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A B S T R A C T

Optimization algorithms play an important role in method development workflows for gradient elution liquid 
chromatography. Their effectiveness has not been evaluated for chromatographic method development using 
standardized comparisons across factors such as sample complexity, chromatographic response functions (CRFs), 
gradient complexity, and application type. This study compares six optimization algorithms - Bayesian optimi
zation (BO), differential evolution (DE), a genetic algorithm (GA), covariance-matrix adaptation evolution 
strategy (CMA-ES), random search, and grid search - for the development of gradient elution LC methods. Uti
lizing a multi-linear retention modeling framework, these algorithms were assessed across diverse samples, CRFs, 
and gradient segments, considering two observation modes: dry (in silico, deconvoluted), and wet (search-based, 
requiring peak detection). The optimization algorithms were evaluated based on their data (i.e. number of it
erations) and time efficiency. Of the algorithms compared in this study, DE proved to be a highly competitive 
method for dry optimization purposes in terms of both data and time efficiency. BO outperformed all other 
algorithms in terms of data efficiency and was found to be most effective for search-based optimization, which 
requires a low number of iterations (<200). However, BO was found to be impractical for dry optimization 
requiring a large iteration budget due to its unfavorable computational scaling. It was observed that both the CRF 
and the sample have a strong influence on the efficiency of the algorithms, emphasizing the need for better 
benchmark samples and highlighting the importance of assessing CRF-induced complexity in the optimization 
landscape.

1. Introduction

Gradient elution liquid chromatography (LC) is an indispensable tool 
for resolving complex chemical samples. However, separating samples 
containing many compounds requires costly method development, 
typically involving significant trial-and-error experimental work in 
order to tune many adjustable parameters such as the type of mobile- 
and stationary phase, the gradient program, and the pH [1]. To facilitate 
this method development, automated strategies have been proposed 
which can broadly be classified into two classes: retention 
modeling-based [2–5] or search-based methods [6–12].

Retention modeling describes the retention behavior of analytes 
through retention coefficients which are determined by interpolation of 
retention models obtained from scanning experiments [13]. Given these 
retention coefficients, the retention model can be used to simulate 
chromatographic separations under a broad range of chromatographic 
conditions (i.e., methods) [14]. Typically, a retention model can be 
established with as few as two or three measurements. These models can 
be used to optimize one or multi-step gradient methods (e.g. [5,15–18]) 
making it a promising tool for automated method development strate
gies. Some examples of software utilizing retention modeling are Drylab 
[19,20], ACD-Labs [21], PEWS [22], PIOTR [23], and MOREPEAKS 
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[24]. Search-based methods, on the other hand, rely on 
laboratory-conducted experimental evaluation in order to optimize 
separation. When strictly simulated chromatograms are used, e.g. 
known pure compounds signals, we refer to this as “dry” optimization, 
whereas consecutive real or simulated lab-based experiments containing 
single signal data can be referred to as “wet”.

Although these methods are intrinsically different, they share similar 
components. For instance, both strategies rely on a numerical criterion 
that describes the overall separation quality, generally referred to as the 
chromatographic response function (CRF). The CRF typically in
corporates scalars related to the number of detected peaks, the quality of 
separation, and the total method time [25]. Over the past decades, many 
different CRFs have been proposed and studies comparing the perfor
mance of different CRFs have been performed [25,26].

Besides the definition of the CRF, both optimization strategies 
require an algorithm that efficiently optimizes the CRF. In this case, 
efficiency refers to time and/or data efficiency [27]. Data efficiency 
refers to the number of evaluations (i.e., simulated chromatograms, or 
lab-based experiments) that need to be performed in order to reach a 
satisfactory state. Whereas time efficiency refers to the computation 
time required to find a satisfactory state. In search-based methods, one is 
typically more interested in data efficiency, as experiments need to be 
performed in real-time and use up valuable chemicals. However, in the 
setting of retention modeling, evaluations are fast and in silico (i.e., dry), 
and hence one is more concerned with the time efficiency of the 
algorithm.

In the past decades, a range of different works has focused on 
automated method development using different optimization algo
rithms [9,27–29]. For instance, in the setting of search-based ap
proaches, Berridge et al. utilized simplex methods to optimize 
experimental parameters using a CRF that incorporated the quality of 
the separation, the number of detected peaks, and the experiment time 
[10]. Later works focused on evolutionary algorithms [6,7,30] and 
Bayesian optimization [8,31]. In the setting of retention modeling, 
works have focused on grid search methods [2], evolutionary algorithms 
[4,32], gradient-based methods [5] and Bayesian optimization [33].

Although most works were successful in finding satisfactory method 
parameters, the effectiveness of these approaches is hard to compare, as 
they were applied to vastly different samples (both in nature and 
complexity), used different CRFs, and optimized different parameters. 
Hence, it is not well-known what optimization algorithm works best in 
the setting of wet and dry optimization. Especially, the comparison be
tween Bayesian optimization, which has shown to be typically sample 
efficient, and evolutionary algorithms, which are most commonly used 
in automated method development workflows, has not yet been made 
[29].

In this work, we report on a comparison of a range of optimization 
algorithms that have been used in method optimization and assess their 
comparative efficiency for method development workflows. Specif
ically, we compare a genetic algorithm (GA), differential evolution (DE), 
covariance matrix adaptation evolution strategy (CMA-ES), Bayesian 
optimization (BO), random search, and grid search. We base our study 
on a range of different samples, CRFs, gradient segments, and modes of 
observation. We include all the code used in this study, including the 
retention modeling framework, CRFs, sample generation methods, and 
all the implemented optimization algorithms in an open-source Python 
package that enables users to reproduce these results as well as optimize 
their own samples.

2. Computational methodology

To make the comparison as comprehensive as possible, a framework 
was created using multi-linear gradient retention modeling as a simu
lator (see Section 2.1), as this allowed for the prediction of a range of 
samples with a wide variation of retention behavior, but also under 
different gradient complexities (see Section 2.4). Here we opted for 

realistic chromatographic conditions (i.e. plate number, dead volume, 
dwell volume, etc.) to produce the chromatograms and corrected for 
gradient compression in the computation of the peak widths. Besides a 
variety of samples, discussed in Section 2.2, we also compared the 
performance of the optimization algorithms on a range of different CRFs 
discussed in Section 2.5 and using different modes of observation dis
cussed in Section 2.3. The optimization algorithms and their imple
mentation are discussed in Section 2.6.

2.1. Simulation of chromatographic separations

To predict the retention properties of sample components we utilize 
the linear solvent strength (LSS) model [34] which is defined as follows: 

lnk = lnk0 − Sφ (1) 

where k is the retention factor, φ is the mobile phase modifier fraction, 
k0 is the retention factor at φ = 0, and S represents the solvent strength 
parameter. The latter two parameters are generally fitted on a range of 
scanning gradients performed on a specific column and mobile phase 
setup [10]. To study the performance of the optimization algorithms 
under different complexities of the gradient program, we used the LSS 
model in the framework of multi-linear retention modeling which is 
derived and described in detail elsewhere [30]. The formulas used to 
calculate the retention times in the multi-linear retention modeling 
framework are included in Supplementary materials S-1. The model was 
implemented in-house in Python. This framework allows for the 
modeling of complex multi-gradient methods, with a growing number of 
optimizable parameters as the complexity of the gradient program in
creases. While the LSS model is employed in this study to simulate 
chromatographic behavior, it’s important to note that various alterna
tive modeling strategies exist for retention prediction in LC. Each has its 
own strengths and weaknesses, and implications for the method devel
opment process. A detailed description of alternative modeling strate
gies is beyond the scope of this work. For a more comprehensive 
overview of retention modeling techniques and tools, we refer the reader 
to the following reviews [35,36]. To describe the peak width (W) at 4σ 
we use the following expression in the case of an isocratic run [37]: 

W = 4N−
1
2t0(1 + ke) (2) 

where N is the column plate number, t0 is the column dead time and ke is 
the retention coefficient at the retention time tR. In the case of gradient 
elution, we correct the gradient compression factor G so that: 

W = 4GN−
1
2t0(1 + ke) (3) 

We compute G according to the general expression for peak 
compression derived by Hao et al. [38]: 

G2 =
k2

e

t0(1 + ke)
2

⎛

⎝(tD + tinit)(1 + k0)
2

k3
0

+

∫tR − t0 − tD − tinit

0

(1 + kφ(t))
2

k3
φ(t)

dt

⎞

⎠ (4) 

where tD is the dwell time, tinit is the isocratic initial time, and kφ(t) is the 
retention factor at φ(t). Hao et al. analytically derived these equations 
for the LSS model under multilinear gradient elution [4], which we 
implemented in in-house Python code. The chosen values for the dwell 
time, dead time, and plate number are shown in Table 1 and are kept 
fixed for all experiments in this work.

Table 1 
Fixed parameters used for the chromatographic simulator.

Parameter Value Units

Dwell time, tD 0.355 min
Dead time, t0 0.479 min
Plate number, N 5000 −
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Given the predicted retention times and peak widths using the 
framework described above, we simulate peak profiles as Gaussian 
peaks and assume compounds have equal concentration.

2.2. Generating retention parameters

In an attempt to make general conclusions about the relative per
formance of the optimization algorithms, we studied 11 different sam
ples. For samples 1-8, we uniformly sample the retention parameters of 
35 components from 8 specific intervals (see Table 2). For uniformity 
with prior conducted research, we chose to use the same retention 
parameter sets as those used in the CRF comparison study by Tyteca 
et al. [14] for the initial 8 samples. While these intervals cover a broad 
range of retention behavior, these samples comprise a single distribu
tion, which generally does not benefit that much from multiple gradient 
segments. Therefore, we have also introduced samples 9 and 10, which 
are both generated from sample 8. For sample 9, we have taken the 
retention parameters from sample 8 and multiplied the k0 values by e7 to 
make these compounds elute at higher modifier concentrations. From 
this combined list of retention parameters, we have then sampled 60 
compounds, effectively leading to a sample containing two distinct 
distributions. For sample 10, we have created an additional set of 
retention parameters from sample 8 by multiplying the k0 values by e14. 
We then randomly sampled 90 compounds from the three sets of 
retention parameters, effectively leading to three distinct distributions 
of compounds. Sample 11 is a set of retention parameters that were 
experimentally determined in [5] and comprises 96 compounds. Note 
that sample 11 contains several weakly retained compounds capped at S 
= 50. This was the boundary used in the retention modeling study. All 
samples are displayed in Fig. 1, using a scatter plot of the ln k0 and S. All 
the samples contain a fixed number of compounds: 35, 60, 90, and 96 for 
samples 1–8, 9, 10, and 11, respectively.

2.3. Chromatogram processing

The chromatograms that were generated using the framework 
described in Section 2.1 were read out using in-house Python code. An 
example chromatogram is shown in Fig. 2, and examples for all samples 
are provided in Supplementary materials S-2. We consider two ways of 
reading out the generated chromatograms. In the first scenario, we 
directly use the retention times and peak widths as predicted by the 
retention modeling framework. This corresponds to the dry setting of 
retention modeling or the setting where we have idealized spectral 
detection, i.e., the retention time and peak width of all compounds in the 
mixture are always known. In the second scenario, we treat the pre
dicted chromatogram as 1st-order chromatographic data (e.g. single- 
trace UV-VIS data) on which we directly perform peak detection. This 
scenario is often the case for search-based method development ap
proaches [5,27]. In this setting, referred to as wet, compounds that fully 
overlap are not separately detectable. This will change the number of 
observed peaks between iterations, which in turn will affect the CRF and 
the complexity of the optimization process. A simplistic visualization of 
the difference between wet and dry is included in Supplementary ma
terials S-3. In the wet scenario, peak detection is performed by finding 

the start, end, and maximum of each peak in the convoluted signal, see 
Fig. 3. In the case that peaks are not fully separated and thus overlap, the 
peak valley is used as the end (or start) of the peak. For these cases, this 
results in an underestimation of the peak width when there is significant 
overlap. The peak width used in the computation of the CRFs is the peak 
width at 13.5% of the peak height maximum, which corresponds to 4σ 
(See Fig. 3). This provides two extreme corner cases against which the 
CRFs and optimization methods used in this work are tested.

2.4. Parameters of multi-linear gradient program

Fig. 4 illustrates an example of a multilinear gradient profile and the 
parameters that are optimizable in our study. Here the φ values repre
sent the modifier concentrations at each turning point in the gradient 
profile. The Δt values represent the duration of each gradient segment, 
and tinit represents the duration of the initial isocratic segment. For a 
gradient program with N segments, this leads to an optimizable vector 
containing N + 1 φ values, NΔt values, and one tinit value, this is 
shown for N = 3 in Fig. 4. The ranges these parameters can take are 
bounded to be between 0 and 1 for φ, between 0.1 and 20 for Δt, and 
between 0 and 5 for tinit . Further, it is assumed that after the last gradient 
segment, there is a hypothetically endless isocratic segment at a modi
fier concentration of the last specified φ value. As it is not straightfor
ward to implement inequality constraints in each studied optimization 
method, we allow for gradient segments with a negative slope, although 
it is generally known that this does not lead to robust method 
parameters.

2.5. Description of chromatographic response functions

As the performance of optimization algorithms can be dependent on 
the function to be optimized, we study a range of different CRFs to assess 
this dependency. An overview of all the studied CRFs can be viewed in 
Table 3 [8,10,14,39–43]. We primarily chose these CRFs to create a 
diverse range of what their functional landscapes might look like but 
also made sure that these CRFs indeed have been used in literature. As in 
Tyteca et al. [14], we distinguish between CRFs that do or do not contain 
a time optimization component (category I and II, respectively). In 
addition, we also consider CRFs that monotonically increase with the 
number of observed compounds, or do not (category B and A). Having 
CRFs that increase with the number of compounds is especially inter
esting for the wet scenario (see Section 2.3), where it is unknown how 
many compounds there are in the sample. As in this case, measurements 
that have more separated peaks will have higher scores. Without this 
property of the CRF, these measurements will have highly similar scores, 
irrespective of the number of separated compounds. All the CRFs used in 
this study use the elemental separation criteria of resolution or Kaiser’s 
peak-to-valley ratio. We define the resolution between neighboring peak 
pairs iand i + 1 as follows: 

R∗
s,i =

2
(
tR,i+1 − tR,i

)

Wi + Wi+1
(5) 

Where tR,i is the retention time of peak i and Wi is the width of peak i 
at 13.5% of its peak height, see Fig. 3. We further assume that resolution 
values that are higher than a certain Rs,req do not benefit the separation, 
and therefore, we always normalize the resolution so that: 

Rs,i =

{
Rs,i if Rs,i < Rs,req

Rs,req if Rs,i ≥ Rs,req

}

(6) 

where Rs,req = 1.5, is used throughout this study. We define Kaiser’s 
peak-to-valley ratio (fi/gi) as follows: 

fi

/

gi = 1 −
hv

1/2⋅(hmin + hmax)
(7) 

Table 2 
Ranges of k0 and S values for the generation of different samples.

Sample k0 S

1 [200, 1000] [8, 15]
2 [500, 1000] [10, 20]
3 [1000, 2000] [5, 15]
4 [200, 1000] [15, 20]
5 [10, 2000] [5, 10]
6 [500, 2500] [10, 20]
7 [1000, 3000] [5, 15]
8 [200, 700] [15, 25]
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where hv is the valley between two peaks i and i+ 1, hmax is the most 
intense peak, and hmin is the least intense peak between two peaks i and i 
+ 1, as illustrated in Fig. 3. Other criteria that are used by several CRFs 
are the number of observed peaks (Nobs), the retention time of the first 
and last eluted compounds (tR,first and tR,last), a specified minimum and 
maximum time (tmin = 2 min and tmax = 60 min).

For (sub-)CRFs that do not contain a time component, it is possible to 
obtain experiments with a high CRF score that have an unrealistically 
long experiment time. Therefore, for these CRFs, we incorporate a soft 
time penalty by ignoring peaks that elute after tmax by multiplying with 
the indicator function 1(tR,i < tmax) which is 1 if tR,i < tmax and 
0 otherwise.

2.6. Optimization methods

We focus on a select group of optimization algorithms: genetic al
gorithm (GA), differential evolution (DE), covariance matrix adaptation 
evolution strategy (CMA-ES), Bayesian optimization (BO), random 
search, and grid search. These algorithms were chosen for several rea
sons. Firstly, all of these methods can be used for wet and dry method 
development, as all of these methods can do derivative-free optimiza
tion. In addition, all the algorithms have already been applied in LC for 
method development applications, reinforcing their relevance and util
ity in this domain. Lastly, some methods, though not necessarily 
exclusive to chromatography, are recognized as state-of-the-art optimi
zation techniques, making them potentially interesting candidates for 

Fig. 1. Scatter plot of the ln k0 and S for all the created samples used in the algorithm comparison.

Fig. 2. Example of a simulated chromatogram of sample 10 for a single-segment linear gradient of 0–100% strong modifier and a gradient time of 30 min.
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chromatographic optimization. For GA we used the implementation 
from the PyGad library [44], for DE and grid search we used their 
respective implementations in SciPy [45], for CMA-ES we used the CMA 
Python library [46], for BO we used the implementation in Scikit-Optimize 
(Skopt) [47], and for random search we used an in-house Python 
implementation.

The full description of these methods is beyond the scope of this 
work; we provide a brief description of each optimization algorithm and 
additional implementation details in the Supplementary materials S-4 
and references to relevant literature are included there. In our explo
ration of the various optimization methods, we have made a conscious 
decision to maintain default settings for each algorithm. This choice 
mirrors the typical approach of a practitioner who might rely on out-of- 
the-box configurations. Concurrently, in an effort to ensure fairness and 
maintain comparability across the algorithms, efforts were made to 
harmonize certain settings wherever feasible. To make a fair comparison 
of computational runtime, all computations were performed on an HPC 
cluster with AMD Rome 7h12 CPUs, where each task could utilize 18 
CPU cores with an individual memory allocation of 12GB.

3. Results and discussion

3.1. Rationale for the conducted experiments

A framework was constructed to investigate the efficiency at which 
different optimization algorithms were capable of optimizing chro
matographic gradients. To achieve this, an off-line workflow was 
designed where 11 different computational samples were employed 
using simulated retention data. The goal was to test 6 different optimi
zation algorithms against four different gradient program designs (with 
1, 2, 3, or 4 gradient segments) and 10 different CRFs from literature. 
This means that each chromatographic method-optimization experi
ment was conducted with each combination of optimization algorithm, 
CRF, gradient-program design, and sample. In addition, as some of the 
optimization algorithms are dependent on the random initialization and 
the random seed (GA, DE, CMA-ES, BO, and random search), these were 
run for 10 trials with different random seeds. We will refer to one 
combination of CRF, gradient-program design, and sample for the entire 
iteration budget as a “search-run”. A schematic overview of the com
plete workflow is displayed in Fig. 5.

All experiments were tested in two different scenarios. The first is 
referred to as dry, where the retention time and peak width of all 
compounds are known a priori. This scenario mirrors the conditions 
encountered by practitioners in an in silico approach, such as with 
retention modeling studies, where the established retention models 
allow for a virtual assessment of a broad range of chromatographic 
conditions based on only simulated measurements. The second scenario 
is referred to as wet where the algorithm is provided with unprocessed 
data that features significant co-elution (e.g. initial scouting experi
ments). This approach is most similar to what practitioners will 
encounter in the laboratory with real-world LC experiments as well as 

Fig. 3. Illustration of a chromatogram read-out and important measures used 
to quantify the separation of two peaks. The blue line denotes the chromato
gram of a convoluted signal of two peaks (shown in green and red). The peak 
width is determined at 13.5% of the peak height maximum.

Fig. 4. Example of a multilinear gradient profile with 3 tunable segments.

Table 3 
Overview of all CRFs considered in this study. The CRFs are distinguished into two main categories based on whether they contain a time 
optimization component or not (Category I and II, respectively). Additionally, within each main category, CRFs are further classified 
based on whether they monotonically increase with the number of observed compounds (Category B) or do not have this property 
(Category A). In CRF5, x, a, and b are prefactors which were all set to 1. In CRF6, we choose values b0 = 3.93, b1 = 3.66, b2 = − 0.0406, 
and b3 = − 4.646. In CRF8 we use values a = b = 0.5.

Category I-A Category II-A

CRF1 =
∑nobs− 1

i=1
Rs,i

Rs,req
⋅1
(
tR,i < tmax

)
[8] CRF5 = nx

obs +
∑nobs − 1

i=1
Rs,i − a

⃒
⃒tmax − tR,last

⃒
⃒+ b

(
tmin − tR,first

)
[10]

CRF2 =
∏nobs− 1

i=1

Rs,i

Rs,req
⋅1
(
tR,i < tmax

)
[39] CRF6 =

( ∏nobs − 1

i=1
Si

) 1
nobs − 1⋅g, where:

CRF3 =
∑nobs− 1

i=1
fi/gi⋅1

(
tR,i < tmax

)

CRF4 =
∏nobs− 1

i=1
fi/gi⋅1

(
tR,i < tmax

)
[40]

Si =
1

1 + e− b0∗Rs,i+b1 
& g =

1
1 + e− b2∗tR,last+b3 

[41]

Category I-B Category II-B

CRF7 = nobs +

∑nobs
i=1 Rs,i

Rs,req⋅(nobs − 1)
[14] CRF9 = nobs +

∑nobs− 1

i=1
fi/gi −

(
tR,last − t0

)

tR,last 
[42]

CRF8 = nobs + a⋅
̅̅̅̅̅̅̅̅̅̅̅
CRF4

nobs − 1
√

b⋅
(nobs − 1)CRF3

nobs − 1 
[43] CRF10 = nobs +

1
tR,last

⋅
∏nobs− 1

i=1
fi/gi [14]
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what an automated workflow would encounter. For the wet scenario, 
peak detection is required after each iteration, which means overlapping 
compounds cannot be resolved. All optimization experiments for both 
simulated scenarios were evaluated and compared on their ability to 
efficiently arrive at an optimum.

The definition of efficiency varies depending on the application for 
which the algorithm is used. For instance, in the dry scenario with fast in 
silico measurements, the workflow benefits more from a time-efficient 
approach, enabling a higher number of evaluations within an accept
able timeframe. Whereas in the wet scenario, the data efficiency be
comes more important as measurements are expensive and time- 
consuming. Therefore, the algorithms were evaluated based on data 
efficiency, the number of iterations, and the time efficiency, which refers 
to the computation time needed.

To assess the data and time efficiency of the algorithms for their 
general applicability in method development workflows, a comparative 
analysis of the algorithms based on their average ranking was con
ducted. This ranking represents how frequently the optimization algo
rithms succeeded in finding the best solution (the highest CRF value) 
relative to the other algorithms. Thus, a rank of exactly 1 indicates that 
the algorithm always found the best scoring solution and a rank of 
exactly 6 signifies that it found the least favorable solution out of all the 
studied algorithms. In this manner, the ranking reflects the algorithm’s 
overall capability for general applications. In other words, the effect of 
the specific factors is minimized. It is important to emphasize that for 
this comparison study, we excluded the impact of the CRF in relation to 
the gradient parameters obtained, and only studied the ability of the 
optimization algorithm to find the highest score regardless of whether 
the CRFs performance is sensible in terms of the obtained separation. 
This is due to the complexity of assessing the performance of a CRF, as it 
is highly dependent on the specific goals and preferences of the analyst.

The following sections discuss the data and time efficiency of the 
algorithms and are divided into two parts. Section 3.2 focuses on opti
mization based on the dry scenario, with a high number of iterations 
available, whereas Sections 3.3 and 3.4 focus on optimization based on 
the wet scenario similar to the situation encountered with single trace 
data and real experiments. A visualization of the chromatograms ob
tained from a single search run is included in Supplementary materials 
S-5.

3.2. Algorithm performance for experiments conducted in the dry scenario

To study the performance of the algorithms in the dry scenario we 
allowed each algorithm a total of 10,000 iterations for each search-run. 
The following two restrictions were considered: I) In the Dry scenario, 
we only consider the resolution-based CRFs, as CRFs using Kaiser’s peak- 
to-valley ratio are inapplicable to deconvoluted data given that reten
tion times and peak widths are individually modeled for each compound 
and any peak overlap thus is known a priori. II) We observed that CRF 7 
displayed practically uniform convergence across all algorithms. This 
was due to a strong influence of the term related to the number of 
compounds “n” in the CRF, which is constant in the fully deconvoluted 
setting. Consequently, CRF 7 was omitted from the average ranking for 
the dry scenario.

3.2.1. Algorithm data-efficiency in the dry scenario
Fig. 6 displays the ranking for each algorithm for the dry scenario. 

Here, the ranking is averaged over the performance of all computed 
combinations of the 11 samples, four CRFs, and varying the number of 
gradient segments (1-4) to study the general performance of the algo
rithms. As the BO algorithm scales cubically with the number of itera
tions, it was limited to 200 iterations to keep the computation time 
manageable given the large number of search-runs that had to be per
formed. For the ranking after 200 iterations, the BO score was fixed at 
the final score obtained at 200 iterations (as indicated by the dashed 
lines in Fig. 6). Similarly, the value of the grid search was set to the best 
value found on the entire grid and is fixed from the first iteration in 
Fig. 6. Since there is no notion of “order” in the computation of the grid 
search, we only utilize grid search as a way of investigating whether the 
other optimization algorithms can effectively beat the grid search in a 
lower number of iterations than was performed in the grid search (see 
Supplementary materials S-4.5 about details regarding the grid search).

From Fig. 6, it is evident that all evolutionary algorithms (CMA-ES, 
DE, GA) outperformed the grid search after around 500 iterations, which 
is rather impressive given the, in some cases, 2 orders of magnitude 
larger number of iterations executed for the grid search. This is consis
tent with the observation that grid searches are becoming less practical 
due to factors such as excessively long computation times or insufficient 
granularity to identify meaningful parameter combinations, especially 

Fig. 5. Schematic overview of the workflow deployed in this study.
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in settings with many adjustable parameters. It was also observed that 
random search improves over grid search in around 4200 iterations. 
Random search can outperform grid search when only a limited number 
of optimization parameters affect the final performance of the separa
tion [48], see also Fig. S2. In such a case, the optimization is said to have 
a lower intrinsic dimensionality. This was also observed in this study 
when comparing the average ranking per gradient-segment number, see 
Fig. 7, where it is shown that random search surpasses grid search faster 
at high parameter settings than at low parameter settings.

Likewise, if random search is competitive with the other algorithms, 
it could indicate that the optimization problem is inherently simple, 
with very large volumes in the parameter space that are optimal and can 
easily be explored through random selection. This is not the case in this 
study, as all evolutionary methods improved over the grid search 
significantly faster and remained better than random search over the 
entire optimization budget. DE performed the best and obtained the best 
average ranking after only 1000 iterations and did not get surpassed by 
the other algorithms in the remaining iterations. This is in line with the 
established efficacy of DE in addressing these types of problems [32], 
and the general notion that DE likely outperforms GA in continuous 
optimization landscapes [49], especially for higher dimensional prob
lems. This was also observed when studying the ranking plot as a 

function of the number of gradient segments, where the performance of 
GA in comparison to DE and CMA-ES decreased in data efficiency with 
each added gradient segment (and thus increased dimensionality).

It is important to note that the number of gradient segments does not 
necessarily contribute positively to improving the CRF scoring. It is 
likely that for some samples, a single gradient step may already be 
effective in separating all components in the sample. In these cases, the 
non-required segments will add additional parameters that increase the 
complexity of the optimization process but may not necessarily lead to 
better solutions, as is showcased by the reduced relative performance of 
GA when the number of gradient segments increases. Ideally, in an 
optimization process, one would be able to determine the number of 
gradient segments required to perform the separation, thus eliminating 
the additional complexity, and making the optimization algorithm more 
effective.

The performance of CMA-ES in the dry optimization process is likely 
due to the tendency of early convergence that is associated with the 
selection process as the covariance matrix adapts. Inherently, this ten
dency of early convergence can be positive, as it may lead to fast 
convergence towards the optimal solution. However, in this study, it 
neither proved more data efficient with a lower number of iterations (1- 
500) nor capable of finding the true optimum, as DA performed better, 

Fig. 6. Comparison of the ranking of the optimization algorithms averaged over all studied search-runs for the dry scenario. All algorithms were run for 10,000 
iterations except for grid search and BO. BO was run for 200 iterations and after this iteration, its final score was fixed and used to compute ranking (as shown by the 
dashed line). Similarly, the grid search was fixed after the first iteration with its best-found value, also indicated by the dashed line. The standard error of the average 
ranking is shown by the shaded border.

Fig. 7. The ranking for each level of gradient complexity (1–4 gradient segments) averaged over all studied CRFs and samples in the dry scenario. All algorithms 
were run for 10,000 iterations except for grid search and BO. BO was run for 200 iterations and after this iteration, its final score was fixed and used to compute 
ranking (as shown by the dashed line). Similarly, the grid search was fixed after the first iteration with its best-found value, also indicated by the dashed line. The 
standard error of the average ranking is shown by the shaded border.
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and GA consistently caught up or improved over CMA-ES given enough 
iterations.

BO was the most effective at the lowest range of iterations, and was 
only surpassed by the grid search, but is impractical after further iter
ations in this data regime due to its cubically scaling computation cost 
with the number of iterations when using a Gaussian process regression 
model. This will be discussed further in the next section.

3.2.2. Algorithm time efficiency in the dry scenario
Fig. 8 displays the average cumulative computation time of the 

optimization algorithm in the dry scenario for the first 200 iterations. As 
mentioned in Section 2.6, it is important to note that all computations 
were performed using a similar amount of compute and memory. For 
grid search the computation time of the entire evaluation is shown as a 
horizontal dashed line. The average run time is strongly influenced by 
the number of iterations evaluated for the grid search, which was scaled 
with the dimensionality of the optimization problem, see Supplementary 
materials S-4.5. As a result, the average run times for the individual 
gradient complexities of n = 1, 2, 3, and 4 are approximately 6 s, 9 s, 51 
s, and 52 s, respectively. As the random search algorithm is simplistic in 
nature, the runtime of the algorithm gives an indication of the compu
tation overhead of the retention modeling and chromatogram simula
tion. The additional difference in computation time observed for the 
other optimization algorithms can be attributed to their respective 
complexities.

The cubical scaling complexity of Bayesian optimization when using 
a Gaussian process regression model becomes immediately apparent 
from Fig. 8A. Where the overhead of the algorithm quickly surpasses 
that of the simulator. The evolutionary algorithms, CMA-ES, DE, GA, 
showed an attractive linear scaling with the number of iterations, with 
runtimes of 12 s, 11 s, and 9 s respectively but each showed slightly 
different overheads. CMA-ES uses a more complex selection strategy 
which likely led to the minor increase in computation time, followed by 
DE and GA. However, this difference is somewhat negligible, as the data 
efficiency and performance should be favored here over the minor in
crease in runtime. Indicating that DE is a highly competitive time effi
cient method for the task of optimizing in silico samples.

3.3. Algorithm performance for experiments conducted in the wet 
scenario

The convoluted optimization setting is most similar to what a prac
titioner will encounter in the laboratory with real measurements. For 
“wet” experiments, one is typically interested in reducing the number of 
measurements to reduce cost, time, or solvent consumption, and thus 
requires a data-efficient algorithm. We therefore chose to focus on 
illustrating the 25 and 200 iteration limits in Fig. 9. 25 iterations 
correspond to a realistic number of measurements achievable in a 
method-development process where each measurement takes in the 
order of hours. Meanwhile, 200 iterations serve as the upper limit of the 
number of measurements that could realistically be performed when 
dealing with experiments in the range of minutes. This choice is on the 
high side, to emphasize the impact on both data efficiency and 
computational time. Fig. 9, shows the ranking for each algorithm 
averaged over all the different scenarios for the Wet scenario in the 
range of 1–200 iterations. It can be seen here that the grid search 
benchmark performed the best, as was expected given the large number 
of function iterations performed in the grid search. However, even with 
the small number of algorithm iterations, grid search was occasionally 
outperformed by the other algorithms. On average, BO outperformed 
the other algorithms in terms of data efficiency, followed by DE, GA, and 
CMA-ES, respectively. The data efficiency of BO is particularly notice
able in the range of 1–25 iterations, where it quickly catches up with the 
performance of the grid search. DE after 200 iterations comes close to 
the performance of BO and surpasses the grid search, which is rather 
impressive for an evolutionary algorithm that is generally expected to 
underperform without sufficient iterations. CMA-ES showed the same 
tendency as in the dry optimization where surprisingly the CMA selec
tion strategy does not lead to rapid improvement. All optimization al
gorithms outperform random search as the number of iterations 
increases, confirming the suitability of the algorithms for wet method 
optimization purposes. The relative performance of random search 
further indicates that the performance landscapes can be considered 
complex and that it likely contained narrow and sparse optima. Time 
efficiency-wise we showed in Section 3.2.2, Fig. 8, that BO is consider
ably slower than the other optimization methods, however, in the case of 
real experiments that are on the minute-hour time scale, its computation 
time is negligible. Therefore, in terms of data efficiency BO, proved most 
competitive for automated method development purposes that rely on 
real measurement input.

3.4. Factors influencing the optimization performance in the wet scenario

Since the performance of the optimization algorithm depends on the 
shape and complexity of the response function landscape, it is important 
to evaluate the dependency of the CRFs, samples, and the influence of 
the gradient complexity (1–4 gradient segments). In the dry scenario, 
the influence of the sample and CRF was less pronounced due to the 
number of components being known. In the wet scenario, due to the 
required peak detection for convoluted components and the resulting 
varying number of observed peaks, the individual contributions and 
discrepancies can become more apparent. The following sections focus 
on the individual contribution and discrepancies of the CRF, sample, and 
number of gradient segments, for the wet setting.

3.4.1. Influence of the CRF
While the overall rankings indicate which algorithm most often finds 

the best solution for general use, it is still possible for one optimization 
algorithm to significantly outperform another for a particular type of 
landscape, e.g., one with many local optima. In some cases, this can be 
linked to the used CRF, where a high-ranking performance of the grid 
search indicates that the CRF produces a difficult-to-navigate landscape, 
and where the strong performance of DE/BO indicates that there are 
many spiky optima which the grid search cannot find with its current 

Fig. 8. Cumulative computation time (s) of the optimization algorithms aver
aged over all studied samples, gradient complexities, and the applied CRFs for 
the dry scenario for the first 200 iterations (panel A). The grid search was fixed 
after the first iteration, indicated by the dashed line. Panel B displays a zoom-in 
of the first 0.4 s and contains the linear formula for the respective algorithms 
with x being the number of iterations.
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coarseness. The influence of the CRF is especially noticeable for ill- 
conditioned problems, where a small change in the input data or 
parameter leads to a large change in the solution score. Two examples of 
this are depicted in Fig. 10, with the product of Kaiser’s valley-to-peak 
ratio (CRF 4) and the product of resolution (CRF 2). Due to both CRFs 
being based on multiplication, a single overlapping component would 
result in a significantly large change in the score value, or the case of a 
completely overlapping peak, even a zero value. For CRF 4, CMA-ES 
performed significantly better than observed in the average ranking 
and the relatively higher ranking of the random and grid search in
dicates that the CRF indeed produces a spikey solution landscape in 
which the CMA-ES and BO perform better. For CRF 2, the evolutionary 
algorithms likely struggle with local minima as a small change in pa
rameters for a single component significantly reduces the landscape on 
all sides. Therefore, the grid search produces a higher total score for this 
CRF. See Supplementary materials S-6 for the ranking plots of all indi
vidual CRFs.

Clearly, the descriptors in the CRF can have a big impact on the final 
performance of the optimization algorithm. Therefore, it is not un
thinkable that although a CRF might best describe the chromatography 

that the practitioner had in mind, it might lead to suboptimal perfor
mance for an optimization algorithm. For example, a CRF that combines 
many metrics to describe a separation may form a very complex land
scape in which the best solution is not found in a reasonable computa
tional time and may be outperformed by a simpler CRF that identifies a 
good solution more successfully at a potential cost of slightly less 
effective method parameters.

As a consequence, future work on the quality of (new) CRFs in 
automated method development processes should also take into account 
the complexity of the CRF in the evaluation of their performance. 
Simultaneously, the rapid development and increase in data and time 
efficiency of the algorithms can also tackle this issue if the optimization 
algorithms become more efficient at finding the optima in complex 
landscapes.

3.4.2. Influence of sample
In most cases, the effect of the sample showed little individual impact 

on the trends of algorithm ranking. However, in the case of samples 
9–11, which all contained multiple clusters and an increased number of 
components, there was a break in the trend. Fig. 11 displays the ranking 

Fig. 9. Comparison of the ranking of the optimization algorithms averaged over all studied search-runs for the wet scenario. All algorithms were run for 200 it
erations except for grid search which was fixed after the first iteration with its best-found value, indicated by the dashed line. The standard error of the average 
ranking is shown by the shaded border.

Fig. 10. The ranking of CRF 4, and CRF 2, averaged over all samples and gradient complexities in the wet scenario. All algorithms were run for 200 iterations except 
for grid search which was fixed after the first iteration with its best-found value, indicated by the dashed line. The standard error of the average ranking is shown by 
the shaded border.
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averaged per sample of samples 10 and 11, the complete overview of all 
samples is added in Supplementary materials S-7. It is observed in 
Fig. 11 that CMA-ES on average performed worse than the random 
search, which is somewhat unexpected. A potential reason for this is the 
lack of tuning for the CMA-ES. Given that samples 9–11 contain multiple 
distributions, it would benefit from multi-linear gradients that combine 
shallow and steep gradient-segment blocks to accommodate all distri
butions in the sample. Therefore, optimal gradient parameters are likely 
to be structured (from low to high) with the exact retention behavior of 
the distributions leading to subtle changes in what is optimal. This 
structure is not reflected in the default initial conditions of CMA-ES, and 
it may therefore take a considerable number of iterations for the algo
rithm to reach more favorable regions of the method parameters. 
Additionally, this also increases the chance that the algorithm gets stuck 
in a local optimum. Meanwhile, DE, GA, and BO can make larger jumps 
in the method-parameter space and are therefore less affected by the 
optimization landscape for samples 9–11.

Although we studied 11 samples in this work, ranging from single 
distributions with different retention ranges, to multiple distributions 
and retention parameters determined from experimental measurements. 
We still feel that it remains difficult to assess the influence of the sample 
complexity on the optimization algorithm’s performance. Partly because 
it will remain dependent on the choice of CRF, and the number of 
gradient segments. But also, because the 11 studied samples do not fully 
capture the space of samples that one can encounter in the laboratory. In 
this study, the range in sample size was limited to 30–96 components, 
but it is conceivable that a steep decrease or increase could reveal 
greater differences between the algorithm scores depending on the 
studied CRF. We believe the community would benefit from a better 
(centralized) benchmark set of retention parameters where optimal 
gradient conditions, both in the complexity (i.e., number of segments) 
and their modifier concentrations, and our group will focus on this in the 
future. In addition, there could also be alternative methods to sample 
retention parameters, which could create samples that are more com
plex to solve and might require more intricate gradient programs to 

resolve.

3.4.3. Influence of the number of gradient segments
The ranking averaged per number of gradient segments in the wet 

scenario is shown in Fig. 12. Here, the addition of a gradient segment did 
not significantly impact the optimization performance ranking for the 
wet scenario, with BO performing better than DE in all cases, followed 
by GA and CMA-ES, and with random search performing the worst. The 
shortcomings of the algorithms, specifically GA, regarding the addi
tional dimensionality introduced by increasing the number of gradient 
segments, are not as apparent as was observed in the dry scenario (see 
Section 3.2.1 and Fig. 7) due to the low number of iterations.

It should also be noted that as the number of gradient segments in
creases, the mesh of the grid search becomes increasingly coarse due to 
the number of grid points (iteration budget) being fixed. It would 
therefore be expected that the grid search performance deteriorates with 
increasing gradient segments, and this is indeed observed in Fig. 12, 
where the grid search was surpassed in ranking faster when a higher 
number of gradient segments was used. Again, highlighting that using 
population-based methods is highly advised when dealing with many 
optimizable parameters, and that the use of grid search becomes unre
liable and unfeasible.

The results of this study suggest that the number of segments had 
little effect on the choice of algorithm for optimization purposes in the 
wet scenario, which could also be related to the studied samples, as 
discussed in Section 3.4.2. It is possible that the influence would be more 
significant for a larger number of gradient segments, but this would not 
be commonly considered in practice for LC gradient optimization.

4. Conclusion

In this work, we have created a framework utilizing multi-linear 
retention modeling to compare the performance of BO, DE, GA, CMA- 
ES, random search, and grid search, while varying these factors. From 
this study, we draw the following conclusions related to the use of 
optimization algorithms in the automation of gradient elution LC: 

⋅ For dry optimization, our results suggest that DE is a highly 
competitive method in terms of both data and time efficiency. BO 
outperformed the other algorithms in terms of data efficiency but 
became impractical due to its computational scaling, making it un
suitable for in silico modeling approaches requiring a large iteration 
budget.

⋅ For wet optimization, BO appeared to be superior for the search- 
based approaches, which rely on real measurement input, occa
sionally even outperforming the grid-search benchmark that 
comprised a much larger iteration budget.

⋅ In principle, all tested evolutionary algorithms were found to be 
suitable for method development purposes, however, CMA-ES per
formed worse than expected compared to the other algorithms in 
both the dry and wet scenarios.

⋅ The study revealed a strong influence of the CRF, and to a lesser 
extent, the number of compounds in the sample and the gradient 
complexity, on the efficiency of the optimization algorithms. This 
complicates the already challenging design of new CRFs for method 
development purposes, as the CRF not only has to describe the 
chromatography adequately but also needs to produce an optimiza
tion landscape that is efficiently navigable by the optimization al
gorithms, which we identify as an important topic of research for 
effective method optimization.

One important trade-off of our study was that algorithms were run 
using default settings as this reflects a use case for the general practi
tioner. However, tuning the individual algorithms may significantly 
improve their performance. We deliberately opted not to tune the in
dividual algorithms to maintain a general comparison and assess their 

Fig. 11. The ranking of sample 10 (top panel) and sample 11 (bottom panel), 
averaged over all CRFs and gradient complexities for the wet scenario. All al
gorithms were run for 200 iterations except for grid search which was fixed 
after the first iterations with its best-found value, indicated by the dashed line. 
The standard error of the average ranking is shown by the shaded border.
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broader applicability to LC method development. Tuning each algorithm 
individually could have led to a more accurate reflection of their highest 
potential, but it would have made a fair comparison more challenging. 
In addition, it would make the comparison more specific for the opti
mization problem. The same workflow and framework can be utilized to 
test optimization algorithms for specific use-cases, potentially incorpo
rating algorithm-specific tuning.

It must also be noted that different starting points (i.e. random seed) 
could have affected the performance. For instance, in terms of the 
required gradient complexity and the experimental designs. A better 
starting point could greatly improve the performance of the algorithms, 
which could be achieved through expert or prior knowledge, or more 
extensive scanning strategies.

We have attempted to make the simulated sample realistic by 
implementing peak compression and a diverse set of samples. However, 
there are still opportunities to improve the simulated sample to include 
all the phenomena and peak shapes that can be expected in LC method 
development. To this end, we believe that the chromatographic com
munity would benefit from the creation of a widely accepted set of 
standardized benchmark samples of varying complexity and retention 
behavior (with known optima) against which future algorithms and/or 
CRFs could be benchmarked [50,51].
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