Monocrystalline halide perovskite nanostructures for optoelectronic applications
Khoram, P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Growth and characterization of PDMS-stamped halide perovskite single microcrystals

Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for building such an understanding. In this chapter, a simple solution-processed method combined with PDMS (polydimethylsiloxane) stamping was used to prepare thin single microcrystals of halide perovskites. The method is general for a broad array of materials including $\mathrm{CH}_3\mathrm{NH}_3\mathrm{PbBr}_3$, $\mathrm{CH}_3\mathrm{NH}_3\mathrm{PbCl}_3$, $\mathrm{CH}_3\mathrm{NH}_3\mathrm{Pb}(\mathrm{Br}_{0.5}\mathrm{Cl}_{0.5})_3$, $\mathrm{CH}_3\mathrm{NH}_3\mathrm{Pb}(\mathrm{Br}_{0.75}\mathrm{Cl}_{0.25})_3$, CsPbBr_3, $\mathrm{Cs}_3\mathrm{Bi}_2\mathrm{Br}_9$ and $\mathrm{Cs}_3\mathrm{Bi}_2\mathrm{I}_9$. Electron back-scatter diffraction (EBSD) was used to investigate the microstructure of the crystals. In order to characterize the microcrystals of $\mathrm{CH}_3\mathrm{NH}_3\mathrm{PbBr}_3$ electrically, the crystals were grown on pre-fabricated electrodes creating single-crystal devices contacted from the back. This back-contacted platform circumvents the incompatibility between halide perovskites and the aqueous chemistry used in standard microfabrication processes. It also allows in situ characterization of the perovskite crystal while it operates as a microscopic device.
2 Growth and characterization of PDMS-stamped halide perovskites

2.1 Introduction

Since the introduction of organolead trihalide perovskites as the light-absorbing semiconductor in solar cells [19] much effort has been devoted to the development of these materials for optoelectronic applications [4, 13, 23, 108]. This is due to their high efficiency and inexpensive, solution-based processing. So far the efforts in this field have led to power conversion efficiencies exceeding 22% [20]. The perovskites with formula ABX$_3$ are crystalline materials in which A and B are cations of different sizes, and X is an anion. To date, most of the work on organic-inorganic hybrid perovskites has focused on materials with A=methylammonium (CH$_3$NH$_3^+$), B=lead (Pb$_2^+$), and X=Cl$^-$, Br$^-$, I$^-$, or a mixture of these halides. Mixtures of neighboring anions (e.g. I-Br and Br-Cl) can be produced to tune the band gap from that of pure CH$_3$NH$_3$PbI$_3$ (∼1.5 eV) to CH$_3$NH$_3$PbCl$_3$ (∼3.1 eV) [24, 57, 189]. CH$_3$NH$_3$PbBr$_3$ (∼2.2 eV) sits in the middle of this range, making it and mixtures of it with CH$_3$NH$_3$PbCl$_3$ suitable for light-emission applications such as lasing [43] and light-emitting diodes (LEDs) [114, 118]. Mixtures of CH$_3$NH$_3$PbBr$_3$ with CH$_3$NH$_3$PbI$_3$ are appropriate for solar cells with high open-circuit voltage (V_{oc}) [190–193] and the upper cell in multijunction photovoltaics. Apart from hybrid organic-inorganic perovskites, all-inorganic halide perovskites such as CsPbBr$_3$ (with a band gap of ∼2.4 eV) have also shown promise for photovoltaics and light-emitting diodes [194, 195].

Because the microstructure and crystallinity of hybrid perovskites are known to affect their properties [196] and performance in solar cells [197], it is important to study single crystalline perovskites free of grain boundaries [198]. Only a few previous studies have examined the growth and properties of single crystalline hybrid perovskites [76, 140, 141, 144, 199–203]. In these works the perovskite crystals were formed by slow crystallization processes, such as antisolvent vapor-assisted crystallization [76], top-seeded-solution-growth [140] or solvothermal growth [199]. These processes are unlike the rapid crystallization that occurs during the drying of the spin-coated films commonly used in solar cells. Also, the crystals’ thicknesses of several millimetres were far from those relevant for optoelectronic devices. Therefore these previous studies focused primarily on the photophysical and optical properties of single crystals [141, 199] although Shi et al. [76] and Dong et al. [140] did fabricate electrodes on the top and bottom of their thick single crystals to investigate charge carrier dynamics.

Here we fabricated single-crystalline halide perovskites by applying the typical method of spincoating from solution used to make polycrystalline thin films. A PDMS-stamping step confined the solution during evaporation of the solvent and resulted in the formation of individual crystals. The typical thickness of the crystals grown by this method (500 nm to a few μm, depending on the processing...
2.2 Fabrication of perovskite microcrystals using PDMS-stamping method

Flat and smooth halide perovskite crystals were produced by combining solution deposition with a PDMS-stamping technique. To form the crystals, a stoichiometric solution of the perovskite precursors in relevant solvent (details in Section 2.6) was spin-coated onto the substrate. Prior to deposition of the solution, the substrate was cleaned with an O₂ plasma, which made it hydrophilic. Immediately after the deposition of the solution, the substrate was pressed face down into a piece of PDMS heated on a hotplate (100-200 °C) until the solvent had evaporated (Figure 2.1a-b). Individual crystals formed randomly on the substrate, and crystallizing in contact with the flat surface of the PDMS created faceted, smooth crystals with thicknesses of a few micrometers to hundreds of nanometers, depending on the deposition conditions (Figure 2.1c). The morphology of the crystals, including their size and thickness, was influenced by several parameters, such as the concentration of the precursor solution, additives to the solution such as hydrobromic acid, and the method of deposition of the solution before stamping (e.g. drop-casting or spin-coating). The crystals, however, were not produced uniformly over the entire substrate, likely because pressure was applied non-uniformly across the substrate; therefore, in each sample at least five crystals were measured on the substrate using either a profilometer or an atomic force microscope (AFM). Because of this sampling procedure, the chart boxes that compare the thicknesses of the crystals fabricated by different parameters are not necessarily representative of the thickness variations over each substrate. In general, however, a lower concentration of solution gave a majority of thinner crystals (below 1 μm), but the lateral dimensions of the crystals decreased as well. Addition of HBr or using DMSO as the solvent decreased the thickness of CH₃NH₃PbBr₃ crystals. Spin-coating also provided a more uniform size distribution than drop-casting.

If the PDMS-stamping step was not applied, rapid evaporation of the solvent in the absence of PDMS produced unshaped crystals with very rough surfaces, as shown in the optical image of the CH₃NH₃PbBr₃ crystals in Figure 2.2a-b. AFM images of the surface of several CH₃NH₃PbBr₃ crystals indicated that the root-mean-square (rms) roughness was 7.1±4.6 nm as compared to 79.1±43.3 nm for crystals formed without stamping (Figure 2.2c-d).
2 Growth and characterization of PDMS-stamped halide perovskites

Figure 2.1: PDMS-stamping technique for fabrication of smooth and thin halide perovskites. a) Spin-coating of solution on top of the prepared platform. The solvent was not allowed to evaporate fully. b) Pressing the substrate face down into PDMS on a hotplate (100°C) until the crystals formed. c) Controlling the thickness of CH₃NH₃PbBr₃ crystals. All samples were prepared by deposition of freshly prepared CH₃NH₃PbBr₃ precursor solution in DMF with varied concentrations onto a glass substrate via the listed technique (drop-cast or spin-coated). For Sample E, 10 vol% of hydrobromic acid (HBr) (48% in H₂O) was added to the solution.

Figure 2.2: Comparison of the stamped and un-stamped CH₃NH₃PbBr₃ crystals. a) Optical microscopy image of CH₃NH₃PbBr₃ crystals formed by spin coating of solution on a glass substrate without and b) with PDMS-stamping. c) Atomic force microscopy image (AFM) of the surface of the crystal without and d) with PDMS-stamping.
This method is broadly applicable to produce smooth single crystals of a library of halide perovskites. In addition to crystals of CH$_3$NH$_3$PbBr$_3$, PDMS-stamped microcrystals of CH$_3$NH$_3$PbCl$_3$ and mixed halides (CH$_3$NH$_3$Pb(Br$_{0.75}$Cl$_{0.25}$)$_3$ and CH$_3$NH$_3$Pb(Br$_{0.5}$Cl$_{0.5}$)$_3$) were also generated (Figure 2.3a-c). By varying the spin conditions and annealing temperatures, this method also produced crystals of a variety of other halide perovskites, including inorganic CsPbBr$_3$ and lead-free hexagonal perovskites such as Cs$_3$Bi$_2$I$_9$ and Cs$_3$Bi$_2$Br$_9$ (Figure 2.3d-f).

2.3 Crystallinity of PDMS-stamped CH$_3$NH$_3$PbBr$_3$ microcrystals

The individual crystals of CH$_3$NH$_3$PbBr$_3$ formed by PDMS-stamping are typically single crystals with a faceted, square-prismatic shape. The smoothness of their surface allows the identification of the orientation and domains of the crystals by electron backscatter diffraction (EBSD) (Figure 2.4). EBSD is a SEM-based technique that is well established to determine the crystallographic orientations of microstructures [205, 206]. In this technique, the focused electron beam strikes the surface of the crystal at a high angle (here, 70°). Electrons scattered from the surface form a diffraction pattern, called a Kikuchi pattern because of its prominent

![Figure 2.3: Optical microscopy image of variety of halide perovskite crystals including a) CH$_3$NH$_3$PbCl$_3$ b) CH$_3$NH$_3$Pb(Br$_{0.75}$Cl$_{0.25}$)$_3$ c) CH$_3$NH$_3$Pb(Br$_{0.5}$Cl$_{0.5}$)$_3$ d) CsPbBr$_3$ e) Cs$_3$Bi$_2$I$_9$ f) Cs$_3$Bi$_2$Br$_9$. These crystals fabricated by spin coating of solution on glass, followed by PDMS-stamping. Scale bars in a-c are 20 μm and in d-g are 50μm.](image)
Kikuchi bands [206]. Several positions on the surface of each smooth crystal of CH$_3$NH$_3$PbBr$_3$ were measured (Figure 2.4a). The Kikuchi patterns from these positions (Figure 2.4b) were similar, indicating that there are no grain boundaries within the crystal. Indexing the Kikuchi patterns (Figure 2.4c) for fourteen different single crystals showed that the surface plane is (100) (Figure 2.4d). Single-crystal X-ray diffraction confirmed the single crystallinity of the square crystals (Section 2.6.6). Although many of the crystals formed using PDMS-stamping were square prisms, others displayed a line along their diagonal (Figure 2.5). EBSD patterns taken from opposite sides of the line were dissimilar, indicating that the line is a grain boundary between a <100> domain and a <110> domain. EBSD was also used to analyze the microstructure of CsPbBr$_3$ PDMS-stamped crystals, which were also typically single single crystals (Figure 2.6).

2.4 Optical and electrical characterization of CH$_3$NH$_3$PbBr$_3$ single crystals

Optical characterization of the PDMS-stamped single crystals of CH$_3$NH$_3$PbBr$_3$ was performed by diffraction-limited absorption and photoluminescence (PL) measurements (excitation wavelength of 405nm) (Figure 2.7) on a 1-micron thick crystal. The PL spectrum, which was collected in reflection, shows a narrow emission peak centred around 540 nm (2.29 eV). The onset of absorption is red-shifted and located at ~555 nm (2.25 eV). Controlling the thickness of the crystals allowed the measurement of the material’s complex refractive index from 405-1100 nm, which agreed well with values measured on macroscopic single crystals.[30]

To characterize the CH$_3$NH$_3$PbBr$_3$ single crystals electrically in a simple schottky junction device, the crystals must be contacted to metal electrodes; however, standard lithographic techniques require processing substrates in aqueous solutions, which will dissolve the ionic perovskite crystals. For this reason, electrodes were fabricated on the substrate using photolithography prior to the growth of the crystals (Section 2.6). The first requirement for the electrodes is their appropriate energy band alignment relative to the bands of the perovskite. The valence and conduction band edges of CH$_3$NH$_3$PbBr$_3$ have been reported as 5.9 eV and 3.6 eV, respectively [207]. Based on these band positions several metals were candidates for electron- or hole-selective electrodes.34 In the back-contacted geometry, however, the perovskite crystals are deposited on top of the electrodes, so the metals of the electrodes should be chemically inert in the solution containing the perovskite’s precursors and in contact with the perovskite itself. TiO$_2$ is the common electron transporter material used in conventional planar perovskite solar cells [208], therefore, titanium was a clear choice for the electron-selective contact. A thin
2.4 Optical and electrical characterization of CH$_3$NH$_3$PbBr$_3$ single crystals

![Figure 2.4: Electron backscatter diffraction (EBSD) of a CH$_3$NH$_3$PbBr$_3$ crystal.](image)

a) SEM image of a CH$_3$NH$_3$PbBr$_3$ single crystal. Numbers indicate the positions of the electron beam where the EBSD patterns were collected. **b)** EBSD patterns from four different locations on the crystal, which all show the same Kikuchi pattern indicating the same crystallographic orientation. Each pattern is related to the location with the similar number in a. **c)** Indexed EBSD pattern. **d)** The orientation of the surface of the CH$_3$NH$_3$PbBr$_3$ crystal is <100>, extracted from the indexed EBSD pattern. Light blue spheres are bromide anions, while dark blue spheres are the methylammonium cations.

titanium oxide layer forms on the surface of Ti metal and likely prevents chemical reactions between the perovskite and the underlying metal. Palladium was chosen as the hole-selective contact, and no damage to the electrodes were observed after deposition of the crystals or during measurements. Further details regarding the selection of electrode materials are given in the Section 2.6.7.

To produce solar cells, back-contacted devices with asymmetric contacts (Ti-Pd) were fabricated, followed by deposition of the perovskite crystals (Figure 2.8a). Current-voltage (I-V) curves of the devices were measured in the dark and under illumination with a standard light source (AM 1.5G, 100 mW cm$^{-2}$ irradiance) (Figure 2.8b). The devices displayed rectifying I-V curves both in the dark and under illumination. A champion back-contacted single crystal solar cell had an open-circuit voltage (V_{oc}) of 1.04 V and 1.07 V in forward and reverse scans, respectively, better than the V_{oc} of the first demonstration of planar CH$_3$NH$_3$PbBr$_3$
Figure 2.5: EBSD of a crystal with two domains. a) SEM image of the crystal of CH$_3$NH$_3$PbBr$_3$. Numbers show the position of the electron beam where the EBSD patterns were collected. The dashed line indicates the boundary between domains, based on the crystal’s morphology and EBSD patterns. b) and d) EBSD patterns from different locations on the crystal, as indicated by numbers on a). Patterns 1 and 2 show similar kikuchi lines, whereas they are different from patterns 3 and 4, from points on the opposite side of the line. c) and e) crystal structure of the CH$_3$NH$_3$PbBr$_3$ extracted from kikuchi patterns in b and d. The crystal orientations of the patterns are <100> (b) and <110> (c). Light blue spheres are bromide anions, while dark blue spheres represent the methylammonium cations. The yellow spheres are the lead cation.
2.4 Optical and electrical characterization of CH$_3$NH$_3$PbBr$_3$ single crystals

Figure 2.6: Electron backscatter diffraction of a CsPbBr$_3$ crystal. a) SEM image of a CsPbBr$_3$ single crystal. Numbers indicate the positions of the electron beam where the EBSD patterns were collected. The inset shows the crystal structure constructed from kikuchi patterns. Green spheres are Br anions, while blue spheres represent the Cs cations. The yellow spheres are the Pb cation. b) EBSD patterns from 5 different locations on the crystal as numbered in a), which all show the same Kikuchi pattern indicating the same crystallographic orientation. Each pattern is related to the location with the similar number in (a).

Figure 2.7: Optical characterization of CH$_3$NH$_3$PbBr$_3$ single crystal. Absorption (red) and photoluminescence (PL) (green) spectra of a CH$_3$NH$_3$PbBr$_3$ single crystal prepared by the PDMS-stamping technique.
perovskite solar cells in literature $14 \ (0.84 V)$ but somewhat lower than cells with more optimized hole-selective layers ($1.3 V$) $[192]$ and later studies ($1.4 V$ and $1.51 V$) $[190, 191]$. The single crystal $\text{CH}_3\text{NH}_3\text{PbBr}_3$ solar cell exhibited a short circuit current (I_{sc}) of 0.93 nA and 1.96 nA in forward and reverse scan directions, respectively, which is equivalent to 0.58 and 1.23 mA.cm^{-2} short circuit current density (J_{sc}). The J_{sc} was calculated by considering the overlapped area of the crystal with the Ti electrode as the active area, according to photocurrent mapping (Figure 2.9). Again, these values are comparable to those of early planar $\text{CH}_3\text{NH}_3\text{PbBr}_3$ perovskite solar cells (1.08 mA.cm^{-2}) $[192]$ although later studies $[190, 191]$ with improved hole transporter layers $[192]$ and improving surface coverage of the $\text{CH}_3\text{NH}_3\text{PbBr}_3$ $[190]$ demonstrated much higher J_{sc} values (6.113 and 8.412 mA.cm^{-2}). These reports show the importance of the hole transporter layer and suggest that the back-contacted single crystal $\text{CH}_3\text{NH}_3\text{PbBr}_3$ solar cell performance will improve substantially with deposition of proper charge transporter layers.

To investigate the spatial distribution of the photocurrent within the device, scanning photocurrent mapping using laser illumination (power density $\sim 250 \text{ W.cm}^{-2}$ at 540 nm) was applied on various $\text{CH}_3\text{NH}_3\text{PbBr}_3$ single crystal devices (Figure 2.9). The positions of the crystals and electrodes were correlated to the photocurrent maps by superimposing the reflectance map (Figure 2.9a) of the crystal taken simultaneously with the photocurrent map and the optical image (Figure 2.9b). This correlation shows that the photocurrent originates only from the region of the crystal directly above the Ti electrode. Moreover, not all of the areas above this electrode are equally active.

The observation of current localized to the electron-selective Ti contact suggests

![Figure 2.8: Electrical characterization of a back-contacted CH₃NH₃PbBr₃ single crystal. a) Optical microscopy image of the single crystal prepared on a pre-fabricated back-contacted electrode platform. b) I-V characteristic of the CH₃NH₃PbBr₃ single crystal device under 1-sun illumination. Inset shows the I-V curve of the crystal in dark c) The photovoltaic performance of the device in the forward and reverse scan directions (scan rate 0.1 V/s).](image-url)
2.4 Optical and electrical characterization of CH$_3$NH$_3$PbBr$_3$ single crystals

Figure 2.9: Scanning photocurrent map of CH$_3$NH$_3$PbBr$_3$ back contacted crystals ($\lambda=540$ nm, ~ 250 W.cm$^{-2}$). a) Over-laid optical microscopy image of the same crystal in Figure 2.8 on its reflection map, used as a reference to correlate the photocurrent map positionally with the crystal. b) Photocurrent map of the crystal in Figure 2.8. Dashed lines indicate the position of the electrodes, drawn from the superimposed reflection map and optical image. c) and e) Optical images of two different back-contacted CH$_3$NH$_3$PbBr$_3$ single crystals. d) and f) Correlated Photocurrent maps of crystals in c and e, with the lines indicating the position of the electrodes and crystals driven from superimposed reflection maps and optical images. The scale bars are 10 μm.
a short diffusion length for electrons in CH$_3$NH$_3$PbBr$_3$. In the case of illumination near the hole-selective electrode, electrons must travel laterally through the width of the gap between the electrodes (few microns) to be collected by the Ti contact. If their diffusion length is shorter than this width, they recombine before being collected; therefore, regions of the crystal far from the Ti electrode appear inactive. When the crystal is illuminated near the electron-selective contact, electrons must travel only the vertical distance between their position of excitation and the electrode. Since this crystal is relatively thin (~1 μm) and the energy of the incident photons (2.29 eV) is close to the band gap of CH$_3$NH$_3$PbBr$_3$ (~2.2 eV), some electron-hole pairs are generated close enough to the back contact for the electrons to be collected. The lack of significant lateral current decay from the edge of the electrode indicates that the carrier diffusion length is smaller than the size of the optical spot, approximately 1 μm. This short electron diffusion length is consistent with predictions of p-type conductivity in CH$_3$NH$_3$PbBr$_3$ [209] and reported electron diffusion lengths in polycrystalline films of ~100 nm (in dark) and ~360 nm (under 0.03-0.04-sun illumination), which were measured by electron-beam-induced current (EBIC) [210] In millimeter-sized single crystals, Shi et al. [76] reported much longer diffusion lengths (~3-17 μm) determined by measuring the mobility and photoluminescence lifetime of their crystals. These larger crystals grown by slow precipitation over several days likely have fewer defects than the perovskite deposited by rapid precipitation after spin-coating, yielding a longer diffusion length.

The second observation in the photocurrent map of the CH$_3$NH$_3$PbBr$_3$ single crystal is the non-uniformity of the photocurrent over the Ti contact. The locations of spots with highest current on the photocurrent map vary for different measured crystals (Figure 2.9c-f). While most of the region on the Ti electrode produces more than 3 nA of current, some regions produce as much as four times that amount. Because the photocurrent map is a convolution of light absorption and charge collection, the variations could arise from either process. For thin crystals, changes in thickness can lead to dramatic variations in photocurrent because absorption is enhanced or suppressed by thin-film interference; however, a simple one-dimensional model (details in Figure 2.10) based on the AFM-measured thicknesses in this crystal (Section 2.6) indicates that the observed variations are too large to arise from interference effects alone (Figure 2.10). Variations in the efficiency of charge collection could also contribute to this inhomogeneity and might result from a non-uniform interface between the electrode and perovskite. For example, the nucleation site of the crystal might produce the most intimate contact with the electrode, which could locally enhance the efficiency of charge collection. Differences in the thickness or chemical composition of the titanium oxide layer on the surface of the electrode could also influence the local collection.
efficiency and yield the observed variations in photocurrent.

2.5 Conclusion

In summary, we have introduced a simple technique to create smooth, thin halide perovskite microcrystals by combining single-step deposition of precursors from solution with PDMS-stamping. This method is general for making a variety of halide perovskites, including hybrid, all-inorganic, and lead-free hexagonal perovskites. Because of the smooth surface of the crystals, EBSD could be used to identify the microstructure of CH₃NH₃PbBr₃ crystals, which typically exhibited a (100) surface facet. These single crystals are ideal for studying perovskite optoelectronic devices on a fundamental level, as used in this chapter and further in Chapter 3. To this end, the crystals were electrically contacted from the back to avoid any post-growth fabrication steps that might damage the crystals. Here, We used this back-contacted platform to investigate the photovoltaic performance of single-crystal CH₃NH₃PbBr₃ and performed photocurrent mapping of the device to understand the spatial distribution of its photogenerated current. The photocurrent originated from the portion of the crystal directly above the electron-

![Figure 2.10: Calculation of the relative change in photocurrent (at \(\lambda=540\) nm) expected with changes in the thickness of the crystal. Changes are estimated relative to a 1000-nm-thick crystal and for three different diffusion lengths (L). A thickness variation in the crystal can cause both increases and decreases in photocurrent, but the total magnitude of the change (from minimum to maximum) is always less than a factor of two.](image-url)
2 Growth and characterization of PDMS-stamped halide perovskites

selective contact, suggesting these CH₃NH₃PbBr₃ single crystals are p-type and have an electron diffusion length below 1 μm. This PDMS-stamping approach, together with the back-contacted platform for electrical characterization, provides a unique tool to investigate the optoelectronic properties of a variety of single-crystalline halide perovskites.

2.6 Supplementary Information

2.6.1 Experimental methods

Preparation of methylammonium halide

(CH₃NH₃X, X=Br or Cl): CH₃NH₃X was synthesized by the addition of hydrobromic acid (48% wt. in H₂O, Sigma-Aldrich) or hydrochloric acid (37% wt. in H₂O, Sigma-Aldrich) dropwise into methylamine (33% wt. in EtOH, Sigma-Aldrich) while it was stirring in an ice bath. After stirring for 2 hours in the ice bath, the solution was removed and heated to 150°C to evaporate off the solvents, while stirring was continued. The resulting powder, either white or occasionally pale yellow, was recrystallized from ethanol. The final white crystals of CH₃NH₃X were dried by heating at 100-150°C in air.

Preparation of halide perovskite solutions:

All solutions were prepared at room temperature and in air. To prepare pure CH₃NH₃PbBr₃ crystals, PbBr₂ (Sigma-Aldrich, purity ≤98%) was mixed in a 1:1 molar ratio with CH₃NH₃Br in dimethylformamide (DMF) (Sigma-Aldrich, anhydrous, 99.8%) or dimethyl sulfoxide (DMSO) (Sigma-Aldrich, anhydrous, purity ≤99.5%). For pure CH₃NH₃PbCl₃ crystals, PbBr₂ (Sigma-Aldrich, purity ≤98%) and CH₃NH₃Cl were mixed in a 1:1 molar ratio in DMSO at 1 M concentration. To prepare mixed halide (CH₃NH₃Pb(Br₀.₅Cl₀.₅)₃ and CH₃NH₃Pb(Br₀.₇₅Cl₀.₂₅)₃) solutions, pure 1 M solutions of CH₃NH₃PbBr₃ and CH₃NH₃PbCl₃ in DMSO were mixed in the desired stoichiometric ratio (1:1 or 3:1). For making the all-inorganic CsPbBr₃ solution, CsBr (Sigma-Aldrich, 99.999%) and PbBr₂ precursors were mixed in a stoichiometric ratio in DMSO (0.33 M solution). CsₓBi₂I₉ and CsₓBi₂Br₉ solutions were made by mixing CsBr with BiBr₃ (Sigma-Aldrich, purity ≤98%) and CsI (Sigma-Aldrich, 99.9%) with BiI₃(Sigma-Aldrich, 99%) in a stoichiometric ratio in DMSO (concentrations well below 1M). The fresh solutions were ultrasonicated for 5 minutes to ensure full dissolution of the precursors prior to deposition.
2.6 Supplementary Information

Fabrication of single-crystals:

The perovskite solution was spin coated on fused silica substrates. The substrates were cleaned with acetone, isopropanol, and O$_2$ plasma prior the deposition. A RIE/ICP plasma etcher from Oxford Instruments (Plasmalab 80 plus) was used to remove the contamination and treat the surface of the substrates. The process parameters were as follows: O$_2$ flow of 25 sccm, pressure of 30 mTorr, and forward power of 50 W for 2 minutes. The spinning speed and time were adjusted to prevent the full evaporation of the solvent (10 seconds at 500 rpm for DMF solutions and 30-60 s at 2000-4000 rpm for DMSO solutions). The wet substrate was immediately pressed face down onto a piece of PDMS on a hot plate held at 100°C (for DMF solutions) or 150°C (for DMSO solutions) for 2-5 min, until the crystals formed and the substrate changed color. Inorganic perovskites in DMSO were annealed at 150-200°C. After the crystals were formed on the substrate in contact with PDMS, the sample was removed from the PDMS and annealed for about 10 min face up to ensure the evaporation of excess solvent. The PDMS stamp was fabricated by mixing the monomer and curing agent (10:1 ratio, SYLGRAD 184, Dow Corning) and curing on a piece of clean Si wafer. The side formed in contact with the Si was always used to stamp the crystals. PDMS stamps were reused after cleaning the surface by ultrasonication in water and a rinse in isopropanol.

Electrode fabrication:

The electrodes were fabricated on glass substrates by a two-step photolithography process. Glass substrates were cleaned in acetone and isopropanol prior to spin coating with photoresist. In the first step, one set of electrodes was patterned, and the metal was deposited by electron-beam or thermal evaporation, followed by lift-off in acetone. The second lithography step was repeated as the first one, using alignment markers to adjust the gap between the electrodes. Another metal was then deposited. In the case of symmetric devices, the lithography was done in one step. The thickness of the metals was 100 nm. The geometry of electrodes is shown in Figure 2.11.

Device fabrication:

To make CH$_3$NH$_3$PbBr$_3$ back-contacted devices, the same procedure of spin coating the precursor solution followed by PDMS-stamping was applied using substrates with pre-fabricated electrodes. To fabricate the devices, O$_2$ plasma cleaning of substrates was necessary to form consistent contacts. Using a table-top plasma cleaner to prepare the electrodes resulted in inferior devices. Atomic force microscopy: AFM images were taken by a Veeco Dimension 3100 in tapping mode.
2 Growth and characterization of PDMS-stamped halide perovskites

![Figure 2.11: Configuration of electrodes of CH$_3$NH$_3$PbBr$_3$ back contacted devices. a) Full device image. The large pads on the edges of the sample and electrode lines are made in 2 separate lithography steps for devices with asymmetric electrodes. b) Enlarged image of the electrodes' configuration in the red box in a. The gap between the electrode pad and lines is 2 μm](image)

2.6.2 Scanning electron microscopy

SEM images were taken by a FEI Verios 460 at 5 kV accelerating voltage, in secondary electron mode, and under a 30° tilt.

2.6.3 Electron Backscatter Diffraction (EBSD)

The EBSD setup was built in a FEI XL30 S FEG. The patterns were collected using 20 kV accelerating voltage and 6nA beam current. The exposure area was 1 μm2 and exposure time for hybrid perovskite crystals 10 seconds and for inorganic perovskites 3-6 minutes. The sample was tilted 70°. The patterns were indexed using Delphi 2 software from EDAX. The system was calibrated prior to indexing with Si (100).

2.6.4 Device Characterization

$I-V$ curves were measured with an Agilent B2902A source-measure unit. To simulate solar illumination, an Oriel Sol2A Class ABA Solar Simulator from Newport was used. 1-sun intensity was calibrated using a silicon reference cell (Newport 91150V).

2.6.5 Scanning Photocurrent Mapping

The photocurrent maps were taken using a home-built optical setup (similar to Section 4.6.2, without using integrating sphere in the setup) consisting of a super-continuum Fianium WL-SC390-3 laser, sent through an acousto-optic tunable filter
2.6 Supplementary Information

(Fianium AOTF-V1-N1). The beam was focused through the objective (Mitutoyo M PLAN APO NUV 50X, NA 0.42) onto the mounted substrate. The spot radius was 650 nm. The sample was electrically wire-bonded to a printed circuit board specially designed for the setup and scanned spatially with the focused laser beam using a piezoelectric stage (Piezosystem Jena Tritor 400 CAP). The photocurrent was measured with the same source-measure unit as used for I-V measurements. The voltage on the sample was scanned from zero up to 2V and then returned to zero prior to measuring the photocurrent map, and the mapping was done while the sample was kept at the short-circuit condition. The reflected beam power was measured simultaneously with a Thorlabs amplified photodiode (PDA100A) to correlate the position with the current in the superimposed maps. A silicon photodetector (Newport model 818-UV-L) was used to measure the absolute beam power in each measurement.

2.6.6 Single-crystal X-ray diffraction of CH$_3$NH$_3$PbBr$_3$

To confirm the single-crystalline character of the grown CH$_3$NH$_3$PbBr$_3$ crystals, the unit cell parameters of several randomly selected crystals were measured using single crystal X-ray diffraction. In all cases the cubic unit cell was found ($a = b = c = 5.92\,\text{Å}$), which is in accord with previous reports [11, 76, 211]. Solution of the crystal structure of one of the selected crystals confirmed the $Pm\bar{3}m$ space group (no. 221). As pointed out by Knop et al. [211] in this space group, the CH$_3$NH$^+$ cation has to be positionally disordered over at least 6 equivalent C-N orientations. This should also lead to a small intensity of diffraction compared to the contributions of Pb$^{2+}$ and Br$^-$. Indeed, due to this disorder, determining the precise location of the N and C atoms was difficult; however, a model with the CH$_3$NH$^+$ cation being disordered over 12 positions led to a satisfactory R-value. The assignment of the N versus C atoms was based on the expectation that the NH$_3^+$ group should be directed towards the negatively charged Br$^-$ atom. During an unconstrained refinement, due to the positional disorder, the C and N atoms tended to shorten their distance to values close to 1 Å; therefore, their distance was constrained to 1.50 Å and these atoms were refined isotropically. As a result of the disorder, no satisfactory positioning of the hydrogen atoms of the CH$_3$NH$_3^+$ cation could be obtained, as after refinement they tended to occupy chemically wrong locations; therefore, for the final solution the hydrogen atoms were not included. The above results are in agreement with the structure recently reported by Shi et al. [209] (Figure 2.12). The crystal structure of CH$_3$NH$_3$PbBr$_3$ achieved from single crystal XRD measurement is shown in Table 2.1. The full data set is presented elsewhere [212].

Data was collected on a Bruker D8 Quest Eco diffractometer, equipped with a TRI-
Table 2.1: Single Crystal XRD Data of CH$_3$NH$_3$PbBr$_3$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>296 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.026 × 0.187 × 0.227 mm</td>
</tr>
<tr>
<td>Crystal system</td>
<td>cubic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pm$ar{3}$m</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 5.92 Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 5.92 Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 5.92 Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>207.71 Å3</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>3.829 g/cm3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>34.633 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>206</td>
</tr>
</tbody>
</table>

Figure 2.12: Crystallographic structure of CH$_3$NH$_3$PbBr$_3$ derived from single crystal XRD study.
(a) Asymmetric unit of CH$_3$NH$_3$PbBr$_3$
(b) Positional disorder of the CH$_3$NH$_3^+$ cation. Visualization was made with ShelXle

UMPH monochromator and a CMOS PHOTON 50 detector, using Mo-Kα radiation ($\lambda = 0.71073$ Å). The intensity data were integrated with the Bruker APEX2 software [213]. Absorption correction and scaling was performed with SADABS [214]. The structures were solved with SHELXT. Least-squares refinement was performed with SHELXL-2014 [215]. A relatively thick orange crystal of CH$_3$NH$_3$PbBr$_3$, approximate dimensions 0.026 mm × 0.187 mm × 0.227 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 86 frames were collected. The total exposure time was 0.24 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a cubic unit cell yielded a total of 496 reflections to a maximum θ angle of 26.16° (0.81 Å resolution), of which 68 were independent (average redundancy 7.294, completeness = 100.0%, $R_{int} = 5.49%$,
R_s i g = 3.85%) and 68 (100.00%) were greater than 2σ(F2). The final cell constants of a = 5.9222(18) Å, b = 5.9222(18) Å, c = 5.9222(18) Å, volume = 207.71(19) Å³, are based upon the refinement of the XYZ-centroids of 75 reflections above 20 σ(I) with 6.818°<2θ<52.30°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.215. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.0470 and 0.1780. The final anisotropic full-matrix least-squares refinement on F² with 9 variables converged at R1 = 3.52%, for the observed data and wR2 = 10.26% for all data. The goodness-of-fit was 1.349. The largest peak in the final difference electron density synthesis was 2.540 e⁻/Å³ and the largest hole was -1.561 e⁻/Å³ with an RMS deviation of 0.290 e⁻/Å³. On the basis of the final model, the calculated density was 3.829 g/cm³ and F(000), 206 e⁻.

2.6.7 Materials selection for the electrodes of the back-contacted platform

In order to make solar cells with CH₃NH₃PbBr₃, first the electrodes were fabricated on glass substrates using two steps of photolithography prior to the deposition of the perovskite crystals (as explained Section 2.6.1). Because the electrodes are fabricated before deposition of the crystals, this platform avoids the difficulty of finding a process for layer deposition that will not damage the perovskite. Standard processes for thin-film deposition - such as those requiring high temperature, plasma, incompatible solvents (e.g. water), or oxidizing environments - can be used to fabricate the underlying contacts. Also, if no surface reactions occur between the electrodes and the perovskite, this structure is also a reusable test platform because the crystals can be removed using a suitable solvent. After the solution deposition and PDMS stamping, crystals were distributed randomly on the substrate so that some bridged the gaps between the electrodes. The large size of the crystals, whose edges often exceed 50 μm, enables optical imaging and facilitates in-situ characterization of the devices (as later presented in Chapter 3). In this chapter and Chapter 3 Ti, Pd and Pt were chosen as electrodes for back-contacted perovskite devices based on the following criteria.

In order to choose the correct carrier-selective electrode for CH₃NH₃PbBr₃ back-contacted devices, first a list of metals with higher work function than the valance band and lower work function than the conduction band of CH₃NH₃PbBr₃ was considered (Figure 2.13). Next requirement for selecting the electrode material is chemical stability of the electrode in the perovskite precursor solution. Ti electrodes were stable upon the deposition of the perovskite solution. When the CH₃NH₃PbBr₃ devices with symmetric electrodes (Ti-Ti) were fabricated, they had linear I-V curves, indicating the ohmic nature of the contact (Figure 2.13b). Other
2 Growth and characterization of PDMS-stamped halide perovskites

metals with similarly small work functions, such as aluminium and silver, were also tested; however, severe corrosion of the metal was observed immediately following deposition of the perovskite solution.

Devices with Pd-Pd contacts were fabricated to test Pd as a hole-selective electrode for CH$_3$NH$_3$PbBr$_3$ solar cell devices. They were stable and conductive but showed saturation in their current (Figure 2.13c). While the cause of this saturation is unknown, similar behavior arises in other semiconductors when scattering with phonons or impurities imposes a limit on the drift velocity of the carriers at high fields. Alternatively, saturation can also appear when the conduction channel of the device becomes restricted, as is the case in transistors [217]. Gold and nickel were also tested as hole-selective electrodes; however, Au electrodes were disregarded according to a recent study showing the diffusion of gold atoms into perovskite layer [101]. In the case of devices with symmetric Ni-Ni electrodes, although no damage to the electrodes was visible after deposition of the perovskite crystals, running current through the devices caused them to break down electrically, and the

![Figure 2.13: Electrical characterization of CH$_3$NH$_3$PbBr$_3$ single crystals using the symmetric back-contacted device platform a) Energy band diagram for CH$_3$NH$_3$PbBr$_3$ [216] and metals with appropriate work functions for extracting holes and electrons. b) I-V curves of CH$_3$NH$_3$PbBr$_3$ single crystals in the dark (gray) and under 1-sun illumination (colors) with symmetric electron-selective electrodes (Ti-Ti) and c) symmetric hole-selective electrodes (Pd-Pd).](image)
appearance of the nickel electrode was altered. Rather than Palladium, Platinum was also selected as an appropriate contact and showed behavior similar to that of palladium. This electrode platform was used later for the devices presented in Chapter 3.

2.6.8 One-dimensional model to calculate relative changes in photocurrent based on changes of the thickness

In general, the photocurrent (I) at a particular wavelength in a crystal of thickness d is given by:

\[I = \int_{0}^{d} G(x) \cdot C(x) \, dx \] \hspace{1cm} (2.1)

where \(G(x) \) is the generation profile as a function of depth \(x \), and is calculated numerically using a transfer-matrix model that accounts for thin-film interference and back reflection from the Ti electrode [218]. Values of the refractive indices for the perovskite [204] and Ti [219] were taken from the literature. The refractive index of the TiO\(_2\) was measured by ellipsometry. The collection efficiency was modeled as an exponential decay from the perovskite-electrode interface:

\[C(x) = C_0 \cdot e^{(x-d)/L} \] \hspace{1cm} (2.2)

in which \(C_0 \) is a constant that describes the collection efficiency at the perovskite-metal interface, \(d \) is the thickness of the crystal, and \(L \) is the minority carrier diffusion length. Based on this calculation, the changes in photocurrent in Figure 2.9 (a factor of four increase) cannot arise solely from a local change in the crystal's thickness \(d \), assuming that the local collection efficiency at the contact \((C_0) \) and diffusion length \((L) \) remain constant. AFM (Figure 2.14) shows that the crystal’s thickness over the Ti electrode varies in the simulated range, from 760 to 1000 nm.
2 Growth and characterization of PDMS-stamped halide perovskites

Figure 2.14: Atomic force microscopy of the CH$_3$NH$_3$PbBr$_3$ single crystal device presented in Figure 2.9a