These stricter criteria are described in Ref. [44].

To improve the sensitivity to resonant signals, events are further required to have \(\Delta y(W, Z) < 1.5 \), where \(\Delta y(W, Z) \) is the rapidity difference between the W and Z bosons. This selection has an efficiency exceeding 82% for all W masses and reaching 94% for \(m_W = 200 \text{ GeV} \).

Finally, two signal regions are defined, one more sensitive for high-mass W' signals with \(m_{W'} > 250 \text{ GeV} \) and the other one for low-mass W' signals with \(m_{W'} < 250 \text{ GeV} \). The high-mass signal region \((SR_{W'}) \) is defined by the additional requirement \(\Delta \phi(\ell, E_{\text{miss}}^T) < 1.5 \), where \(\Delta \phi(\ell, E_{\text{miss}}^T) \) is the azimuthal angle between the lepton attributed to the W candidate decay and the missing transverse momentum vector. Conversely, the low-mass signal region \((SR_{LM}) \) is required to have \(\Delta \phi(\ell, E_{\text{miss}}^T) > 1.5 \), which has high acceptance for low-mass signals.

6. Background estimations

The major backgrounds come from the SM WZ, ZZ and \(tt \) + W/Z processes with at least three prompt leptons in the final state. A control region dominated by SM WZ events \((CR_{WZ}) \) is defined to check the modelling of the MC predictions for these backgrounds. The selection criteria used for this region are similar to those for the signal regions except that the requirement on \(\Delta y(W, Z) \) is reversed and the requirement on \(\Delta \phi(\ell, E_{\text{miss}}^T) \) is removed. The reversal of the \(\Delta y(W, Z) \) selection reduces possible signal contamination to negligible levels, assuming previous exclusion results [23, 27]. In total, 323 events are observed in data for all four channels combined and the SM backgrounds are expected to be \(298 \pm 4 \text{(stat.)} \pm 26 \text{(syst.)} \) events, where the computation of the systematic uncertainties is detailed in Section 7. Good agreement is also found between data and the SM predictions in the shapes of various kinematical distributions. The \(m_{WZ} \) distribution in the SM WZ control region is shown in Fig. 1.

Contributions from the \(\ell \ell' \) + jets background, where at least one lepton originates from hadronic jets, are estimated using a data-driven method. A lepton-like jet is defined as a jet that is reconstructed as a lepton and satisfies all lepton selection criteria but, in the muon case, fails either the calorimeter or track isolation requirement, or, in the electron case, fails the isolation or medium quality requirement but passes a looser set of electron identification quality requirements. A “fake factor”, defined as the number of events in which a jet satisfies the nominal lepton selection criteria divided by the number of events in which a jet satisfies the lepton-like jet criteria, is computed. It can be interpreted as the probability that a lepton-like jet is instead reconstructed as a nominal lepton. The fake background is dominated by events with one jet misidentified as an isolated lepton, while contributions from other processes with two or three jets misidentified as isolated

\[\text{y} = \frac{1}{2} \ln \left(\frac{E + p_T}{E - p_T} \right) \]
leptons are found to be negligible. The fake background is thus estimated by applying the fake factor to a data sample (denoted as “tight + loose sample”) selected using all signal selection criteria except for a requirement that one of the three leptons must be a lepton-like jet. Since the electron identification and isolation requirements are different for those coming from a Z or a W candidate decay, the electron fake factor is calculated separately for these two cases.

The lepton fake factor is measured in two different data samples: dijet and $Z + \gamma$ events. In both cases the tag-and-probe method [48,49] is used, but the tag objects are different. The larger number of events within the dijet sample permits a measurement of the dependence of the lepton fake factor on the lepton p_T or η. Using the $Z + \gamma$ sample, on the other hand, leads to a measurement where the kinematic distributions and flavour compositions are closer to that of the signal region, albeit with significantly fewer events allowing only a measurement of the fake factor as a single number.

In the tight + loose sample and the two samples used for the fake-factor measurement, the backgrounds containing prompt leptons are estimated using MC simulation and subtracted from the data samples. These include the production of $Z + \gamma$ simulated with ALPGEN 2.14 [50], $t\bar{t}$ with MC@NLO 4.03 [51], $W + \gamma$ and $W+\gamma$ with ALPGEN, as well as the previously mentioned WZ, ZZ, $Z\gamma$, and $t\bar{t} + W/Z$ MC samples. The parton showering is modelled by HERWIG/JIMMY [52,53] for $Z + \gamma$, $t\bar{t}$, $W + \gamma$, and $W+\gamma$ events. The events remaining after subtraction are thus the expected lepton yields due to misidentified leptons.

The dijet sample is selected with one tag jet and one probe jet that are almost back-to-back, with $\Delta \phi > 2.5$. The tag jets are normal hadronic jets and the probe jet is required to satisfy the selection criteria for a lepton-like jet or a nominal lepton. The tag jets are reconstructed up to $|\eta| = 4.5$ from calorimeter clusters with the anti-k_t algorithm [54] using a distance parameter of 0.4 and are calibrated to the hadronic energy scale. They are required to have $p_T > 25$ GeV. For jets with $p_T < 50$ GeV and $|\eta| < 2.4$, the scalar p_T sum of the tracks that are associated with the PV and that fall into the jet area must be at least 50% of the scalar p_T sum of all tracks falling into the same jet area. The dijet events are selected by single-muon and single-photon triggers, with p_T and E_T thresholds of 24 and 20 GeV in the muon and electron cases respectively. The muon/electron requirements at the trigger level are lesser than the lepton-like jet selection criteria in order to allow for an unbiased measurement of the lepton fake factor. To better mimic the kinematic properties of the signal region, the E_T^{miss} is required to be higher than 25 GeV, which also helps reject the $Z + \gamma$ background. The probe jet and the missing transverse momentum are required to have a transverse mass smaller than 40 GeV to suppress the $W + \gamma$ background. The probe jet is then examined to determine whether it satisfies the nominal lepton selection criteria or those of the lepton-like jet.

The $Z + \gamma$ sample is defined as having one same-flavour opposite-charge lepton pair consistent with the Z boson decay as the tagged object, and a probe jet that satisfies the selection criteria for a lepton-like jet or a nominal lepton. They are selected by a set of single-lepton and dilepton triggers to improve the trigger efficiency. To suppress the contribution from prompt leptons from WZ production, events are required to have $E_T^{miss} < 25$ GeV. The probe jet is used for measuring the fake factor.

In both the dijet and $Z + \gamma$ samples, several sources of systematic uncertainty for the measurement of the fake factors are considered, stemming from the trigger bias, kinematic and flavour differences with respect to the signal region, the E_T^{miss} threshold requirement, and prompt-lepton subtraction. In the dijet sample, possible biases related to the tag-jet p_T threshold, the transverse mass requirement on the probe jet and E_T^{miss} system, and the azimuthal angle between the tag jet and the probe jet are also considered. Likewise, additional biases associated with the measurement in the $Z + \gamma$ sample, such as potential systematic kinematic differences between the low- and high-E_T^{miss} regions, are also considered. The total uncertainties on the fake factors measured using the dijet sample ranges from 8% to 33% for muons with $p_T < 50$ GeV and electrons with $p_T < 70$ GeV. Beyond the above p_T ranges the fake factors are assigned a $\gtrsim 100\%$ systematic uncertainty due to the subtraction of prompt backgrounds. The total uncertainties on the fake factors measured using the $Z + \gamma$ sample range from 27% to 36% for different lepton flavours and definitions. The uncertainties on the fake factors are applied to the fake-background estimate as normalization uncertainties.

The fake factors, which are of the order of 0.1 for both lepton flavours, are measured in both samples. The p_T-binned central values from the dijet sample measurement are the ones used in this analysis. The differences between the fake factors from the two samples can be up to $\sim 60\%$ and are the dominant contributions to the fake-factor uncertainty.

The observed and predicted background event yields are compared in an $\ell\ell' + \gamma$-enriched control region (CR$\ell\ell'+\gamma$) where events are required to have the same lepton selection and Z mass requirement as in the nominal signal selection but with E_T^{miss} less than 25 GeV and the transverse mass of the W candidate less than 25 GeV. In this region, a total of 204 events are observed in data with an SM expectation of 195 ± 4(stat.) ± 38(syst.) events. Good agreement is found between observed data and estimated background for various kinematic distributions. The Z candidate invariant mass distribution is shown in Fig. 2.

7. Systematic uncertainties

Relative uncertainties on the expected yields of the dominant WZ background and the EGM W signal with $m_W = 1$ TeV in SRWZ are shown in Table 2. These uncertainties are representative of those found for other signal masses and background types. The lepton-related ones include uncertainties from the lepton trigger, identification, energy scale, energy resolution, isolation, and impact.
Table 2
Relative uncertainties in the expected yields for the SM WZ background and the EGM W' signal with $m_{W'} = 1$ TeV in the high-mass signal region (SRH0). The renormalization and factorization scales, together with the PDF uncertainties on the fiducial cross section are included under theoretical uncertainty for SM WZ background. For EGM W' signal, the theoretical uncertainty stands for the effects of the scale and PDF uncertainties, added in quadrature, on its acceptance. Shape-related uncertainties are not included here. Similar results are found in the low-mass signal region (SRH1).

<table>
<thead>
<tr>
<th>Uncertainty sources</th>
<th>SM WZ</th>
<th>EGM W' ($m_{W'} = 1$ TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e\bar{e}e$</td>
<td>$\mu\bar{\mu}e$</td>
</tr>
<tr>
<td>MC statistics</td>
<td>2.7%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Lepton-related</td>
<td>3.1%</td>
<td>2.1%</td>
</tr>
<tr>
<td>E_T^{miss}-related</td>
<td>2.8%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.8%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Theory</td>
<td>9.5%</td>
<td>9.5%</td>
</tr>
</tbody>
</table>

$m_{WZ} > 300$ GeV, each with the power-law function $N(x) = c_0 x^{c_1}$, where x is m_{WZ}. The overall normalization of the fitted function is set to the expected number of events for each of the two types of background. The non-WZ backgrounds are fitted jointly to gain from their combined size, thus reducing the total uncertainty in the fit, which is computed via the minimization function’s Hessian matrix. Other fitting functions such as an exponential or more elaborate power-law functions were tested, but their shapes were found to be within the uncertainties from the simple power-law function given above. Hence, only the uncertainties from the simple power-law function are considered, and these dominate all other uncertainties in the range $m_{WZ} > 800$ GeV (e.g. the fit uncertainty reaches 50% of the total expected yields at $m_{WZ} = 800$ GeV, and 400% at $m_{WZ} = 1.6$ TeV).

Additionally, the shapes of the m_{WZ} distribution for the SM WZ process predicted by POWHEG-BOX and the multi-leg generators SHERPA and MadGraph, as well as NLO generators such as MCFM are compared. The largest deviations from the POWHEG-BOX distribution are used as systematic uncertainties on the predicted m_{WZ} shape.

A procedure was developed to obtain the m_{WZ} distribution for any given $m_{W'}$ mass point using a functional interpolation between the available m_{WZ} signal templates. These distributions are individually fitted with a crystal ball function using RooFit. The 4 crystal ball parameters are then each fitted as a function of the W' mass to build the m_{WZ} template for any intermediate W' mass point. All systematic uncertainties are individually interpolated.

Theoretical uncertainties on the EGM W' signal yields primarily come from uncertainties on the reconstructed signal’s acceptance times efficiency due to the PDF set used. The uncertainties in the signal acceptance due to the PDF are derived from the MSTW eigenvector error sets, and the difference between the predictions of the CT10 and MSTW PDF sets, combined in quadrature.

8. Results
The m_{WZ} spectrum in the two signal regions is scrutinized for excesses of data over the predicted SM backgrounds. A total of 449 WZ candidate events in SRH0 are observed in the data after applying all event selection criteria, to be compared with the SM prediction of 421 ± 5(stat.+syst.) events. The corresponding numbers in SRH1 are 617 events selected in the data and 563 ± 5(stat.+syst.) events expected from SM processes. The observed m_{WZ} distribution in SRH0 is compared to the expected SM background distribution in Fig. 3, which combines all four lepton decay channels. The contributions from hypothetical EGM W' bosons with masses of 600, 1000, and 1400 GeV are also shown. A breakdown of the signal, backgrounds, and observed data yields in SRH0 is shown in Table 3 for each individual channel and also for all four channels combined. The m_{WZ} distribution in SRH1 is shown in Fig. 4.
Table 3
The estimated background yields, the observed number of data events, and the predicted signal yield for a set of \(W' \) resonance masses in the high-mass signal region (\(S_{R\text{HM}} \)).

<table>
<thead>
<tr>
<th>Backgrounds:</th>
<th>(e\nu\nu)</th>
<th>(\mu\nu\mu)</th>
<th>(e\nu\mu)</th>
<th>(\mu\nu\mu)</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>(WZ)</td>
<td>56.5 ± 1.5 ± 6.1</td>
<td>68.6 ± 1.4 ± 7.0</td>
<td>70.1 ± 1.4 ± 7.2</td>
<td>89.8 ± 2.0 ± 9.1</td>
<td>285 ± 3 ± 29</td>
</tr>
<tr>
<td>(ZZ)</td>
<td>8.7 ± 0.1 ± 0.9</td>
<td>8.7 ± 0.2 ± 0.8</td>
<td>11.7 ± 0.2 ± 1.3</td>
<td>11.6 ± 0.2 ± 1.1</td>
<td>40.7 ± 0.4 ± 3.9</td>
</tr>
<tr>
<td>(Z\gamma)</td>
<td>6.4 ± 0.8 ± 1.5</td>
<td>< 0.05</td>
<td>8.1 ± 0.9 ± 1.2</td>
<td>< 0.05</td>
<td>14.5 ± 1.2 ± 2.2</td>
</tr>
<tr>
<td>(t\bar{t}\rightarrow W/Z)</td>
<td>3.5 ± 0.1 ± 0.8</td>
<td>3.2 ± 0.1 ± 1.0</td>
<td>2.6 ± 0.1 ± 0.8</td>
<td>3.3 ± 0.1 ± 1.0</td>
<td>11.6 ± 0.2 ± 3.5</td>
</tr>
<tr>
<td>(t\bar{t} + \text{jets})</td>
<td>12.7 ± 1.0 (^{+0.9}_{-1.6})</td>
<td>19 ± 2 (^{+1.1}_{-1.4})</td>
<td>14 ± 1 (^{+1.3}_{-1.5})</td>
<td>23 ± 2 (^{+2.0}_{-2.0})</td>
<td>69 ± 3 (^{+4.2}_{-4.2})</td>
</tr>
<tr>
<td>Sum of backgrounds</td>
<td>87 ± 2 (^{+11}_{-9})</td>
<td>100 ± 2 (^{+13}_{-9})</td>
<td>107 ± 2 (^{+15}_{-11})</td>
<td>128 ± 3 (^{+18}_{-12})</td>
<td>421 ± 5 (^{+56}_{-39})</td>
</tr>
</tbody>
</table>

| Data: |
|-------------|----------------|----------------|----------------|----------------|---------|
| \(W' \rightarrow WZ \) (\(M(W') = 600 \) GeV) | 54.2 ± 1.6 ± 2.7 | 62.2 ± 1.7 ± 3.1 | 59.9 ± 1.7 ± 3.0 | 68.2 ± 1.8 ± 3.4 | 244 ± 3 ± 12 |
| \(W' \rightarrow WZ \) (\(M(W') = 1000 \) GeV) | 7.1 ± 0.2 ± 0.4 | 7.4 ± 0.2 ± 0.4 | 7.1 ± 0.2 ± 0.4 | 7.1 ± 0.2 ± 0.4 | 28.6 ± 0.4 ± 1.3 |
| \(W' \rightarrow WZ \) (\(M(W') = 1400 \) GeV) | 1.3 ± 0.1 ± 0.1 | 1.3 ± 0.1 ± 0.1 | 1.3 ± 0.1 ± 0.1 | 1.2 ± 0.1 ± 0.1 | 5.1 ± 0.1 ± 0.2 |

Fig. 3. Observed and predicted \(WZ \) invariant mass (\(m_{WZ} \)) distribution for events in the high-mass signal region (\(S_{R\text{HM}} \)). An extrapolation of the backgrounds to the very-high-mass region was performed using a power-law function to fit for the SM \(WZ \) and the sum of all other backgrounds separately. Predictions from \(W' \) samples with masses of 600 GeV, 1000 GeV and 1400 GeV are also shown, stacked on top of the expected backgrounds. The uncertainty bands upon the expected background include both the statistical and systematic uncertainties in the MC simulation and the fake-background estimation added in quadrature.

The \(m_{WZ} \) distribution is used to build a binned log-likelihood ratio (LLR) test statistic [58]. The systematic uncertainties are represented by nuisance parameters for both the backgrounds and signals. Confidence levels (CL) for the signal-plus-background hypothesis (\(C_{\text{CL+b}} \) and background-only hypothesis (\(C_{\text{CL}} \)) are computed by integrating the LLR distributions obtained from simulated pseudo-experiments using Poisson statistics.

To check the consistency between the observed data and expected SM backgrounds, the \(p \)-value, defined as \(1 - C_{\text{CL}} \), for a background fluctuation to give rise to an excess at least as large as that observed in data is computed. The obtained \(p \)-values are reported in Table 4 for the signal hypothesis of a \(W' \) particle with mass from 200 GeV to 2 TeV. The lowest local \(p \)-value probability is found to be 8% for the 375 GeV resonance mass hypothesis, equivalent to a 1.75\(\sigma \) local excess, indicating that no significant excess is observed.

In the modified frequentist approach [59], the 95% CL excluded cross section is computed as the cross section for which \(C_{\text{CL}} \), defined as the ratio \(C_{\text{CL+b}}/C_{\text{CL}} \), is equal to 0.05. For the mass points above 400 GeV, only the high-mass signal region is used in the calculation by statistically combining all lepton decay channels. For the mass points below or equal to 400 GeV, the two signal regions are further combined to maximize the sensitivity of the search.

Fig. 4. Observed and predicted \(WZ \) invariant mass (\(m_{WZ} \)) distribution for events in the low-mass signal region (\(S_{R\text{LM}} \)). Predictions from a \(W' \) sample with mass of 200 GeV are also shown. The \(W' \) curve is scaled by 1/10 for better display. The uncertainty bands upon the expected background include both the statistical and systematic uncertainties in the MC simulation and the fake-background estimation added in quadrature.

Fig. 5 presents the 95% CL upper limits on \(\sigma (pp \rightarrow X) \times B(X \rightarrow WZ) \) as a function of the signal resonance mass, where \(X \) stands for the signal resonance, together with the theoretical cross sections of the EGM \(W' \) and HVT benchmark models. The latter cross sections are calculated via the web interface [60] provided by the authors of Ref. [20]. The exclusion region in parameter space \(([\alpha^2/\lambda_G] c_F, g_Y c_H) \) is shown in Fig. 6. The fermion coupling \(c_F \) was set to the same value for quarks and leptons. The couplings \(c_{VVV} \), \(c_{VVH} \), and \(c_{VH} \), which involve vertices with more than one heavy vector boson and which have negligible effect on the cross section, were set to zero. Table 4 presents the expected and observed limits for a selected set of signal mass points as well as the EGM \(W' \) signal acceptance \(A \) and correction factor \(C \). The acceptance \(A \) is defined as the number of generated events found within the fiducial region at particle level divided by the total number of generated events, while \(C \) is defined as the number of reconstructed events passing the nominal selection requirements divided by the number of generated events within the fiducial region at particle level. The fiducial region selection criteria consist of the same kinematic se-
Table 4
The expected and observed 95% CL upper limits on the production cross section of narrow resonances decaying to WZ as a function of their mass. The high-mass signal region (SR_{HM}) and low-mass signal region (SR_{LM}) fiducial acceptances at particle level (A) and correction factors (C) for an EGM W' as implemented in PYTHIA are also given. SR_{LM} was not used in setting the limits for the mass points beyond 400 GeV due to their very low acceptances. Errors shown are statistical. The p-value, defined as \(\frac{1 - \text{CL}_{\text{obs}}}{\text{CL}_{\text{exp}}} \), is also shown for each mass point in the last column.

<table>
<thead>
<tr>
<th>(m_{W'}) [GeV]</th>
<th>Expected (\sigma \times B) [fb]</th>
<th>Observed</th>
<th>(\text{SR}_{\text{HM}}) A/C</th>
<th>(\text{SR}_{\text{LM}}) A/C</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2613</td>
<td>3182</td>
<td>0.025 ± 0.01/0.75 ± 0.05</td>
<td>0.135 ± 0.003/0.57 ± 0.02</td>
<td>0.36</td>
</tr>
<tr>
<td>250</td>
<td>1902</td>
<td>1853</td>
<td>0.111 ± 0.002/0.55 ± 0.02</td>
<td>0.070 ± 0.002/0.80 ± 0.03</td>
<td>0.48</td>
</tr>
<tr>
<td>300</td>
<td>751</td>
<td>1195</td>
<td>0.202 ± 0.003/0.67 ± 0.01</td>
<td>0.024 ± 0.001/1.42 ± 0.07</td>
<td>0.22</td>
</tr>
<tr>
<td>350</td>
<td>427</td>
<td>894</td>
<td>0.269 ± 0.004/0.61 ± 0.01</td>
<td>0.0093 ± 0.0006/2.5 ± 0.2</td>
<td>0.094</td>
</tr>
<tr>
<td>375</td>
<td>330</td>
<td>670</td>
<td>0.29 ± 0.01/0.62 ± 0.02</td>
<td>0.007 ± 0.001/2.9 ± 0.6</td>
<td>0.080</td>
</tr>
<tr>
<td>400</td>
<td>281</td>
<td>526</td>
<td>0.311 ± 0.005/0.63 ± 0.01</td>
<td>0.0048 ± 0.0005/3.3 ± 0.4</td>
<td>0.094</td>
</tr>
<tr>
<td>600</td>
<td>90</td>
<td>115</td>
<td>0.426 ± 0.006/0.68 ± 0.01</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>52</td>
<td>40</td>
<td>0.475 ± 0.006/0.68 ± 0.01</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>38</td>
<td>33</td>
<td>0.505 ± 0.007/0.68 ± 0.01</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>31</td>
<td>24</td>
<td>0.526 ± 0.007/0.66 ± 0.01</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>25</td>
<td>21</td>
<td>0.530 ± 0.007/0.66 ± 0.01</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>23</td>
<td>21</td>
<td>0.533 ± 0.007/0.63 ± 0.01</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>23</td>
<td>21</td>
<td>0.544 ± 0.007/0.60 ± 0.01</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>24</td>
<td>22</td>
<td>0.535 ± 0.007/0.57 ± 0.01</td>
<td>0.85</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. The observed 95% CL upper limits on \(\sigma(pp \to X) \times B(X \to WZ) \) as a function of the signal mass \(m \), where \(X \) stands for the signal resonance. The expected limits are also shown together with the ±1 and ±2 standard deviation uncertainty bands. Both the expected and observed upper limits assume the EGM W’ signal acceptance times efficiency as presented in Table 4. Theoretical cross sections for the EGM W’ and the HVT benchmark models are also shown. The uncertainty band around the EGM W’ cross-section line represents the theoretical uncertainty on the NNLO cross-section calculation using ZWPROD [32].

9. Conclusion

A search for resonant WZ diboson production in the fully leptonic channel has been performed with the ATLAS detector, using 20.3 fb^{-1} of pp collision data collected at \(\sqrt{s} = 8 \) TeV at the LHC.

Fig. 6. Observed 95% CL exclusion contours in the HVT parameter space \(\{g_\gamma/g_V\}\) for resonances of mass 1 TeV, 1.5 TeV and 2 TeV. Also shown are the benchmark model parameters \(A_{(g_\gamma=1)} \) (circle) and \(A_{(g_\gamma=3)} \) (square) and \(B_{(g_\gamma=3)} \) (triangle).

Table 5
Expected and observed lower mass limits at 95% CL in TeV for the EGM W’ boson in the e\nu e, e\mu e, \mu\nu e, \mu\nu\mu channels as well as the four channels combined.

<table>
<thead>
<tr>
<th></th>
<th>e\nu e</th>
<th>e\mu e</th>
<th>\mu\nu e</th>
<th>\mu\nu\mu</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>1.21</td>
<td>1.16</td>
<td>1.17</td>
<td>1.16</td>
<td>1.49</td>
</tr>
<tr>
<td>Observed</td>
<td>1.20</td>
<td>1.19</td>
<td>1.06</td>
<td>1.17</td>
<td>1.52</td>
</tr>
</tbody>
</table>

No excess is found in data compared to the SM expectations. Stringent limits on the production cross section times WZ branching ratio are obtained as a function of the resonance mass for a W’ arising from an extended gauge model and decaying to WZ. A corresponding observed (expected) mass limit of 1.52 (1.49) TeV is derived for the W’.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.
We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and RosATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

D. Ziemińska60, N.I. Zimine64, C. Zimmermann82, R. Zimmermann21, S. Zimmermann21, S. Zimmermann48, Z. Zinonos54, M. Ziolkowski142, G. Zobernig174, A. Zoccoli20a,20b, M. zur Nedden16, G. Zurzolo103a,103b, V. Zutshi107, L. Zwalinski30

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University, Ankara; (c) Division of Physics, TOBB University of Economics and Technology, Ankara; (d) Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Instituto de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dógus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFIN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 (a) Universidade Federal do Rio de Janeiro COPPE/EE/F, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisico, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, United States
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) ACH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, United States
41 Physics Department, University of Texas at Dallas, Richardson, TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, United States
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, United States
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculté de Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 INFN Sezione di Lecce; (104) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Louisiana Tech University, Ruston, LA, United States
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
80 Fysiska institutionen, Lund university, Lund, Sweden
81 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
84 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
85 Department of Physics, University of Massachusetts, Amherst, MA, United States
86 Department of Physics, McGill University, Montreal, QC, Canada
87 School of Physics, University of Melbourne, Victoria, Australia
88 Department of Physics, The University of Michigan, Ann Arbor, MI, United States
89 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
90 (105) INFN Sezione di Milano; (106) Dipartimento di Fisica, Università di Milano, Milano, Italy
91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
93 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
94 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 Moscow Engineering and Physics Institute (MEPHI), Moscow, Russia
98 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi–Maskawa Institute, Nagoya University, Nagoya, Japan
103 (107) INFN Sezione di Napoli; (108) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
107 Department of Physics, Northern Illinois University, DeKalb, IL, United States
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, United States
110 Ohio State University, Columbus, OH, United States
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
113 Department of Physics, Oklahoma State University, Stillwater, OK, United States
114 Palacký University, RCPIT, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
120 (109) INFN Sezione di Pavia; (110) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
123 (111) INFN Sezione di Pisa; (112) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
125 (113) Laboratorio de Instrumentación y Física Experimental de Partículas – LIP, Lisbon; (114) Faculdade de Ciências, Universidade de Lisboa, Lisbon; (115) Department of Physics, University of Coimbra, Coimbra; (116) Centro de Física Nuclear da Universidade de Lisboa, Lisbon; (117) Departamento de Física, Universidade do Minho, Braga; (118) Departamento de Física Teorica y del Cosmos and CFAPP, Universidad de Granada, Granada (Spain); (119) Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
131 Physics Department, University of Regina, Regina, SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (111) INFN Sezione di Roma; (112) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
134 (113) INFN Sezione di Roma Tor Vergata; (114) Dipartimento di Fisica, Università Roma Tor Vergata, Roma, Italy
135 (115) INFN Sezione di Roma Tre; (116) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
136 (117) Faculté des Sciences Ain Chock, Rabat; Faculté des Sciences de Rabat, Rabat; (118) Faculté des Sciences Semlalia, Université Cadi Ayyad, Lumia; (119) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (120) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/RUFR (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States
139 Department of Physics, University of Washington, Seattle, WA, United States
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Department of Physics, Nanjing University, Jiangsu, China.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

* Deceased.