Role of nuclear receptor Nur77 during inflammation
Hamers, A.A.J.

Citation for published version (APA):
Hamers, A. A. J. (2015). Role of nuclear receptor Nur77 during inflammation

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Anouk Anna Johanna Hamers was born in Tilburg, The Netherlands, on August 31, 1984. After graduating from the Atheneum in 2002 she obtained her Master's degree in Biomedical Sciences in 2008 at the UMC St Radboud, Nijmegen. Her Master thesis, performed at the department of Otorhinolaryngology & Biomaterials under the supervision of Dr Sander CG Leeuwenburgh, investigated the response of osteoblast-like cells on electrosprayed alkaline phosphatase/nano-apatite composite coatings. During a second internship at the Toxicology department of the Netherlands Forensic Institute under the supervision of Dr Ingrid Bosman and Dr Rianne Vincenten she studied for an internship thesis. In January 2014 Anouk finished her PhD research at the department of Medical Biochemistry of the Academic Medical Center, University of Amsterdam, under the supervision of Prof Carlie JM de Vries, which resulted in the department of Experimental Vascular Medicine studying Nano-delivery of drugs to the atherosclerotic plaque. In March 2015 Anouk will start her postdoctoral research on monocytes in the lab of Prof Catherine Hedrick at the La Jolla Institute of Allergy and Immunology in San Diego.
Role of Nuclear Receptor Nur77 during Inflammation
Role of Nuclear Receptor Nur77 during Inflammation

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel

op donderdag 19 februari 2015, te 14:00 uur

door

Anouk Anna Johanna Hamers

geboren te Tilburg
Promotiecommissie

Promotor: Prof. dr. C.J.M. de Vries
Co-promotor: Dr. V. de Waard

Overige leden: Prof. dr. W.J. de Jonge
 Prof. dr. T. van der Poll
 Prof. dr. M. van Eck
 Dr. E. Kalkhoven
 Dr. M. van Eijk

Faculteit der Geneeskunde

The research described in this thesis was conducted at the department of Medical Biochemistry, Academic Medical Center, University of Amsterdam.

The research described in this thesis was supported by a grant of the Dutch Heart Foundation (DHF-2008B037). This support is greatly acknowledged.
“Research is what I’m doing when I don’t know what I’m doing.”
-Wernher Von Braun-

“I believe in intuition and inspiration. Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution. It is, strictly speaking, a real factor in scientific research.”
-Albert Einstein-
Table of contents

Chapter 1 General introduction and outline of the thesis
Section I Inflammation, Peritonitis & Sepsis, Inflammatory Bowel Disease
Section II Nuclear Receptors in atherosclerosis: A superfamily with many ‘goodfellas’
Section III NR4A nuclear receptors in immunity and atherosclerosis.

Chapter 2 Bone Marrow-specific Deficiency of Nuclear receptor Nur77 Enhances Atherosclerosis

Chapter 3 Limited role of Nuclear receptor Nur77 in Escherichia coli-Induced Peritonitis

Chapter 4 Deficiency of Nuclear Receptor Nur77 aggravates mouse experimental colitis by increased NFkB activity in macrophages

Chapter 5 6-Mercaptopurine Reduces Macrophage Activation and Gut Epithelium Proliferation through Inhibition of GTPase Rac1

Chapter 6 Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance

Chapter 7 General Discussion

Appendices Summary
Samenvatting
PhD portfolio including publication list
Dankwoord