Krull dimension in modal logic

Bezhanishvili, G.; Bezhanishvili, N.; Lucero-Bryan, J.; van Mill, J.

Published in: Journal of Symbolic Logic

DOI: 10.1017/jsl.2017.14

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
KRULL DIMENSION IN MODAL LOGIC

GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JOEL LUCERO-BRYAN, AND JAN VAN MILL

Abstract. We develop the theory of Krull dimension for $S4$-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that Krull dimension is unable to detect. We prove that for a T_1-space to have a finite modal Krull dimension can be described by an appropriate generalization of the well-known concept of a nodec space. This, in turn, can be described by modal formulas zem_n which generalize the well-known Zeman formula zem. We show that the modal logic $S4.Z_n := S4 + zem_n$ is the basic modal logic of T_1-spaces of modal Krull dimension $\leq n$. and we construct a countable dense-in-itself o-resolvable Tychonoff space Z_n of modal Krull dimension n such that $S4.Z_n$ is complete with respect to Z_n. This yields a version of the McKinsey-Tarski theorem for $S4.Z_n$. We also show that no logic in the interval $[S4_{n+1}, S4.Z_n)$ is complete with respect to any class of T_1-spaces.

§1. Introduction. Topological semantics of modal logic was pioneered by Tsao-Chen [45], McKinsey [36], and McKinsey and Tarski [37]. The celebrated McKinsey–Tarski theorem states that if we interpret modal diamond as closure and hence modal box as interior, then $S4$ is the modal logic of any dense-in-itself separable metric space. Rasiowa and Sikorski [42] showed that separability can be dropped from the assumptions of the theorem. However, dropping the dense-in-itself assumption may result in logics strictly stronger than $S4$. A complete description of when a modal logic is the logic of a metric space was given in [5], where it was shown that such logics form the chain:

$$S4 \subset S4.1 \subset S4.Grz \subset \cdots \subset S4.Grz_n \subset \cdots \subset S4.Grz_1.$$

Here $S4.1 = S4 + \Box\Diamond p \rightarrow \Diamond\Box p$ is the McKinsey logic, $S4.Grz = S4 + (\Box(\Box(p \rightarrow \Box p) \rightarrow p) \rightarrow p$ is the Grzegorczyk logic, and $S4.Grz_n = S4.Grz + bd_n$, where

$$bd_1 = \Diamond\Box p_1 \rightarrow p_1,$$
$$bd_{n+1} = \Diamond(\Box p_{n+1} \land \neg bd_n) \rightarrow p_{n+1}.$$

An important generalization of the class of metric spaces is the class of Tychonoff spaces. It is a classic result of Tychonoff that these are exactly the spaces that up to homeomorphism are subspaces of compact Hausdorff spaces (see, e.g., [19, Theorem 3.2.6]). Because of this important feature, the class of Tychonoff spaces is

Received April 26, 2016.
2010 Mathematics Subject Classification. 03B45, 06E25, 06D20, 54F45, 54B17.
Key words and phrases. Krull dimension, modal logic, topological semantics, Heyting algebra.
one of the most studied classes of spaces in topology. For a Tychonoff space X, it is desirable to know the modal logic of X. This is a challenging open problem, and in this paper we obtain some results in this direction.

In determining the modal logic of a Kripke frame \mathcal{F}, the depth of \mathcal{F} plays an important role. It is well known (see, e.g., [10, Proposition 3.44 and Theorem 5.17]) that the depth of an S4-frame \mathcal{F} is $\leq n$ iff \mathcal{F} validates bd_n, and that $S_{4_n} := S_4 + \text{bd}_n$ is the logic of the class of all S4-frames of depth $\leq n$. By Segerberg’s Theorem (see, e.g., [10, Theorem 8.85]), S_{4_n} and all its extensions are Kripke complete and have the finite model property.

In this paper we present a topological analogue of the depth of an S4-frame. This leads to a new concept of dimension in topology, which is closely related to the concept of Krull dimension in algebra and geometry (see, for example, [18, Chapter 8]). We recall that the Krull dimension of a commutative ring R is defined as the supremum of the lengths of finite chains of prime ideals of R. Since the spectrum $\text{Spec}(R)$ of prime ideals of R topologized with the Zariski topology is a spectral space, where the inclusion on prime ideals is the specialization order of the Zariski topology, we can define the Krull dimension of a spectral space X as the supremum of the lengths of finite chains in the specialization order of X. By Stone duality [44], spectral spaces are dual to distributive lattices, which paves the way to defining the Krull dimension of a distributive lattice L as the supremum of the lengths of finite chains in $(\text{Spec}(L), \subseteq)$, where $\text{Spec}(L)$ is the Stone dual of L. For different characterizations of the Krull dimension of distributive lattices see [8, 11, 12, 22, 23] and the references therein.

If we define the Krull dimension of an arbitrary topological space X by means of the specialization order of X, then to quote Isbell [29], the result is “spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry.” Isbell remedied this by proposing the definition of graduated dimension. In this article we propose a different approach, which has its roots in modal logic. This leads to the concept of modal Krull dimension. As we will see, this notion is more refined. For example, every nonempty Stone space has Krull dimension and graduated dimension 0. On the other hand, for each n (including ∞), there is a Stone space X such that the modal Krull dimension of X is n. Thus, modal Crull dimension provides a more refined classification of Stone spaces, and this extends to spectral spaces and beyond.

We start by developing the Krull dimension for S4-algebras (also known as closure algebras [37], topological Boolean algebras [42], and interior algebras [7]). An S4-algebra \mathfrak{A} has Krull dimension $< n$ if the spectrum of ultrafilters of \mathfrak{A} has depth $\leq n$ (see Definition 2.4). Since the spectrum of ultrafilters of \mathfrak{A} has depth $\leq n$ iff \mathfrak{A} validates bd_n and S_{4_n} has the finite model property, it follows that S_{4_n} is the logic of the class of all S4-algebras of Krull dimension $< n$.

We introduce the modal Krull dimension of a topological space X as the Krull dimension of the S4-algebra of the powerset of X. We generalize the well-known concept of a nodec space to that of an n-nodec space, and prove that if X is a T_1-space, then the modal Krull dimension of X is $\leq n$ iff X is n-nodec. As was shown in [3], the modal logic of the class of nodec spaces is the well-known Zeman logic $S_{4.Z}$. For each $n \geq 0$, we generalize the Zeman logic $S_{4.Z}$ to the n-Zeman
logic $\text{S4}.Z_n$, and show that $\text{S4}.Z_n$ is a proper extension of S4_{n+1}. From this we derive that S4_{n+1} and indeed any logic in the interval $[\text{S4}_{n+1}, \text{S4}.Z_n)$ is topologically incomplete for any class of T_1-spaces. Therefore, there are infinitely many modal logics that are topologically incomplete with respect to Tychonoff spaces. Of course, all these logics are Kripke complete by Segerberg’s Theorem, and hence also topologically complete with respect to classes of topological spaces that are not T_1 (indeed do not satisfy any separation axioms).

Consequently, $\text{S4}.Z_n$, and not S4_{n+1}, is the basic logic of Tychonoff spaces of modal Krull dimension $\leq n$. Moreover, it turns out that a version of the McKinsey-Tarski theorem holds for $\text{S4}.Z_n$. Namely, for $n \geq 1$, we prove that $\text{S4}.Z_n$ is the logic of a countable dense-in-itself ω-resolvable Tychonoff space Z_n of modal Krull dimension n (the case of $n = 0$ is trivial since $\text{S4}.Z_0$ is the logic of any discrete space).

This is technically the most challenging result of the paper. It is proved by identifying a single S4-frame Q_{n+1} whose logic is $\text{S4}.Z_n$, and constructing Z_n so that Q_{n+1} is an interior image of Z_n. Since the depth of Q_{n+1} is $n + 1$, this forces the modal Krull dimension of Z_n to be n; and since there is no bound on the cluster size of Q_{n+1}, this forces Z_n to be ω-resolvable. As Z_n is countable, we obtain that $\text{S4}.Z_n$ has the countable model property with respect to Tychonoff spaces, and this is the best we can do since finite Tychonoff spaces are discrete, and hence $\text{S4}.Z_n$ cannot have the finite model property with respect to Tychonoff spaces. A complete description of extensions of $\text{S4}.Z_n$ that are complete with respect to Tychonoff spaces remains an open problem.

At the end of the paper, we utilize a close connection between S4-algebras and Heyting algebras to develop the Krull dimension for Heyting algebras, and conclude with a brief comparison of modal Krull dimension to other well-known topological dimension functions.

§2. Krull dimension of S4-algebras. We start by recalling that Lewis’ well-known modal system S4 is the least set of formulas in the basic modal language containing the classical tautologies, the formulas

- $\Box p \rightarrow p$,
- $\Box p \rightarrow \Box \Box p$,
- $\Box (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$,

and closed under modus ponens $\varphi, \varphi \rightarrow \psi \vdash \psi$, substitution $\varphi(p_1, \ldots, p_n) \vdash \varphi(\psi_1, \ldots, \psi_n)$, and necessitation $\Box \varphi$.

Algebraic models of S4 are pairs $\mathfrak{A} = (A, \Box)$, where A is a Boolean algebra and $\Box : A \rightarrow A$ is a unary function satisfying:

- $\Box a \leq a$,
- $\Box a \leq \Box \Box a$,
- $\Box (a \land b) = \Box a \land \Box b$,
- $\Box 1 = 1$.

As usual, the dual of \Box is defined as $\Diamond a = \neg \Box \neg a$ for each $a \in A$.

These algebras were introduced by McKinsey and Tarski [37], in the \Diamond signature, under the name of closure algebras. The name is motivated by the fact that \Diamond generalizes the definition of closure in a topological space. They are also known under
the name of topological Boolean algebras [42] and interior algebras [7]. Nowadays it is common to call them S4-algebras.

The modal language is interpreted in an S4-algebra \mathfrak{A} by assigning to each propositional letter an element of \mathfrak{A}, interpreting the classical connectives as the corresponding operations of the Boolean reduct of \mathfrak{A}, and the modal box as the unary function \Box. A modal formula φ is valid in \mathfrak{A}, written $\mathfrak{A} \models \varphi$, provided φ is 1 under all assignments of the letters, and φ is satisfiable in \mathfrak{A} provided $\neg \varphi$ is not valid in \mathfrak{A}. We say that φ is valid whenever φ is valid in every S4-algebra. It is well known that φ is a theorem of S4 iff φ is valid.

Typical examples of S4-algebras come from topological and relational semantics for S4. For a topological space X, let I_X and C_X be interior and closure in X, respectively. When it is clear from the context, we drop the subscripts. It is easy to see that the powerset algebra $\mathfrak{A}_X = (\wp(X), I_X)$ is an S4-algebra, where $\wp(X)$ is the powerset of X. By the McKinsey-Tarski representation theorem [37], every S4-algebra is represented as a subalgebra of \mathfrak{A}_X for some topological space X.

We recall that a Kripke frame is a pair $\mathfrak{F} = (W, R)$, where W is a set and R is a binary relation on W. If R is reflexive and transitive, then \mathfrak{F} is called an S4-frame. It is well known that S4-frames provide relational semantics for S4, hence the name. Given an S4-frame $\mathfrak{F} = (W, R)$, $w \in W$, and $A \subseteq W$, let

- $R[w] = \{v \in W \mid wRv\}$,
- $\Box_R A = \{w \in W \mid R[w] \subseteq A\}$,
- $\Diamond_R A = \{w \in W \mid R[w] \cap A \neq \emptyset\}$.

Then the powerset algebra $\mathfrak{A}_\mathfrak{F} = (\wp(W), \Box_R)$ is an S4-algebra, and every S4-algebra is represented as a subalgebra of $\mathfrak{A}_\mathfrak{F}$ for some S4-frame \mathfrak{F} (see [20, 31, 34]).

Every S4-frame $\mathfrak{F} = (W, R)$ can be thought of as a special topological space as follows. Call $U \subseteq W$ an R-upset if $w \in U$ implies $R[w] \subseteq U$ (R-downsets are defined dually). Let τ_R be the collection of all R-upsets of \mathfrak{F}. Then τ_R is a topology on W in which closure is \Diamond_R and every $w \in W$ has the least open neighborhood $R[w]$. Such topological spaces are called Alexandroff spaces, and can alternatively be described as the topological spaces in which intersections of arbitrary families of opens are open. Conversely, every topological space X has its specialization order R defined by setting xRy iff $x \in C_X(\{y\})$. It is easy to see that R is reflexive and transitive, and so (X, R) is an S4-frame. Moreover, if X is Alexandroff, then opens in X are exactly the R-upsets, and hence S4-frames are in one-to-one correspondence with Alexandroff spaces (see, e.g., [1, p. 238]).

In [20], Esakia put together Stone duality for Boolean algebras with relational representation of S4-algebras to obtain a full duality for S4-algebras. By Esakia duality, the categories of S4-algebras and Esakia spaces are dually equivalent.1

Definition 2.1. A Stone space is a zero-dimensional compact Hausdorff space, and an Esakia space is an S4-frame $\mathfrak{F} = (W, R)$ such that W is equipped with a Stone topology satisfying

- $R[w]$ is closed,
- U clopen implies $\Box_R U$ is clopen.

1 An alternative duality for S4-algebras can be developed by means of descriptive S4-frames (see [27], [10, Chapter 8]).
The dual Esakia space of an S4-algebra \(\mathfrak{A} \) is the pair \(\mathfrak{A}_* = (W, R) \), where \(W \) is the Stone space of \(A \) and

\[
WvRv \iff (\forall a \in A)(\Box a \in w \Rightarrow a \in v).
\]

The dual S4-algebra of an Esakia space \(\mathfrak{F} = (W, R) \) is the S4-algebra \(\mathfrak{F}^* = (\text{Clop}(W), \Box R) \), where \(\text{Clop}(W) \) is the Boolean algebra of clopen subsets of \(W \). Then \(\beta : \mathfrak{A} \to \mathfrak{A}_*^* \) and \(\varepsilon : \mathfrak{F} \to \mathfrak{F}_*^* \) are isomorphisms, where

\[
\beta(a) = \{ w \in W \mid a \in w \} \quad \text{and} \quad \varepsilon(w) = \{ U \in \text{Clop}(W) \mid w \subseteq U \}.
\]

In the finite case, the topology on an Esakia space becomes discrete, and we identify finite Esakia spaces with finite S4-frames.

The modal language is interpreted in an Esakia space \(\mathfrak{F} \) by interpreting the modal formulas in the dual S4-algebra \(\mathfrak{F}^* \). A modal formula \(\varphi \) is defined to be valid (resp. satisfiable) in \(\mathfrak{F} \) exactly when \(\varphi \) is valid (resp. satisfiable) in \(\mathfrak{F}^* \). If \(\varphi \) is valid in \(\mathfrak{F} \), then we write \(\vDash \mathfrak{F} = \varphi \).

Let \(\mathfrak{A} \) be an S4-algebra and \(\mathfrak{A}_* \) be the Esakia space of \(\mathfrak{A} \). As is customary, we adopt topological terminology and call \(a \in \mathfrak{A} \) closed if \(a = \Box a \), open if \(a = \Box a \), dense if \(\Box a = 1 \), and nowhere dense if \(\Box \Box a = 0 \). The following is well known (and easy to see):

- \(a \) is closed iff \(\beta(a) \) is a clopen \(R \)-downset in \(\mathfrak{A}_* \).
- \(a \) is open iff \(\beta(a) \) is a clopen \(R \)-upset in \(\mathfrak{A}_* \).
- \(a \) is dense iff \(\Box R \beta(a) = W \).
- \(a \) is nowhere dense iff \(\Box R \Box R \beta(a) = \emptyset \).

The relativization of \(\mathfrak{A} \) to \(a \in \mathfrak{A} \) is the S4-algebra \(\mathfrak{A}_a \) whose underlying set is the interval \([0, a]\), the meet and join in \(\mathfrak{A}_a \) coincide with those in \(\mathfrak{A} \), the complement of \(b \in \mathfrak{A}_a \) is given by \(a - b \), the interior by \(\Box a \), the closure by \(\Box a \), and the closure by \(\Box a \). If \(\mathfrak{A} = \mathfrak{A}_X \) is the powerset algebra of a topological space \(X \) and \(Y \subseteq X \), then the relativization of \(\mathfrak{A} \) to \(Y \) is the powerset algebra \(\mathfrak{A}_Y \) of the subspace \(Y \) of \(X \).

The relativization \(\mathfrak{A}_a \) is realized dually as the restriction of \(R \) to the clopen subspace \(\beta(a) \) of \(\mathfrak{A}_* \). In order to describe dually a connection between nowhere dense elements and relativizations, we recall the notion of an \(R \)-maximal point.

Definition 2.2. Let \(\mathfrak{F} = (W, R) \) be an S4-frame, \(U \subseteq W \), and \(w \in U \). Then \(w \) is an \(R \)-maximal point of \(U \) provided \(wRv \) and \(u \subseteq U \) imply \(uRw \). We denote the set of \(R \)-maximal points of \(U \) by \(\text{max}_R(U) \). If \(U = W \), then we write \(\text{max}_R(\emptyset) \).

It is well known (see, e.g., [21, Section III.2]) that in an Esakia space \(\mathfrak{F} = (W, R) \), the set \(\text{max}_R(\mathfrak{F}) \) is a closed \(R \)-upset, and for each \(w \in W \) there is \(v \in \text{max}_R(\emptyset) \) such that \(wRv \).

Lemma 2.3. Let \(\mathfrak{A} \) be an S4-algebra and \(\mathfrak{A}_* \) be its Esakia space. Suppose \(a \in \mathfrak{A} \) and \(d \in \mathfrak{A}_a \). Then \(d \) is nowhere dense in \(\mathfrak{A}_a \) iff \(\beta(d) \cap \text{max}_Q \beta(a) = \emptyset \), where \(Q \) is the restriction of \(R \) to \(\beta(a) \).

Proof. Since \(\mathfrak{A}_* \) is an Esakia space and \(\beta(a) \) is clopen in \(\mathfrak{A}_* \), it is well known (see, e.g., [21, Section III.2]) that \(\mathfrak{F} = (\beta(a), Q) \) is also an Esakia space. As \(\text{max}_Q \beta(a) \) is a \(Q \)-upset of \(\beta(a) \), the condition \(\beta(d) \cap \text{max}_Q \beta(a) = \emptyset \)
is equivalent to $\Diamond Q[\beta(d)] \cap \max_Q \beta(a) = \emptyset$, which in turn is equivalent to $\Box Q \Diamond Q[\beta(d)] \cap \max_Q \beta(a) = \emptyset$. Since $\Box Q \Diamond Q[\beta(d)]$ is a Q-upset of $\beta(a)$, the last condition is equivalent to $\Box Q \Diamond Q[\beta(d)] = \emptyset$. Therefore, $\beta(d) \cap \max_Q \beta(a) = \emptyset$ iff $\beta(\Box Q \Diamond Q, d) = \emptyset$, which is equivalent to d being nowhere dense in \mathcal{A}_y.

For an S_4-frame $\mathcal{F} = (W, R)$, we write $w \mathcal{R} v$ provided wRv and $\neg(vRw)$. We call a finite sequence $\{w_i \in W \mid 0 \leq i < n\}$ an R-chain provided $w_i \mathcal{R} w_{i+1}$ for all i, and define the length of the R-chain $\{w_i \in W \mid 0 \leq i < n\}$ to be $n − 1$. Note that we allow the empty R-chain which has length $−1$.

Definition 2.4. Let \mathcal{A} be an S_4-algebra. Define the Krull dimension $k\dim(\mathcal{A})$ of \mathcal{A} as the supremum of the lengths of R-chains in \mathcal{A}_\ast. If the supremum is not finite, then we write $k\dim(\mathcal{A}) = \infty$.

The definition of the length of an R-chain that we have adopted has its roots in algebra. Modal logicians have used a similar concept of depth of a frame $\mathcal{F} = (W, R)$, but in modal logic the length of an R-chain $\{w_i \in W \mid 0 \leq i < n\}$ is typically defined to be n. This notion of length is always one more than the notion of length in algebra. The difference is whether we count the number of R-links in the R-chain (as algebraists do) or the number of points in the R-chain (as modal logicians do). Therefore, the Krull dimension of \mathcal{A} is one less than the depth of \mathcal{A}_\ast (provided the Krull dimension of \mathcal{A} is finite). Thus, $k\dim(\mathcal{A}) = n$ iff depth(\mathcal{A}_\ast) = $n + 1$ for $n \in \omega$.

The following well-known lemma (see, e.g., [10, Proposition 3.44]) measures the bound on the depth of \mathcal{A}_\ast, and hence the bound on the Krull dimension of \mathcal{A}, by means of the modal formulas $bd_\mathcal{A}$.

Lemma 2.5. Let \mathcal{A} be a nontrivial S_4-algebra and $n \geq 1$. Then depth(\mathcal{A}_\ast) $\leq n$ iff $\mathcal{A} \models bd_\mathcal{A}^n$.

It is relatively easy to describe when $k\dim(\mathcal{A}) \leq 0$. Recall that \mathcal{A} is trivial if $0 = 1$, it is discrete if \Box is the identity function, and it is an S_5-algebra (or monadic algebra) if $a \leq \Box \Diamond a$ for all $a \in A$. It is well known that \mathcal{A} is trivial iff $\mathcal{A}_\ast = \emptyset$, that \mathcal{A} is discrete iff R is the identity, and that \mathcal{A} is an S_5-algebra iff R is an equivalence relation.

Lemma 2.6. Let \mathcal{A} be an S_4-algebra.

1. $k\dim(\mathcal{A}) = −1$ iff \mathcal{A} is the trivial algebra.
2. $k\dim(\mathcal{A}) \leq 0$ iff \mathcal{A} is an S_5-algebra.
3. $k\dim(\mathcal{A}) = 0$ iff \mathcal{A} is a nontrivial S_5-algebra.
4. If \mathcal{A} is discrete, then $k\dim(\mathcal{A}) \leq 0$.

Proof. (1) Suppose \mathcal{A} is trivial. Then $\mathcal{A}_\ast = \emptyset$, so the only R-chain in \mathcal{A}_\ast is the empty chain whose length is $−1$. Therefore, $k\dim(\mathcal{A}) = −1$. Conversely, if $k\dim(\mathcal{A}) = −1$, then every R-chain in \mathcal{A}_\ast has length $−1$, and hence is the empty chain. Thus, $\mathcal{A}_\ast = \emptyset$, and so \mathcal{A} is the trivial algebra.

(2) Suppose \mathcal{A} is an S_5-algebra. Then R is an equivalence relation, so there are no $w, v \in \mathcal{A}_\ast$ with $w \mathcal{R} v$. Therefore, every R-chain in \mathcal{A}_\ast has length ≤ 0. Thus, $k\dim(\mathcal{A}) \leq 0$. Conversely, suppose $k\dim(\mathcal{A}) \leq 0$. Then every R-chain in \mathcal{A}_\ast has length ≤ 0. Therefore, if xRy, then it cannot be the case that $\neg(yRx)$. Thus, R is symmetric, and so \mathcal{A} is an S_5-algebra.

(3) This follows from (1) and (2).

(4) This follows from (2) since every discrete algebra is an S_5-algebra.
Remark 2.7.
1. Since not every $S5$-algebra is discrete, the converse of Lemma 2.6(4) does not hold.
2. Suppose \mathcal{A} is a subalgebra of \mathcal{A}_X for some topological space X. If \mathcal{A} consists of clopen subsets of X, then \mathcal{A} is discrete, and hence $k\dim(\mathcal{A}) \leq 0$.

By Lemma 2.6, whether the Krull dimension of \mathcal{A} is ≤ 0 can be determined internally in \mathcal{A}, without accessing \mathcal{A}_X. The goal of the remainder of this section is to develop a pointfree description of the Krull dimension of \mathcal{A} that does not require the Esakia space of \mathcal{A}. In fact, we will prove that $k\dim(\mathcal{A})$ can be defined recursively as follows.

Definition 2.8. The Krull dimension $k\dim(\mathcal{A})$ of an $S4$-algebra \mathcal{A} can be defined as follows:

- $k\dim(\mathcal{A}) = -1$ if \mathcal{A} is the trivial algebra,
- $k\dim(\mathcal{A}) \leq n$ if $k\dim(\mathcal{A}_d) \leq n - 1$ for every nowhere dense $d \in \mathcal{A}$,
- $k\dim(\mathcal{A}) = n$ if $k\dim(\mathcal{A}) \leq n$ and $k\dim(\mathcal{A}) \not< n - 1$,
- $k\dim(\mathcal{A}) = \infty$ if $k\dim(\mathcal{A}) \not< n$ for any $n = -1, 0, 1, 2, \ldots$.

To show that Definitions 2.4 and 2.8 are equivalent requires some preparation. For now we refer to Definition 2.4 as the external Krull dimension and to Definition 2.8 as the internal Krull dimension of \mathcal{A}.

Lemma 2.9. Let \mathcal{A} be an $S4$-algebra, $a \in \mathcal{A}$, and $d \in \mathcal{A}_a$. If d is nowhere dense in \mathcal{A}_a, then d is nowhere dense in \mathcal{A}.

Proof. Set $u = \square \diamond d$. Then

$$d \land u = d \land \square \diamond d \leq a \land \square \diamond d \leq a \land (a \rightarrow \diamond d) = a \land \square (a \rightarrow (a \land \diamond d)) = \square a \land \square d = 0.$$

Therefore, $d \leq -u$. Since u is open, $-u$ is closed, so $\diamond d \leq -u$, giving $u \land \diamond d = 0$. Thus, $u = 0$, and hence d is nowhere dense in \mathcal{A}.

Definition 2.10. Let $n \geq 0$ and $a_1, \ldots, a_{n+1} \in \mathcal{A}$. Define d_0, \ldots, d_{n+1} and e_0, \ldots, e_n recursively as follows, where $0 \leq i \leq n$:

- $d_0 = 1$,
- $e_i = \diamond (\square a_{i+1} \land d_i)$,
- $d_{i+1} = e_i - a_{i+1}$.

Let $n \geq 1$. It is straightforward to see that if we interpret p_i as a_i for $1 \leq i \leq n$, then the formula $-bd_n$ is interpreted as d_n, and the antecedent of bd_n as e_{n-1}.

Lemma 2.11. Let $n \geq 0$. \mathcal{A} be an $S4$-algebra, $a_1, \ldots, a_{n+1} \in \mathcal{A}$, and d_0, \ldots, d_{n+1} and e_0, \ldots, e_n be defined as in Definition 2.10.

1. e_1 is nowhere dense in \mathcal{A}.
2. e_{i+1} is nowhere dense in \mathcal{A}_{e_i} for $1 \leq i < n$.

Proof. (1) Since $e_0 = \square \diamond a_1$ is closed, we have

$$\square \diamond d_1 = \square \diamond (e_0 - a_1) \leq \square (e_0 - \square a_1) = \square e_0 - \square \diamond a_1 \leq e_0 - e_0 = 0.$$

Therefore, d_1 is nowhere dense in \mathcal{A}. This yields that $\square a_2 \land d_1$ is nowhere dense in \mathcal{A}. Thus, $e_1 = \diamond (\square a_2 \land d_1)$ is nowhere dense in \mathcal{A}.
(2) For $1 \leq i < n$, we have $e_{i+1} \leq \Diamond d_{i+1} \leq \Diamond e_i = e_i$, and so $e_{i+1} \in \mathfrak{A}_e$. Since $e_{i+1} = \Diamond(\Box a_{i+2} \land d_{i+1})$, it is sufficient to show $\Box a_{i+2} \land d_{i+1}$ is nowhere dense in \mathfrak{A}_e. Because e_i is closed in \mathfrak{A}, we have $\Diamond e_i a = \Diamond a$ for all $a \leq e_i$. To see that $\Box a_{i+2} \land d_{i+1}$ is nowhere dense in \mathfrak{A}_e, let u be open in \mathfrak{A}_e with $u \leq \Diamond(\Box a_{i+2} \land d_{i+1})$. We set $u' = u \land \Box a_{i+1}$. Then u' is open in \mathfrak{A}_e and $u' \leq a_{i+1}$, so

$$u' \land \Box a_{i+2} \land d_{i+1} = u' \land \Box a_{i+2} \land (e_i - a_{i+1}) \leq u' \land (e_i - a_{i+1}) = u' - a_{i+1} = 0.$$

Therefore, $u' \land \Diamond(\Box a_{i+2} \land d_{i+1}) = 0$. This together with $u' \leq u \leq \Diamond(\Box a_{i+2} \land d_{i+1})$ yields that $u' = 0$. Thus, $u \land \Box a_{i+1} = 0$, and so $u \land \Box a_{i+1} \land d_i = 0$. But $\Box a_{i+1} \land d_i$ is dense in \mathfrak{A}_e, giving that $u = 0$. Consequently, $\Box a_{i+2} \land d_{i+1}$ is nowhere dense in \mathfrak{A}_e. \hfill \Box

The next lemma concerns the internal Krull dimension of an S_4-algebra.

Lemma 2.12. Let \mathfrak{A} be an S_4-algebra.

1. For $a \in \mathfrak{A}$, we have $k\text{dim}(\mathfrak{A}_a) \leq k\text{dim}(\mathfrak{A})$.

2. $k\text{dim}(\mathfrak{A}) \leq n$ iff $k\text{dim}(\mathfrak{A}_d) \leq n - 1$ for every closed nowhere dense $d \in \mathfrak{A}$.

Proof. (1) If $k\text{dim}(\mathfrak{A}) = \infty$, then there is nothing to prove. Suppose $k\text{dim}(\mathfrak{A}) = n$. Let $d \in \mathfrak{A}_a$ be nowhere dense in \mathfrak{A}_a. By Lemma 2.9, d is nowhere dense in \mathfrak{A}. Since $k\text{dim}(\mathfrak{A}) = n$, we see that $k\text{dim}(\mathfrak{A}_d) \leq n - 1$. Because $(\mathfrak{A}_a)_d = \mathfrak{A}_d$, we conclude that $k\text{dim}(\mathfrak{A}_a) \leq n$. Thus, $k\text{dim}(\mathfrak{A}_a) \leq k\text{dim}(\mathfrak{A})$.

(2) One implication is trivial. For the other, let d be nowhere dense in \mathfrak{A}. Then $\Diamond d$ is closed and nowhere dense in \mathfrak{A}. Therefore, $k\text{dim}(\mathfrak{A}_\Diamond d) \leq n - 1$. Thus, (1) yields $k\text{dim}(\mathfrak{A}_d) = k\text{dim}(\mathfrak{A}_\Diamond d)_d) \leq k\text{dim}(\mathfrak{A}_\Diamond d) \leq n - 1$. Consequently, $k\text{dim}(\mathfrak{A}) \leq n$. \hfill \Box

We next recall the notion of an Esakia morphism between Esakia spaces.

Definition 2.13. Suppose $\mathfrak{G} = (W, R)$ and $\mathfrak{G} = (V, Q)$ are Esakia spaces.

1. A map $f : W \rightarrow V$ is a p-morphism provided $R[f(w)] = f[R(w)]$ for all $w \in W$.

2. An Esakia morphism is a continuous p-morphism $f : W \rightarrow V$.

It is well known (see, e.g., [21, Section IV.3]) that Esakia morphisms correspond dually to S_4-algebra homomorphisms: that is, $h : \mathfrak{A} \rightarrow \mathfrak{B}$ is an S_4-algebra homomorphism iff $h_* : \mathfrak{B}_* \rightarrow \mathfrak{A}_*$ is an Esakia morphism, where $h_*(w) = h^{-1}(w)$. Moreover, h is 1-1 (resp. onto) iff h_* is onto (resp. 1-1).

We call an S_4-frame $\mathfrak{G} = (W, R)$ rooted if there is $r \in W$ with $W = R[r]$. We refer to r as a root of \mathfrak{G}. In general, r is not unique. Let $\mathfrak{G} = (W, R)$ be a finite rooted S_4-frame. It is well known [24, 30] that with \mathfrak{G} we can associate the Jankov–Fine formula $\chi_\mathfrak{G}$, which satisfies the following property:

$\chi_\mathfrak{G}$ is satisfiable in an Esakia space \mathfrak{G} iff there is an Esakia space \mathfrak{E} and Esakia morphisms $\mathfrak{G} \leftarrow \mathfrak{E} \rightarrow \mathfrak{G}$ such that f is onto and g is 1-1.

Let $\mathfrak{G}_n = (W_n, R)$ be the n-element chain, where $W_n = \{w_0, \ldots, w_{n-1}\}$ and $w_i R w_j$ iff $j < i$; see Figure 1.

We are ready to characterize the internal Krull dimension of an S_4-algebra.
THEOREM 2.14. Let \mathfrak{A} be a nontrivial S^4-algebra and $n \geq 1$. The following are equivalent:

1. $k\dim(\mathfrak{A}) \leq n - 1$.
2. There does not exist a sequence c_0, \ldots, c_n of nonzero closed elements of \mathfrak{A} such that $c_0 = 1$ and c_{i+1} is nowhere dense in \mathfrak{A}_{c_i} for each $i \in \{0, \ldots, n - 1\}$.
3. $\mathfrak{A} \models \text{bd}_n$.
4. depth(\mathfrak{A}_n) $\leq n$.
5. $\mathfrak{A} \models \neg S_{n+1}$.
6. \mathfrak{S}_{n+1} is not isomorphic to a subalgebra of a homomorphic image of \mathfrak{A}.
7. There do not exist an Esakia space \mathfrak{G} and Esakia morphisms $\mathfrak{G} \twoheadrightarrow \mathfrak{A}$ such that f is onto and g is 1-1.
8. \mathfrak{S}_{n+1} is not isomorphic to a subalgebra of \mathfrak{A}.
9. \mathfrak{S}_{n+1} is not an image of \mathfrak{A} under an onto Esakia morphism.

Proof. (1) \Rightarrow (2): Induction on n. Let $n = 1$. Since \mathfrak{A} is nontrivial, $k\dim(\mathfrak{A}) \leq 0$ yields $k\dim(\mathfrak{A}) = 0$. Therefore, for any nowhere dense d in \mathfrak{A}, we have $k\dim(\mathfrak{A}_d) = -1$, so \mathfrak{A}_d is trivial, and hence $d = 0$. Thus, \mathfrak{A} has no nonzero closed nowhere dense elements, as required. Next let $n > 1$ and $k\dim(\mathfrak{A}) \leq n - 1$. Suppose there is a sequence c_0, \ldots, c_n of nonzero closed elements of \mathfrak{A} such that $c_0 = 1$ and c_{i+1} is nowhere dense in \mathfrak{A}_{c_i} for each $i \in \{0, \ldots, n - 1\}$. Then c_1, \ldots, c_n is a sequence of nonzero closed elements of \mathfrak{A}_{c_1} such that c_{i+1} is nowhere dense in \mathfrak{A}_{c_i} for each $i \in \{1, \ldots, n - 1\}$. By the induction hypothesis, applied to \mathfrak{A}_{c_1}, we have $k\dim(\mathfrak{A}_{c_1}) > n - 1$. Since c_1 is nowhere dense in \mathfrak{A} with $k\dim(\mathfrak{A}_{c_1}) > n - 1$, we conclude that $k\dim(\mathfrak{A}) > n$. This contradicts (1).

(2) \Rightarrow (3): If $\mathfrak{A} \not\models \text{bd}_n$, then there exist $a_1, \ldots, a_n \in \mathfrak{A}$ such that $d_n \neq 0$, where d_n is defined as in Definition 2.10. Put $a_{n+1} = 1$ and let e_0, \ldots, e_n be defined as in Definition 2.10. Observe that

$$e_n = \Diamond(\Box a_{n+1} \land d_n) = \Diamond(\Box 1 \land d_n) = \Diamond d_n \geq d_n \neq 0.$$

Set $c_0 = 1$ and $c_i = e_i$ for $1 \leq i \leq n$. Then c_0, \ldots, c_n is a sequence of nonzero closed elements in \mathfrak{A} such that $c_0 = 1$ and, by Lemma 2.11, c_{i+1} is nowhere dense in \mathfrak{A}_{c_i} for each $i \in \{0, \ldots, n - 1\}$.

(3) \Rightarrow (1): Suppose that $k\dim(\mathfrak{A}) > n - 1$. We define a decreasing sequence b_0, \ldots, b_n of closed elements in \mathfrak{A} such that b_{i+1} is nowhere dense in \mathfrak{A}_{b_i} and $k\dim(\mathfrak{A}_{b_{i+1}}) > (n - 1) - (i + 1)$. Set $b_0 = 1$. If b_i is already defined with $k\dim(\mathfrak{A}_{b_i}) > (n - 1) - i$, then by Lemma 2.12(2), there is a closed nowhere dense $b_{i+1} \in \mathfrak{A}_{b_i}$ such that $k\dim(\mathfrak{A}_{b_{i+1}}) > (n - 1) - (i + 1)$. Noting that $k\dim(\mathfrak{A}_{b_i}) > (n - 1) - n = -1$, it follows that \mathfrak{A}_{b_n} is not trivial and hence $b_n \neq 0$.

Let $a_i = -b_i$ for $1 \leq i \leq n$. Let d_0, \ldots, d_n be defined from a_1, \ldots, a_n as in Definition 2.10. We show that $b_i = d_i$ for each $0 \leq i \leq n$. If $i = 0$, then $b_0 = 1 = d_0$. Theorem 2.14.
Next suppose that $b_i = d_i$ for $0 \leq i < n$, and show that $b_{i+1} = d_{i+1}$. Since a_{i+1} is open in \mathfrak{A}, b_{i+1} is nowhere dense in \mathfrak{A}_{b_i}, and b_i is closed in \mathfrak{A}, we have

$$
b_{i+1} = b_i \land b_{i+1} = \Diamond(b_i - b_{i+1}) \land b_{i+1} = \Diamond(b_i - b_{i+1}) - (-b_{i+1}) = \Diamond(a_{i+1} \land b_i) - a_{i+1} = \Diamond(\Box a_{i+1} \land d_i) - a_{i+1} = d_{i+1}.
$$

Thus, $d_n = b_n \neq 0$. Since $\neg b_d_n$ is interpreted in \mathfrak{A} as d_n, we conclude that \mathfrak{A} refutes b_d_n.

(3) \Leftrightarrow (4) \Leftrightarrow (8): This is well known: see Lemma 2.5 and [35, Lemma 2].

(5) \Leftrightarrow (7): This is the Jankov–Fine Theorem.

(6) \Leftrightarrow (7): This follows from Esakia duality.

(6) \Rightarrow (8): This is obvious.

(8) \Rightarrow (9): This follows from Esakia duality.

(4) \Rightarrow (7): This is obvious since 1-1 and onto Esakia morphisms do not increase the depth.

Remark 2.15. Theorem 2.14 can be extended to include the trivial algebra by letting $b_d_0 = \bot$.

As an immediate consequence, we obtain:

Corollary 2.16. The internal and external Krull dimensions of an S_4-algebra coincide, and so Definitions 2.4 and 2.8 are equivalent.

§3. Modal Krull dimension of topological spaces. As we pointed out in the introduction, it is inadequate to define the Krull dimension of a topological space X as the supremum of the lengths of finite chains in the specialization order of X. Section 2 suggests that a more adequate definition would result by working with the Krull dimension of \mathfrak{A}_X.

Definition 3.1. Define the modal Krull dimension $\text{mdim}(X)$ of a topological space X as the Krull dimension of \mathfrak{A}_X; that is, $\text{mdim}(X) = \text{kdim}(\mathfrak{A}_X)$.

Remark 3.2. It is immediate from Corollary 2.16 that the modal Krull dimension of a topological space X can be defined recursively as follows:

$$
\text{mdim}(X) = -1 \quad \text{if} \quad X = \emptyset,
$$

$$
\text{mdim}(X) \leq n \quad \text{if} \quad \text{mdim}(D) \leq n - 1 \quad \text{for every nowhere dense subset } D \text{ of } X,
$$

$$
\text{mdim}(X) = n \quad \text{if} \quad \text{mdim}(X) \leq n \quad \text{and} \quad \text{mdim}(X) \nleq n - 1,
$$

$$
\text{mdim}(X) = \infty \quad \text{if} \quad \text{mdim}(X) \nleq n \quad \text{for any } n = -1, 0, 1, 2, \ldots.
$$

Lemma 3.3. If Y is a subspace of X, then $\text{mdim}(Y) \leq \text{mdim}(X)$.

Proof. By Lemma 2.12(1), $\text{mdim}(Y) = \text{kdim}(\mathfrak{A}_Y) \leq \text{kdim}(\mathfrak{A}_X) = \text{mdim}(X)$. ⊤

Lemma 3.4. Let X be a topological space. Then $\text{mdim}(X) \leq n$ iff for every closed nowhere dense subset D of X we have $\text{mdim}(D) \leq n - 1$.

Proof. Apply Lemma 2.12(2). ⊤

To obtain an analogue of Theorem 2.14 for modal Krull dimension, we require an analogue of the Jankov–Fine theorem for topological spaces. Let $\mathfrak{F} = (W, R)$ be a finite rooted S_4-frame and choose any enumeration of $W = \{w_i \mid i < n\}$ in which w_0 is a root of \mathfrak{F}. We recall [24] that the Jankov–Fine formula $Z_{\mathfrak{F}}$ associated with \mathfrak{F} is the conjunction of the following formulas:

1. p_0,
2. $\Box(p_0 \lor \cdots \lor p_{n-1})$.

Then $\square(p_i \rightarrow \neg p_j)$ for distinct $i, j < n$.
4. $\square(p_i \rightarrow \Diamond p_j)$ whenever $w_j R w_j$, and
5. $\square(p_i \rightarrow \neg \Diamond p_j)$ whenever $\neg(w_i R w_j)$.

The modal language is interpreted in a topological space X by interpreting it in the powerset algebra \mathfrak{A}_X. A modal formula φ is defined to be valid (resp. satisfiable) in X exactly when φ is valid (resp. satisfiable) in \mathfrak{A}_X. If φ is valid in X, then we write $X \models \varphi$. For a given valuation v and $x \in X$, we write $x \vDash v$, or $x \vDash \varphi$ for short, if φ is true at x under v.

An **interior map** between topological spaces X, Y is a continuous open map $f : X \rightarrow Y$. It is well known (see, e.g., [42, Section III.3]) that the following are equivalent:

- $f : X \rightarrow Y$ is interior.
- $f^{-1}(I_Y) = I_X f^{-1}(A)$ for all $A \subseteq Y$.
- $f^{-1}(C_Y A) = C_X f^{-1}(A)$ for all $A \subseteq Y$.

We call (X, f) an interior image of an open subspace U of X, say via $f : U \rightarrow \mathfrak{F}$. Let p_i be interpreted as $A_i := f^{-1}(w_i)$ when $i < n$ and as $A_i := \emptyset$ when $i \geq n$. Since $A_0 = f^{-1}(w_0) \neq \emptyset$, there is $x \in U$ with $x \vDash p_0$. We show that $x \vDash \chi_{\mathfrak{F}}$. As $A_0 \cup \ldots \cup A_{n-1} = U$ and $x \in U$, we see that $x \vDash \square(p_0 \supseteq \ldots \supseteq p_{n-1})$.

Suppose $i \neq j$. Because $A_i \cap A_j = \emptyset$, we see that $x \vDash \square(p_i \rightarrow \neg p_j)$. Suppose $w_i R w_j$. Then $w_i \in \Diamond_R \{ w_j \}$, so since f is interior, $A_i = f^{-1}(w_i) \subseteq f^{-1}(\Diamond_R \{ w_j \}) = C_U f^{-1}(w_j) = C_U A_j \subseteq C A_j$, where C denotes closure in X and C_U denotes closure in the subspace U. Therefore, $x \vDash \square(p_i \rightarrow \neg p_j)$. Finally, suppose $\neg(w_i R w_j)$. Then $\{ w_i \} \cap \Diamond_R \{ w_j \} = \emptyset$. As f is interior, this yields $f^{-1}(w_i) \cap C_U f^{-1}(w_j) = \emptyset$. Thus, $A_i \cap C U A_j = \emptyset$. But $A_i \cap C U A_j = A_i \cap U \cap C A_j = A_i \cap C A_j$. So $A_i \cap C A_j = \emptyset$, which gives $x \vDash \square(p_i \rightarrow \neg p_j)$. Consequently, $\chi_{\mathfrak{F}}$ is satisfiable at x in X.

Conversely suppose that $\chi_{\mathfrak{F}}$ is satisfied at some $x \in X$ by interpreting p_i as $A_i \subseteq X$. Set

$$U = \bigcup_{i< n} A_i \cap \bigcap_{0\leq i \neq j < n} \mathbf{1}((X \setminus A_i) \cup (X \setminus A_j))$$

$$\cap \bigcap_{w_i R w_j} \mathbf{1}((X \setminus A_i) \cup C A_j) \cap \bigcap_{\neg(w_i R w_j)} \mathbf{1}((X \setminus A_i) \cup (X \setminus C A_j)).$$

Then U is open and nonempty since $x \in A_0 \cap U$. Define $f : U \rightarrow \mathfrak{F}$ by setting $f(y) = w_i$ provided $y \in A_i$ (for $i < n$). To see that f is well defined, let $y \in A_i \cap A_j$. Then $y \notin X \setminus (C_u A_i \cap A_j) = \mathbf{1}((X \setminus A_i) \cup (X \setminus A_j))$. Therefore, it follows from the definition of U that $i = j$, and so f is well defined.

To see that f is onto, since w_0 is a root of \mathfrak{F}, we have $w_0 R w_j$, and so $U \subseteq (X \setminus A_0) \cup C A_j$ for all $j < n$. Recalling that $x \in A_0 \cap U$, we get $x \in C A_j$ for each $j < n$. As U is open and contains x, we have $U \cap A_j \neq \emptyset$ for each $j < n$. Thus, f is onto.

Finally, to see that f is interior, it is sufficient to show that $f^{-1}(\Diamond_R \{ w_j \}) = C_U f^{-1}(w_j)$ for each $j < n$. Suppose $y \in f^{-1}(\Diamond_R \{ w_j \})$. Then $f(y) R w_j$. Assuming
\[f(y) = w_i, \] we have \(y \in A_i \) and \(y \in (X \setminus A_i) \cup CA_i \), giving \(y \in CA_j \). So \(y \in U \cap CA_j = CUA_j = CUf^{-1}(w_j) \). Conversely, suppose \(y \notin f^{-1}(\bigcap_R \{w_j\}) \). Then \(\neg(f(y) \cap \text{w}_j) \). Assuming \(f(y) = w_i \), we have \(y \in A_i \) and \(y \in (X \setminus A_i) \cup (X \setminus CA_j) \), yielding \(y \in X \setminus CA_j \). Thus, \(y \notin CA_j \), and hence \(y \notin CUA_j = CUf^{-1}(\neg w_j) \). Consequently, \(f \) is interior, and hence \(\mathfrak{g} \) is an interior image of an open subspace of \(X \).

The next theorem is an analogue of Theorem 2.14 for modal Krull dimension, and is the main result of this section.

Theorem 3.6. Let \(X \neq \emptyset \), \(n \geq 1 \), and \(\mathfrak{g}_{n+1} \) be the \((n + 1)\)-element chain. The following are equivalent:

1. \(\text{mdim}(X) \leq n - 1 \).
2. There does not exist a sequence \(F_0, \ldots, F_n \) of nonempty closed subsets of \(X \) such that \(F_0 = X \) and \(F_{i+1} \) is nowhere dense in \(F_i \) for each \(i \in \{0, \ldots, n - 1\} \).
3. \(X \models \neg \text{bd}_n \).
4. \(X \models \neg X_{g_{n+1}} \).
5. \(\mathfrak{g}_{n+1} \) is not an interior image of any open subspace of \(X \).
6. \(\mathfrak{g}_{n+1} \) is not an interior image of \(X \).

Proof. (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (3) \(\Leftrightarrow \) (4): This follows from the equivalence of Items (1), (2), (3), and (5) of Theorem 2.14, Definition 3.1, the correspondence between relativizations and subspaces, and the fact that \(X \) and \(\mathfrak{a}_X \) validate exactly the same modal formulas.

(4) \(\Leftrightarrow \) (5): We have \(X \models \neg X_{g_{n+1}} \) iff \(X_{g_{n+1}} \) is not satisfiable in \(X \). This, by Lemma 3.5, is equivalent to \(\mathfrak{g}_{n+1} \) not being an interior image of any open subspace of \(X \).

(5) \(\Rightarrow \) (6): This is obvious.

(6) \(\Rightarrow \) (2): Suppose there is a sequence \(F_0, \ldots, F_n \) of nonempty closed subsets of \(X \) such that \(F_0 = X \) and \(F_{i+1} \) is nowhere dense in \(F_i \) for each \(i \in \{0, \ldots, n - 1\} \). We show that \(\mathfrak{g}_{n+1} \) is an interior image of \(X \). Let \(F_{n+1} = \emptyset \). Define \(f : X \to W_{n+1} \) by \(f(x) = w_i \) if \(x \in F_i \setminus F_{i+1} \) for \(i \leq n \). Clearly \(f \) is well-defined and onto since \(\{F_i \setminus F_{i+1} \mid i \leq n\} \) is a partition of \(X \). Moreover, \(C\left(F_i \setminus F_{i+1}\right) = F_i \) since \(F_i \) is closed in \(X \) and \(F_{i+1} \) is nowhere dense in \(F_i \) for \(i \leq n \). Thus,

\[
\begin{align*}
\text{supp} \bigcap_\{w_i\} &= \bigcup_{\{F_i \setminus F_{i+1}\}} F_i = C\left(F_i \setminus F_{i+1}\right) = Cf^{-1}(w_i).
\end{align*}
\]

Consequently, \(f \) is an onto interior map, and hence \(\mathfrak{g}_{n+1} \) is an interior image of \(X \).

Section 7 contains a comparison of modal Krull dimension with other well-known topological dimension functions. We conclude this section by calculating the modal Krull dimension of some well-known spaces.

Example 3.7.

1. It follows from the celebrated McKinsey-Tarski theorem [37, 42] that every finite rooted \(S_4 \)-frame is an interior image of any dense-in-itself metric space. Let \(\mathbb{R}, \mathbb{C}, \) and \(\mathbb{Q} \) denote the real line, the Cantor discontinuum, and the rational line, respectively. It follows from Theorem 3.6 that each of \(\mathbb{R}, \mathbb{C}, \mathbb{Q} \) has infinite modal Krull dimension.

2. We view ordinals as topological spaces equipped with the interval topology induced by the well order. Let \(n \geq 1 \). It is well known that the \(n \)-element chain
is an interior image of the ordinal ω^n, and that the $(n + 1)$-element chain is not an interior image of ω^n. By Theorem 3.6, $\text{mdim}(\omega^n) = n - 1$.

3. A reasoning similar to (2) yields that $\text{mdim}(\omega^n + 1) = n$ and $\text{mdim}(\omega^\omega + 1) = \infty$. Since these ordinals are compact, and hence Stone spaces, we obtain the examples alluded to in the introduction.

4. Let X be a nonempty Alexandroff space and let $n \geq 1$. By Theorem 3.6, $\text{mdim}(X) \leq n - 1$ iff $X \models \text{bd}_n$. This together with the finite model property of S_n, yields that S_n is the logic of the class of all nonempty Alexandroff spaces of modal Krull dimension $\leq n - 1$. Since every finite space is Alexandroff, S_n is also the logic of the class of all nonempty finite spaces of modal Krull dimension $\leq n - 1$.

For T_1-spaces there is an alternate description of modal Krull dimension, which is based on an appropriate generalization of the concept of a nodec space. This will be discussed in the next section.

§4. n-discrete algebras, n-nodec spaces, and n-Zeman formulas. In this section we generalize the notion of a discrete S_4-algebra to that of an n-discrete S_4-algebra. The topological counterpart of this generalization yields a generalization of the concept of a nodec space. As was shown in [3], nodec spaces are modally definable by the Zeman formula. We introduce n-Zeman formulas and show that they define n-discrete S_4-algebras and n-nodec spaces. We prove that a T_1-space X is n-nodec iff $\text{mdim}(X) \leq n$. From this we derive that there are infinitely many modal logics incomplete with respect to any class of T_1-spaces.

Definition 4.1. Let \mathfrak{A} be a nontrivial S_4-algebra.

1. Call \mathfrak{A} 0-discrete if \mathfrak{A} is discrete.
2. For $n \geq 1$, call \mathfrak{A} n-discrete if \mathfrak{A}_a is $(n - 1)$-discrete for each nowhere dense $a \in \mathfrak{A}$.

Remark 4.2. This definition can be extended to all S_4-algebras by letting the trivial S_4-algebra to be (-1)-discrete.

In order to axiomatize n-discrete S_4-algebras, we generalize the Zeman formula

$$\text{zem} = \Box \Diamond \Box p \rightarrow (p \rightarrow \Box p)$$

as follows.

Definition 4.3. Set $\text{bd}_0 = \bot$, and for $n \geq 0$, define

$$\text{zem}_n = p_{n+1} \rightarrow \Box (\text{bd}_n \lor p_{n+1}).$$

We call zem_n the n-Zeman formula, and we call

$$\text{S}_n \text{Z}_n := \text{S}_4 + \text{zem}_n$$

the n-Zeman logic.

Remark 4.4.

1. An easy induction shows that bd_n and zem_n are Sahlqvist formulas (see, e.g., [2, Definition 3.1]). Therefore, S_n and $\text{S}_n \text{Z}_n$ are Sahlqvist logics. Thus, S_n and $\text{S}_n \text{Z}_n$ are canonical, and hence Kripke complete (see, e.g., [10, Section 10.3] or [6, Sections 3.6 and 5.6]).
2. It is easy to see that zern_0 is equivalent to $p \rightarrow \Box p$, and hence $\text{S}4.\text{Z}_0$ is the logic of (nontrivial) discrete $\text{S}4$-algebras. We will see shortly that zern_1 is equivalent to zern, and hence $\text{S}4.\text{Z}_1$ is the Zeman logic $\text{S}4.\text{Z} := \text{S}4 + \text{zern}$.

Theorem 4.5. Let \mathfrak{A} be a nontrivial $\text{S}4$-algebra and $n \geq 0$. The following are equivalent:

1. \mathfrak{A} is n-discrete.
2. $\mathfrak{A} \models \text{zern}_n$.
3. There is no chain $w_{n+1} R w_n \bar{R} w_{n-1} \bar{R} \cdots \bar{R} w_1 \bar{R} w_0$ in \mathfrak{A}_n satisfying $w_{n+1} \neq w_n$.

Proof. (1) \Rightarrow (3): Suppose that \mathfrak{A} is n-discrete. If there is a chain

$$w_{n+1} R w_n \bar{R} w_{n-1} \bar{R} \cdots \bar{R} w_1 \bar{R} w_0$$

in \mathfrak{A}_n satisfying $w_{n+1} \neq w_n$, then we build inductively a decreasing sequence of clopen R-downsets A_0, \ldots, A_n of \mathfrak{A}_n such that $w_1 \notin A_{i+1}$, $w_{i+1} \in A_{i+1}$, and $A_{i+1} \cap \text{max}_R(A_i) = \emptyset$ for $0 \leq i < n - 1$. Let $A_0 = W$. Suppose A_i is already built. Since $w_i \in R^{-1} w_{i+1}$, we have $w_i+1 \notin R[\text{max}_R(A_i) \cup \{ w_i \}]$. Now $\text{max}_R(A_i) \cup \{ w_i \}$ is closed, and it follows that $R[\text{max}_R(A_i) \cup \{ w_i \}]$ is closed as well. So $W \setminus R[\text{max}_R(A_i) \cup \{ w_i \}]$ is open and contains w_{n+1}. Therefore, there is a clopen R-downset A_{i+1} such that $A_{i+1} \subseteq A_i$, $w_{i+1} \in A_{i+1}$, and $A_{i+1} \cap R[\text{max}_R(A_i) \cup \{ w_i \}] = \emptyset$. Let $a_0, \ldots, a_n \in \mathfrak{A}$ be such that $\beta(a_i) = A_i$ for $i < n$. Since $A_{i+1} \cap \text{max}_R(A_i) = \emptyset$, Lemma 2.3 yields that a_{i+1} is nowhere dense in \mathfrak{A}_{a_i} for $i < n$. Because \mathfrak{A} is n-discrete, \mathfrak{A}_{a_i} is $(n-i)$-discrete for each $i \leq n$. So \mathfrak{A}_{a_n} is 0-discrete, and hence discrete. We show this is a contradiction. Since $w_n \neq w_{n+1}$, there is clopen A_{n+1} of \mathfrak{A}_n such that $w_n \notin A_{n+1}$ and $w_{n+1} \in A_{n+1}$. Set $B = A_n \setminus A_{n+1}$. Then $w_{n+1} R w_n \in B$, so $w_{n+1} \in \Diamond_R B \setminus B$. Let $b \in \mathfrak{A}$ be such that $\beta(b) = B$. Then $b \in \mathfrak{A}_{a_n}$, and since $\Diamond_R B \neq B$, we have $\Diamond b \neq b$ in \mathfrak{A}_{a_n}, contradicting that \mathfrak{A}_{a_n} is discrete.

(3) \Rightarrow (1): Suppose that \mathfrak{A} is not n-discrete. Then there is a sequence of closed elements $a_0, \ldots, a_n \in \mathfrak{A}$ such that $a_0 = 1$, a_{i+1} is nowhere dense in \mathfrak{A}_{a_i} for $i < n$, and \mathfrak{A}_{a_n} is not discrete. Let $A_i := \beta(a_i)$ for $i \leq n$. Clearly each A_i is a clopen R-downset, and Lemma 2.3 gives $A_{i+1} \cap \text{max}_R(A_i) = \emptyset$ for $i < n$. As \mathfrak{A}_{a_n} is not discrete, there is $a \in \mathfrak{A}_{a_n}$ such that $a \neq \Diamond a$. Therefore, there is $v \in \Diamond_R a$ such that $v R a$. Thus, there is $v \in \beta(a)$ such that $w R v$. Clearly w, v are distinct. We build w_0, \ldots, w_{n+1} as follows. Set $w_{n+1} := w$ and $w_0 := v$. As $a \leq a_n$, we see that $w_n \in A_n$. Suppose w_i has already been chosen in A_i for $1 \leq i \leq n$. Since $A_i \subseteq A_{i-1}$, there is $w_{i-1} \in \text{max}_R(A_{i-1})$ such that $w_i R w_{i-1}$. As a_i is nowhere dense in $\mathfrak{A}_{a_{i-1}}$, we have $w_i \notin \text{max}_R(A_{i-1})$, so $w_i R w_{i-1}$. Therefore,

$$w_{n+1} R w_n \bar{R} w_{n-1} \bar{R} \cdots \bar{R} w_1 \bar{R} w_0$$

is a chain in \mathfrak{A}_n satisfying $w_{n+1} \neq w_n$.

(2) \iff (3): This follows directly from standard Sahlqvist theory (see, e.g., [6, Sections 3.6 and 5.6]).

Theorem 4.6.

1. $\text{S}4_{n+1} \subseteq \text{S}4.\text{Z}_n$ for $n \geq 0$.
2. $\text{S}4.\text{Z}_n \subseteq \text{S}4_n$ for $n \geq 1$.
3. $\text{S}4 = \bigcap_{n \geq 1} \text{S}4_n = \bigcap_{n \geq 0} \text{S}4.\text{Z}_n$.
4. $\text{S}4.\text{Z}_n$ is canonical for $n \geq 0$.
5. $\text{S}4.\text{Z}_n$ has the finite model property for $n \geq 0$.
6. $\text{S}4.\text{Z}_1 = \text{S}4.\text{Z}$.
Proof. (1) Suppose $\mathfrak{A} \vDash S4.\mathcal{Z}_n$. It follows from Theorem 4.5 that $\text{depth}(\mathfrak{A}_*) \leq n + 1$. Therefore, by Theorem 2.14, $\mathfrak{A} \vDash S_{4n+1}$. Thus, $S_{4n+1} \subseteq S4.\mathcal{Z}_n$. To see that the inclusion is proper, consider the finite $S4$-frame \mathfrak{F}_2 depicted in Figure 2. Since $\text{depth}(\mathfrak{F}_2) = n + 1$, we see that $\mathfrak{F}_2 \not\vDash S_{4n+1}$. On the other hand, as $r_2 \not= r_1$, Theorem 4.5 implies $\mathfrak{F}_2 \not\vDash S4.\mathcal{Z}_n$.

(2) Suppose $\mathfrak{A} \vDash S_{4n}$. Then $\text{depth}(\mathfrak{A}_*) \leq n$ by Theorem 2.14. Therefore, there is no chain $w_n \bar{R} w_{n-1} \bar{R} \cdots \bar{R} w_1 \bar{R} w_0$ in \mathfrak{A}_*. Thus, Theorem 4.5 yields that $\mathfrak{A} \vDash S4.\mathcal{Z}_n$, and hence $S_{4n} \subseteq S4.\mathcal{Z}_n$. To see the inclusion is proper, consider \mathfrak{F}_1 depicted in Figure 2. Since $\text{depth}(\mathfrak{F}_1) = n + 1$, we see that $\mathfrak{F}_1 \not\vDash S_{4n}$. On the other hand, it follows from Theorem 4.5 that $\mathfrak{F}_1 \not\vDash S4.\mathcal{Z}_n$.

(3) Since $S4$ has the finite model property, it follows that $S4 = \bigcap_{n \geq 1} S_{4n}$. Thus, by (2),

$$S4 = \bigcap_{n \geq 1} S_{4n} \supseteq \bigcap_{n \geq 1} S_{4.\mathcal{Z}_n} = \bigcap_{n \geq 0} S_{4.\mathcal{Z}_n} \supseteq S4.$$

(4) Since $S_{4.\mathcal{Z}_n}$ is a Sahlqvist logic, it is canonical (see, e.g., [6, 10]).

(5) Follows from (1) since every normal extension of S_{4n+1} (for $n \geq 0$) has the finite model property.

(6) By (5) and Theorem 4.5, $S_{4.\mathcal{Z}_1}$ is the logic of finite $S4$-frames in which there is no chain $w_2 \bar{R} w_1 \bar{R} w_0$ satisfying $w_2 \not= w_1$. By [43, Theorem II.7.5], the same is true of $S4.\mathcal{Z}$. Thus, $S_{4.\mathcal{Z}_1} = S4.\mathcal{Z}$.}

As we just saw, $S_{4.\mathcal{Z}_1} = S4.\mathcal{Z}$. By [3, Theorem 4.6], $S4.\mathcal{Z}$ is the logic of nodec spaces, where we recall that a space is nodec if every nowhere dense set is closed. Since a space is nodec iff every nowhere dense set is closed and discrete (see, e.g., [14]), the next definition generalizes the notion of a nodec space.

Definition 4.7. We call a nonempty topological space X n-nodec provided \mathfrak{A}_X is n-discrete.

Remark 4.8. Suppose X is nonempty.

1. X is 0-nodec iff X is discrete.
2. X is 1-nodec iff X is nodec.
3. For $n \geq 1$, X is n-nodec iff every nowhere dense subset of X is $(n-1)$-nodec.
4. X is n-nodec iff $X \vDash \text{zem}_n$.

\[\begin{array}{c}
\bullet & w_0 \\
\bullet & w_1 \\
\vdots \\
\bullet & w_{n-1} \\
\end{array}
\]

\[r_1 \cdots r_m\]

Figure 2. The S_{4n+1}-frame \mathfrak{F}_m.
THEOREM 4.9. Let X be a nonempty T_1-space and $n \in \omega$. Then $\text{mdim}(X) \leq n$ iff X is n-nodec.

Proof. By induction on n. First suppose $n = 0$. If X is discrete, then the only nowhere dense subset of X is \emptyset. Therefore, $\text{mdim}(X) \leq 0$. Conversely, if X is not discrete, then there is $x \in X$ such that $\{x\}$ is not open, so $I\{x\} = \emptyset$. Since X is T_1, we see that $IC\{x\} = I\{x\} = \emptyset$, so $\{x\}$ is nowhere dense. Thus, $\text{mdim}(X) > 0$.

Next suppose that for every T_1-space Y, we have Y is n-nodec iff $\text{mdim}(Y) \leq n$. We show that X is $(n+1)$-nodec iff $\text{mdim}(X) \leq n + 1$. We have $\text{mdim}(X) \leq n + 1$ iff $\text{mdim}(Y) \leq n$ for every nowhere dense subspace Y of X. Since a subspace of a T_1-space is a T_1-space, by inductive hypothesis, this is equivalent to every nowhere dense subspace Y of X being n-nodec. But this is equivalent to X being $(n+1)$-nodec.

COROLLARY 4.10. For $n \geq 0$, the interval $[S_{4n+1}, S_{4n}Z_n)$ is infinite and no logic in $[S_{4n+1}, S_{4n}Z_n)$ is the logic of any class of T_1-spaces.

Proof. To see that $[S_{4n+1}, S_{4n}Z_n)$ is infinite, for $m \geq 2$, let L_m be the logic of \mathfrak{S}_m^n depicted in Figure 2. Since \mathfrak{S}_m^n is a p-morphic image of \mathfrak{S}_{m+1}^n and \mathfrak{S}_{m+1}^n is not a p-morphic image of a generated subframe of \mathfrak{S}_m^n, we have $\neg \mathfrak{S}_m^n \subseteq L_m \setminus L_{m+1}$, and hence

$$S_{4n+1} \subseteq \cdots \subseteq L_{m+1} \cap S_{4n}Z_n \subseteq L_m \cap S_{4n}Z_n \subseteq \cdots \subseteq L_2 \cap S_{4n}Z_n \subseteq S_{4n}Z_n.$$

Next suppose $L \in [S_{4n+1}, S_{4n}Z_n)$ and \mathcal{K} is a class of T_1-spaces. If L is the logic of \mathcal{K}, then for each $X \in \mathcal{K}$, we have $X \models L$. Therefore, since $S_{4n+1} \subseteq L$, we have $X \models \text{bd}_{n+1}$. By Theorem 3.6, $\text{mdim}(X) \leq n$. As X is T_1, by Theorem 4.9, X is n-nodec. By Remark 4.8, $X \models \text{zmd}_m$. Thus, $S_{4n}Z_n \subseteq L$, a contradiction. Consequently, L is not the logic of any class of T_1-spaces.

REMARK 4.11. By Segerberg’s Theorem, each $L \in [S_{4n+1}, S_{4n}Z_n)$ is Kripke complete, hence topologically complete. However, the completeness is with respect to spaces that are not T_1.

§5. Topological completeness of $S_{4n}Z_n$. The McKinsey–Tarski theorem not only shows that S_4 is the basic modal logic associated with topological spaces, but also that S_4 is the logic of ‘nice’ spaces; i.e., any dense-in-itself metric space. Analogously, S_{4n+1} is the basic logic of topological spaces of modal Krull dimension $n \geq 0$. However, Corollary 4.10 shows that it cannot be the logic of ‘nice’ spaces. In fact, it follows from Theorem 4.9 that $S_{4n}Z_n$ is the basic logic of T_1-spaces of modal Krull dimension n. Thus, it is natural to seek a version of the McKinsey-Tarski theorem for $S_{4n}Z_n$ where $n \geq 0$.

Since $S_{4}Z_0 \models p \rightarrow \Box p$, it is clear that $S_{4}Z_0$ is the logic of any nonempty discrete space. On the other hand, it follows from the result of [5] mentioned in the introduction that $S_{4}Z_0$ is not the logic of any metric space for $n \geq 1$. In fact, if the logic L of a metric space is contained in the logic M of the two-element cluster, then since $S_4 \nsubseteq M$, we must have $L = S_4$.

The goal of this section is to construct for each $n \geq 1$ a countable dense-in-itself ω-resolvable Tychonoff space Z_n of modal Krull dimension n such that $S_{4n}Z_n$ is the logic of Z_n. This construction is technically the most challenging part of the paper. Since finite Tychonoff spaces are discrete, $S_{4n}Z_n$ does not have the finite
model property with respect to Tychonoff spaces for \(n \geq 1 \). On the other hand, because \(Z_n \) is countable, we obtain that \(S_4.Z_n \) has the countable model property with respect to Tychonoff spaces. Since countable Tychonoff spaces are normal (see, e.g., [19, Theorem 1.5.17]), we obtain that \(S_4.Z_n \) has the countable model property with respect to normal spaces.

Our technique is to identify a single frame \(Q_{n+1} \) whose logic is \(S_4.Z_n \) and utilize \(Q_{n+1} \) to guide the construction of \(Z_n \) as follows. The depth of \(Q_{n+1} \) indicates the necessary modal Krull dimension of \(Z_n \). Thus, since \(Z_n \) is Tychonoff and hence \(T_1 \), Theorem 4.9 yields that \(S_4.Z_n \) is sound with respect to \(Z_n \). In addition, we construct \(Z_n \) so that \(Q_{n+1} \) is an interior image of \(Z_n \). Consequently, \(S_4.Z_n \) is complete with respect to \(Z_n \). Since there is no restriction on the cluster size of \(Q_{n+1} \) (except at the root), for such an interior map to exist, \(Z_n \) needs to be \(\omega \)-resolvable. Also, since there is no restriction on the branching in \(Q_{n+1} \) (except at the maximal points), we build \(Z_n \) step-by-step, utilizing the construction of adjunction spaces (for the simplest case see Figure 4).

The basic building block for the construction is a countable dense-in-itself \(\omega \)-resolvable Tychonoff nodec space \(Y \) such that the remainder \(Y^* = \beta Y \setminus Y \) contains a subspace homeomorphic to \(\beta \omega \) which consists entirely of remote points of \(Y \).

In Section 5.1 we explain why such a building block \(Y \) exists, in Section 5.2 we build the spaces \(Z_n \) from \(Y \), and in Section 5.3 we prove that \(S_4.Z_n \) is the logic of \(Z_n \).

5.1. The basic building block. Let \(X \) be a topological space. We recall (see Juhász [32, 33]) that a \(\pi \)-base of \(X \) is a collection \(B \) of nonempty open subsets of \(X \) such that every nonempty open subset of \(X \) contains a member of \(B \). The \(\pi \)-weight \(\pi(X) \) of \(X \) is the smallest cardinality of such a family. We will be interested in Tychonoff spaces of countable \(\pi \)-weight.

For a compact Hausdorff space \(X \), let \(EX \) be the Gleason cover of \(X \) [26,41]. It is well known that \(EX \) is constructed as the Stone space of the Boolean algebra of regular open subsets of \(X \), and hence \(EX \) is an extremely disconnected compact Hausdorff space, where we recall that a space is \emph{extremely disconnected} if the closure of each open set is open.

If \(\nabla \in EX \), then \(\bigcap_{U \in \nabla} C_X(U) \) is a singleton of \(X \), which we denote by \(p_X(\nabla) \). This defines a map \(p_X : EX \to X \). It is well known that \(p_X \) is an irreducible map: that is, \(p_X \) is an onto continuous map such that for every proper closed subset \(F \) of \(EX \), the image \(p_X(F) \) is a proper closed subset of \(X \). Since \(p_X \) is evidently closed, this yields that \(F \subseteq EX \) is nowhere dense iff \(p_X(F) \subseteq X \) is nowhere dense, and that \(\pi(X) = \pi(EX) \).

Let \(Z \) be a subspace of \(X \). A point \(x \in X \setminus Z \) is \emph{remote} from \(Z \) provided \(x \not\in C_X(D) \) for every nowhere dense subset \(D \) of \(Z \). Observe that if \(x \) is remote from \(Z \), then \(x \) is remote from every subspace of \(Z \). The following simple lemma was used in [16,39] for constructing various examples.

Lemma 5.1. For a \(T_1 \)-space \(X \), if every \(x \in X \) is remote from \(X \setminus \{x\} \), then \(X \) is nodec.

Proof. Let \(D \) be a nowhere dense subset of \(X \) and \(x \notin D \). Since \(X \) is a \(T_1 \)-space, \(D \) is a nowhere dense subset of \(X \setminus \{x\} \). Therefore, as \(x \) is remote from \(X \setminus \{x\} \), we see that \(x \notin C_X(D) \). Thus, \(X \) is nodec. \(\Box \)
Suppose X is a Tychonoff space. A remote point of X is a point $p \in \beta X \setminus X$ that is remote from X. In the context of Čech-Stone compactifications, remote points are very well studied in the literature. In particular, we have:

Theorem 5.2. [9, 13] If X is a nonpseudocompact Tychonoff space with countable π-weight, then the remainder $X^* := \beta X \setminus X$ contains a point that is remote from X.

Here we recall that a Tychonoff space X is pseudocompact if every continuous real-valued function on X is bounded. This result was generalized to products of such spaces in [15].

Let \mathbb{I} be the closed unit interval and let $E\mathbb{I}$ be the Gleason cover of \mathbb{I}. For $t \in \mathbb{I}$, let $X = E\mathbb{I} \setminus p^{-1}_\mathbb{I}(\{t\})$. Since X is a dense subspace of $E\mathbb{I}$, it is C^*-embedded in $E\mathbb{I}$ (see, e.g., [46, Proposition 10.47]), meaning that every bounded continuous real-valued function on X extends to $E\mathbb{I}$. Therefore, by [46, Theorem 1.46], $\beta X = E\mathbb{I}$. It is also clear that X is a nonpseudocompact Tychonoff space with countable π-weight. Thus, by Theorem 5.2, there is a point $x_t \in p^{-1}_\mathbb{I}(\{t\})$ that is remote from X.

Let D be any countable dense subset of \mathbb{I} (e.g., $D = \mathbb{I} \cap \mathbb{Q}$). We set
\[Y := \{ x_t \mid t \in D \} . \]

Lemma 5.3 ([16, 39]). Y is a countable dense-in-itself extremally disconnected ω-resolvable nodec space that is of countable π-weight.

Here we recall (see, e.g., [17]) that a partition P of a space X is dense if each $D \in P$ is dense in X, and that X is κ-resolvable if it has a dense partition of size κ. We now isolate the crucial property of Y that makes our construction in Section 5.2 work.

Proposition 5.4. Y has a compact set of remote points that is homeomorphic to $\beta\omega$.

Proof. Since Y is countable, we can pick a nonempty closed G_δ-subset S of βY such that $Y \cap S = \emptyset$. Put $T = \beta Y \setminus S$. By [46, Theorem 1.49], $\beta T = \beta Y$ and $T^* = S$. By [13, Theorem 11.1], we can choose a countably infinite discrete set D consisting entirely of remote points of T every limit point of which is also a remote point of T. Observe that every point from D is remote from Y since Y is a subspace of T. We show that D is C^*-embedded in βY by utilizing a technique of [40]. Since $D \subseteq T^* = S$ and S is closed, $CD \subseteq S$. Because $Y \subseteq \beta Y \setminus S$, we see that $C(D) \cap Y \subseteq C(D) \setminus S = \emptyset$. Therefore, D is closed in the subspace $D \cup Y$, which is normal since it is countable. By the Tietze Extension Theorem (see, e.g., [19, Theorem 2.1.8]), D is C^*-embedded in $D \cup Y$, and so D is C^*-embedded in βY. This, by [46, Theorem 1.46], yields that $C(D) = \beta D$, and hence Y has a compact set of remote points that is homeomorphic to $\beta\omega$.

5.2. The spaces Z_n. Let $\mathfrak{S} = (W, R)$ be a rooted $S4$-frame. We call \mathfrak{S} a tree if R is a partial order and $(\forall w, u, v \in W)(u R w \text{ and } v R w \Rightarrow u R v \text{ or } v R u)$. We will always denote the root of a tree \mathfrak{S} by r, the R-maximal points of \mathfrak{S} by $\max(\mathfrak{S})$, and call v a child of w provided $w R v$ and from $w R u R v$ it follows that $w = u$ or $u = v$. For $n \geq 1$, let T_n denote the tree of depth n in which all non-R-maximal points have ω children.

Define an equivalence relation on an $S4$-frame $\mathfrak{S} = (W, R)$ by setting
\[w \sim v \text{ iff } w R v \text{ and } v R w. \]
As is customary, we call equivalence classes of \sim clusters. The skeleton of \mathfrak{F} is the partially ordered $\mathbb{S}4$-frame obtained by modding out the clusters of \mathfrak{F}. We call a cluster in \mathfrak{F} trivial if it is a singleton, and proper otherwise. We call \mathfrak{F} a quasi-tree if the skeleton of \mathfrak{F} is a tree. A cluster of a quasi-tree \mathfrak{F} is maximal if all its points are R-maximal, and it is the root cluster if it contains a root of \mathfrak{F}.

Let \mathcal{P} be a partition of a space X. We call \mathcal{P} clopen provided each $A \in \mathcal{P}$ is clopen in X. For a cardinal κ, we consider the κ-fork depicted in Figure 3.

![Figure 3. The κ-fork.](image)

Lemma 5.5. The κ-fork is an interior image of a space X iff there are a closed nowhere dense subset N of X and a clopen partition $\mathcal{P} = \{A_{\lambda} \mid \lambda < \kappa\}$ of the subspace $X \setminus N$ such that $CA = A \cup N$ for each $A \in \mathcal{P}$.

Proof. Let $\mathfrak{F} = (W/R)$ be the κ-fork. First suppose that $f : X \to W$ is an onto interior map. Let $N = f^{-1}(r)$ and $A_{\lambda} = f^{-1}(w_{\lambda})$. Then

$$CN = Cf^{-1}(r) = f^{-1}(\bigtriangleup R\{r\}) = f^{-1}(r) = N$$

and

$$ICN = IN = If^{-1}(r) = f^{-1}(\bigtriangledown R\{r\}) = f^{-1}(\emptyset) = \emptyset.$$

Thus, N is closed and nowhere dense in X. Clearly $\mathcal{P} = \{A_{\lambda} \mid \lambda < \kappa\}$ is a partition of $X \setminus N$. Moreover, since each $\{w_{\lambda}\}$ is simultaneously an R-upset and an R-downset in the subframe $W \setminus \{r\}$, each A_{λ} is clopen in $X \setminus N$. Finally,

$$CA_{\lambda} = Cf^{-1}(w_{\lambda}) = f^{-1}(\bigtriangleup R\{w_{\lambda}\}) = f^{-1}(\{w_{\lambda}, r\}) = A_{\lambda} \cup N.$$

Next suppose that there are a closed nowhere dense subset N of X and a clopen partition $\mathcal{P} = \{A_{\lambda} \mid \lambda < \kappa\}$ of the subspace $X \setminus N$ such that $CA = A \cup N$ for each $A \in \mathcal{P}$. Define $f : X \to W$ by setting

$$f(x) = \begin{cases} r & \text{if } x \in N, \\ w_{\lambda} & \text{if } x \in A_{\lambda}. \end{cases}$$

It is clear that f is a well-defined onto map. Moreover,

$$f^{-1}(\bigtriangleup R\{r\}) = f^{-1}(r) = N = CN = Cf^{-1}(r)$$

and

$$f^{-1}(\bigtriangledown R\{w_{\lambda}\}) = f^{-1}(\{w_{\lambda}, r\}) = A_{\lambda} \cup N = CA_{\lambda} = Cf^{-1}(w_{\lambda}).$$

Thus, f is interior.

We assume the reader is familiar with the construction of attaching spaces or adjunction space (see, e.g., [28, pp. 12–14] or [47, pp. 65–66]). Given an indexed family of spaces X_i and subspaces $Y_i \subseteq X_i$, along with continuous maps $f_i : Y_i \to Z$, one can form an adjunction space which is a quotient of the topological sum $\bigoplus_{i \in I} X_i$ in which the only nontrivial equivalence classes are
\{(y_i, y_j) \mid i, j \in I, y_i \in Y_i, y_j \in Y_j, f_i(y_i) = f_j(y_j)\}.

When \(Z\) is a singleton, the adjunction space is often referred to as the wedge sum.

Given an equivalence relation \(\equiv\) on a set \(X\), let \([x]\) be the equivalence class of \(x \in X\). We call \(U \subseteq X\) saturated provided that \(x \in U\) implies \([x] \subseteq U\). Recall that open (resp. closed) sets in a quotient space \(X/\equiv\) correspond to saturated open (resp. closed) sets in \(X\).

Using \(Y\) we recursively build the family of spaces \(\{Z_n \mid n \geq 1\}\) such that each \(Z_n\) is a subspace of \(Z_{n+1}\) and there is an onto interior mapping \(\alpha_n : Z_n \to \mathcal{S}_{n+1}\).

Base case \((n = 1)\): Let \(\{Y_n \mid n \in \omega\}\) be a pairwise disjoint family of spaces such that there is a homeomorphism \(h_n : Y \to Y_n\) for each \(n \in \omega\). Fix \(y \in Y\) and set \(y_n = h_n(y)\). Let \(Z_1\) be the wedge sum of \(\{(Y_n, y_n) \mid n \in \omega\}\). We identify each \(Y_n \setminus \{y_n\}\) with its image in \(Z_1\) and refer to the point \(\{y_n \mid n \in \omega\}\) in \(Z_1\) using the symbol \(y\); see Figure 4. Since \(\mathcal{S}_2\) is the \(\omega\)-fork and \(\{y\}\) is a closed nowhere dense subset of \(Z_1\) such that \(\{Y_n \setminus \{y_n\} \mid n \in \omega\}\) is a clopen partition of \(Z_1 \setminus \{y\}\) satisfying \(y \in \mathcal{C}_{Z_1}(Y_n \setminus \{y_n\})\), it follows from Lemma 5.5 that there is an onto interior mapping \(\alpha_1 : Z_1 \to \mathcal{S}_2\) such that \(\alpha_1^{-1}(r) = \{y\}\).

![Figure 4. Realizing \(Z_1\) as a wedge sum of the \(Y_i\).](image)

Recursive step \((n \geq 1)\): Suppose \(Z_n\) with the above properties is already built. Identify \(\mathcal{S}_{n+1}\) with the subframe \(\mathcal{S}_{n+2} \setminus \max(\mathcal{S}_{n+2})\). Enumerate \(\max(\mathcal{S}_{n+1})\) as \(\{w_i \mid i \in \omega\}\). Label points in \(\max(\mathcal{S}_{n+2})\) as \(w_{i,j}\) where \(w_{i,j}\) is the \(j^{th}\) child of \(w_i\). Let \(\alpha_n : Z_n \to \mathcal{S}_{n+1}\) be an onto interior map such that \(\alpha_n^{-1}(r) = \{y\}\) where \(y\) is the point in the base case defining \(Z_1\). Set \(X_i = (\alpha_n)^{-1}(\wedge R\{w_i\})\); see Figure 5.

![Figure 5. Mapping \(Z_n\) onto \(\mathcal{S}_{n+1}\) viewed as a subframe of \(\mathcal{S}_{n+2}\).](image)

Since \(X_i\) is countable, there is a continuous bijection \(f : \omega \to X_i\) which extends to a continuous onto map \(g : \beta\omega \to \beta X_i\). Up to homeomorphism, \(\beta\omega\) is a subspace of

\(\cdots\)
βY such that each point in βω is a remote point of Y. Consider the quotient space Q_i of βY obtained by the equivalence relation whose only nontrivial equivalence classes are the fibers of g, namely $g^{-1}(x)$ for each $x \in βX_i$. By [19, Theorem 2.4.13] the quotient mapping of βY onto Q_i is closed. Intuitively, Q_i is obtained from βY by replacing the copy of βω that is remote from Y' by βXi. We identify Y, βXi, and Xi with their respective images in Q_i, see Figure 6. For a nowhere dense subset N of Y, we have $C_{βY}(N) \cap βω = \emptyset$, so $C_{βY}(N)$ is saturated, and hence $C_{Q_i}(N) \cap βX_i = \emptyset$.

Figure 6. Identifying Y, βXi, and Xi in the quotient Q_i of βY.

Viewing $Y \cup X_i$ as a subspace of Q_i, the subsets Y and X_i are complements of each other, Y is dense, and X_i is closed and nowhere dense. Let A_i be the adjunction space of ω copies of $Y \cup X_i$ glued through the identity map on the copies of X_i. That is, up to homeomorphism, A_i is the quotient of the topological sum $\bigoplus_{m \in ω}(Y \cup X_i) \times \{m\}$ under the equivalence relation whose nontrivial equivalence classes are $\{(x, m) \mid m \in ω\}$ for each $x \in X_i$; see Figure 7.

Figure 7. The adjunction space A_i obtained by gluing ω copies of $Y \cup X_i$ through X_i.

To facilitate defining $α_{n+1} : Z_{n+1} \to Z_{n+2}$ we denote the ω copies of Y in A_i by $Y_{i,j}$ where $j \in ω$. We also identify X_i with its homeomorphic copy in A_i. The quotient mapping from $\bigoplus_{j \in ω}(Y_{i,j} \cup X_i)$ onto A_i is closed. Thus, in A_i we have that $\bigcup_{j \in ω} Y_{i,j}$ and X_i are complements of each other, $\bigcup_{j \in ω} Y_{i,j}$ is dense, and X_i is closed and nowhere dense.

We define Z_{n+1} as the adjunction space of the A_i for $i \in ω$ through the following gluing. For each A_i consider the inclusion mapping $I_i : X_i \to Z_n$. Glue through
the equivalence relation whose nontrivial equivalence classes are \(\{(x_i, x_j) \mid x_i \in X_i, x_j \in X_j, I_i(x_i) = I_j(x_j)\} \). Intuitively the gluing is through identifying points in \(X_i \) and \(X_j \) that are equal in \(Z_n \); see Figure 8. Identify the \(Y_{i,j}, X_i, \) and \(Z_n \) with their images in \(Z_{n+1} \). Observe that \(Y_{i,j} \) is open in \(Y_{i,j} \cup X_i \) and saturated in \(\bigoplus_{i \in \omega}(Y_{i,j} \cup X_i) \), hence open in \(A_i \). Similarly, \(Y_{i,j} \) is saturated in \(\bigoplus_{i \in \omega} A_i \), and so open in \(Z_{n+1} \). Thus, in \(Z_{n+1} \) we have that \(\bigcup_{i \in \omega} Y_{i,j} \) and \(Z_n \) are complements of each other, \(\bigcup_{i \in \omega} Y_{i,j} \) is dense and open, and \(Z_n \) is closed and nowhere dense.

We now extend \(\alpha_n : Z_n \to \Sigma_{n+1} \) to \(\alpha_{n+1} : Z_{n+1} \to \Sigma_{n+2} \) by setting \(\alpha_{n+1}(z) = w_{i,j} \) for each \(z \in Y_{i,j} \). Let \(w \in \Sigma_{n+2} \). If \(w = w_{i,j} \in \text{max}(\Sigma_{n+2}) \), then

\[
\alpha_{n+1}^{-1}(\Diamond_R \{w_{i,j}\}) = \alpha_{n+1}^{-1}(\{w_{i,j}\} \cup \Diamond_R \{w_i\}) = \alpha_{n+1}^{-1}(w_{i,j}) \cup \alpha_{n}^{-1}(\Diamond_R \{w_i\}) = Y_{i,j} \cup X_i = C_{Z_{n+1}}(Y_{i,j}) = C_{Z_{n+1}}(\alpha_{n+1}^{-1}(w_{i,j})).
\]

Otherwise \(w \in \Sigma_{n+1} \), so since \(\alpha_n \) is interior and \(Z_n \) is closed in \(Z_{n+1} \), we have

\[
\alpha_{n+1}^{-1}(\Diamond_R \{w\}) = \alpha_n^{-1}(\Diamond_R \{w\}) = C_{Z_n} \alpha_n^{-1}(w) = C_{Z_{n+1}} \alpha_{n+1}^{-1}(w).
\]

Thus, \(\alpha_{n+1} \) is interior and \(\alpha_{n+1}^{-1}(r) = \{y\} \).

Lemma 5.6. Let \(X = \bigoplus_{i \in \omega} Y_i \). For \(n \in \omega \), if \(0 \leq \text{mdim}(Y_i) \leq n \) for each \(i \), then \(\text{mdim}(X) \leq n \).

Proof. Induction on \(n \).

Base case \(n = 0 \): Suppose \(\text{mdim}(Y_i) = 0 \) for each \(i \). Let \(N \) be nowhere dense in \(X \). Then \(N_i = N \cap Y_i \) is nowhere dense in \(Y_i \). Therefore, \(\text{mdim}(N_i) = -1 \), and so \(N_i = \emptyset \). Thus, \(N = \emptyset \). From this it follows that \(\text{mdim}(N) = -1 \), and hence \(\text{mdim}(X) = 0 \).

Inductive step \(n \geq 0 \): Suppose for any family of spaces \(\{Y'_i \mid i \in \omega\} \), if \(0 \leq \text{mdim}(Y'_i) \leq n \) for each \(i \), then \(\text{mdim}(\bigoplus_{i \in \omega} Y'_i) \leq n \). Assume \(0 \leq \text{mdim}(Y'_i) \leq n + 1 \) for each \(i \in \omega \). Let \(N \) be nowhere dense in \(X \). Then \(Y'_i = N \cap Y_i \) is nowhere dense in \(Y_i \). Therefore, \(\text{mdim}(Y'_i) \leq n \). By the inductive hypothesis, \(\text{mdim}(N) \leq n \). Thus, \(\text{mdim}(X) \leq n + 1 \).

Lemma 5.7. For \(n \geq 1 \), \(\text{mdim}(Z_n) = n \).

Proof. Since \(\Sigma_{n+1} \) is an interior image of \(Z_n \), the \((n + 1) \)-element chain is an interior image of \(Z_n \). By Theorem 3.6, \(\text{mdim}(Z_n) \geq n \). We show that \(\text{mdim}(Z_n) \leq n \) by induction on \(n \geq 1 \).
Base case \((n = 1)\): Let \(N\) be nowhere dense in \(Z_1\). Set \(N_i = N \cap Y_i\) for each \(i \in \omega\). Then \(N_i\) is nowhere dense in \(Z_1\). Noting that \(Y_i\) is a closed subspace of \(Z_1\) homeomorphic to \(Y\) (which is a dense-in-itself \(T_1\)-space), it follows that \(N_i\) is nowhere dense in \(Y_i\). Because \(Y\) is nodec, \(Y_i\) is nodec, and so \(N_i\) is closed in \(Y_i\). Let \(N'\) be the union of the \(N_i\) in the topological sum of the \(Y_i\), which is the preimage of the adjunction space \(Z_1\). Then \(N'\) is closed in the sum. Since \(N'\) is the preimage of \(N\), we see that \(N\) is closed in \(Z_1\). Therefore, \(Z_1\) is nodec. Because \(Z_1\) is a \(T_1\)-space, it follows from Theorem 4.9 that \(\dim(Z_1) \leq 1\).

Inductive step \((n \geq 1)\): Assume \(\dim(Z_n) = n\). Since \(Z_{n+1}\) was constructed in three stages, our proof is also in three stages. First we show that \(\dim(Y \cup X_i) \leq n + 1\), next that \(\dim(A_i) \leq n + 1\), and finally that \(\dim(Z_{n+1}) \leq n + 1\).

Stage 1: Since \(\dim(Z_n) = n\) and each \(X_i \subseteq Z_n\), by Lemma 3.3, \(\dim(X_i) \leq n\). Also, the \((n+1)\)-element chain is an interior image of \(X_i\), giving that \(\dim(X_i) \geq n\). Thus, \(\dim(X_i) = n\).

Let \(N\) be nowhere dense in \(Y \cup X_i\), and set \(M = N \cap Y\). Then \(M\) is nowhere dense in \(Y \cup X_i\). Let \(U\) be an open subset of \(Y\) contained in \(C_Y M\). Since \(Y\) is open in \(Y \cup X_i\), we have that \(U\) is open in \(Y \cup X_i\), and is contained in \(C_Y M \subseteq C_M\). Because \(M\) is nowhere dense in \(Y \cup X_i\), we obtain \(U = \emptyset\), and so \(M\) is nowhere dense in \(Y\). Since \(Y\) is nodec, \(M\) is closed and discrete in \(Y\). By the construction of \(Y \cup X_i\), each \(x \in X_i\) is the image of a set of points each remote from \(Y\), and hence \(C_M \cap X_i = \emptyset\). Thus, \(C_M \subseteq Y\), from which it follows that \(C_Y M = C_M\). Therefore, since \(M\) is closed in \(Y\), it is closed in \(Y \cup X_i\). Consequently, \(M\) is closed in \(N\). In fact, \(M\) is clopen in \(N\) since \(Y\) is open and \(M = N \cap Y\). Therefore, \(N\) is the disjoint union of \(M\) and \(N \cap X_i\). As \(M\) is discrete, \(\dim(M) \leq 0\). Also, since \(N \cap X_i\) is a subspace of \(X_i\), we have \(\dim(N \cap X_i) \leq \dim(X_i) = n\). By Lemma 5.6, \(\dim(N) \leq n\). Thus, \(\dim(Y \cup X_i) \leq n + 1\).

Stage 2: Let \(N\) be nowhere dense in \(A_i\). Set \(N_j = N \cap Y_{i,j}\). Recalling that \(Y_{i,j} \cup X_i\) is homeomorphic to \(Y \cup X_i\), by replacing \(M\) by \(N_j\) and \(Y \cup X_i\) by \(Y_{i,j} \cup X_i\) in the proof of Stage 1, we see that \(N_j\) is closed in \(Y_{i,j} \cup X_i\) and \(N_j \cap X_i = \emptyset\) for all \(j \in \omega\). Therefore, \(\bigcup_{j \in \omega} N_j\) is closed in the topological sum \(\bigoplus_{j \in \omega} (Y_{i,j} \cup X_i)\). Since \(\bigcup_{j \in \omega} N_j\) is also saturated in \(\bigoplus_{j \in \omega} (Y_{i,j} \cup X_i)\), it is closed in \(A_i\), and hence closed in \(N\). Also, \(\bigcup_{j \in \omega} N_j = N \cap \bigcup_{j \in \omega} Y_{i,j}\) is open in \(N\) since \(\bigcup_{j \in \omega} Y_{i,j}\) is open in \(A_i\). Therefore, \(N\) is the disjoint union of \(N \cap X_i\) and \(\bigcup_{j \in \omega} N_j\). By Lemma 5.6, \(\dim\left(\bigcup_{j \in \omega} N_j\right) \leq 1 \leq n\) since \(\dim(N_j) \leq \dim(Y_{i,j}) \leq 1\). Also \(\dim(N \cap X_i) \leq \dim(X_i) = n\), so utilizing Lemma 5.6 again yields \(\dim(N) \leq n\). Thus, \(\dim(A_i) \leq n + 1\).

Stage 3: Let \(N\) be nowhere dense in \(Z_{n+1}\). Set \(N_i = (N \cap A_i) \setminus X_i\). By recognizing that \(N_i\) is realized within the discussion of Stage 2 as \(\bigcup_{j \in \omega} N_i\), we see that each \(N_i\) is closed in \(A_i\), and hence \(\bigcup_{j \in \omega} N_i\) is closed in \(\bigoplus_{j \in \omega} A_i\). Moreover, \(\bigcup_{j \in \omega} N_i\) is saturated, and so \(\bigcup_{j \in \omega} N_i\) is closed in \(Z_{n+1}\). Therefore, \(\bigcup_{j \in \omega} N_i\) is also closed in \(N\). But \(\bigcup_{j \in \omega} N_i = N \cap (Z_{n+1} \setminus Z_n)\), so \(\bigcup_{j \in \omega} N_i\) is open in \(N\). Thus, \(N\) is the disjoint union of \(N \cap Z_n\) and \(\bigcup_{j \in \omega} N_i\). Since \(\dim(N_i) \leq \dim(A_i \setminus X_i) = \dim\left(\bigoplus_{j \in \omega} Y_{i,j}\right) \leq 1\), Lemma 5.6 yields that \(\dim\left(\bigcup_{j \in \omega} N_i\right) \leq 1 \leq n\). Also \(\dim(N \cap Z_n) \leq \dim(Z_n) = n\), so by Lemma 5.6, \(\dim(N) \leq n\). Consequently, \(\dim(Z_{n+1}) \leq n + 1\).
5.3. Completeness. Since $S4.Z_n$ has the finite model property, $S4.Z_n$ is the logic of finite uniquely rooted $S4$-frames \mathfrak{F} of depth $\leq n + 1$. Since each such \mathfrak{F} can be unraveled into a uniquely rooted finite quasi-tree \mathfrak{T} whose depth is $\leq n + 1$, we see that $S4.Z_n$ is the logic of uniquely rooted finite quasi-trees \mathfrak{T} of depth $\leq n + 1$.

Let Q_n be the quasi-tree whose skeleton is \mathfrak{T}_n and in which the root cluster is the only trivial cluster and all other clusters are countably infinite. Clearly identifying the clusters yields an onto p-morphism $p_n : Q_n \to \mathfrak{T}_n$. Because every uniquely rooted finite quasi-tree of depth $\leq n + 1$ is an interior image of Q_{n+1}, we see that $S4.Z_n$ is the logic of Q_{n+1}. Since we will utilize this fact, we state it as a lemma.

Lemma 5.8. $S4.Z_n$ is the logic of Q_{n+1}.

Since $\text{mdim}(Z_n) = n$ and Z_n is T_1, we see that $Z_n \models S4.Z_n$. Therefore, to show that $S4.Z_n$ is the logic of Z_n, in view of Lemma 5.8, it is sufficient to prove that Q_{n+1} is an interior image of Z_n. The idea of the proof is to ‘fatten’ the mapping $\alpha_n : Z_n \to \mathfrak{T}_{n+1}$ to a mapping $Z_n \to Q_{n+1}$. Let C_n be the κ-cluster as depicted in Figure 9.

![Figure 9. The κ-cluster.](Image)

Lemma 5.9. A space X is κ-resolvable iff C_κ is an interior image of X.

Proof. First suppose that X is κ-resolvable. Then there is a dense partition $\{D_\lambda : \lambda < \kappa\}$ of X. Define $f : X \to C_\kappa$ by $f(x) = w_\lambda$ if $x \in D_\lambda$. Clearly f is a well-defined onto map. Moreover, for each $\lambda < \kappa$, we have

$$ Cf^{-1}(w_\lambda) = C(D_\lambda) = X = f^{-1}(\{w_\lambda : \lambda < \kappa\}) = f^{-1}(\diamond_R \{w_\lambda\}). $$

Thus, f is an interior map.

Conversely, let $f : X \to C_\kappa$ be an onto interior map. Then $\{f^{-1}(w_\lambda) : \lambda < \kappa\}$ is a partition of X such that

$$ Cf^{-1}(w_\lambda) = f^{-1}(\diamond_R \{w_\lambda\}) = f^{-1}(\{w_\lambda : \lambda < \kappa\}) = X. $$

Thus, $\{f^{-1}(w_\lambda) : \lambda < \kappa\}$ is a dense partition of X, and hence X is κ-resolvable.

Theorem 5.10. For each $n \geq 1$, $S4.Z_n$ is the logic of Z_n.

Proof. As we already pointed out, in view of Lemma 5.8, it is sufficient to show that Q_{n+1} is an interior image of Z_n. The proof is by induction on n.

Let $n = 1$. Let C_i be the maximal cluster in Q_2 whose p_2-image is $w_i \in \text{max}(\mathfrak{T}_2)$ (here we are using the enumeration of $\text{max}(\mathfrak{T}_2)$ as it appears in the recursive step of defining the Z_n). So $C_i = p_2^{-1}(w_i)$. Since each $Y_i \setminus \{y_i\}$ is an open subspace of Y_i, Y_i is homeomorphic to Y, and Y is ω-resolvable, we see that each $Y_i \setminus \{y_i\}$ is ω-resolvable. As $Y_i \setminus \{y_i\}$ is homeomorphic to the subspace $Y_i \setminus \{y\}$ of Z_1, by Lemma 5.9, there is an onto interior map $f_i : Y_i \setminus \{y\} \to C_i$. Define $f : Z_1 \to Q_2$ by

$$ f(z) = \begin{cases} f_i(z) & \text{if } z \in Y_i \setminus \{y\}, \\ r & \text{if } z = y. \end{cases} $$
Since \(\{Y_i \setminus \{y\} \mid i \in \omega \} \cup \{y\} \) is a partition of \(Z_1 \) and each \(f_i \) is onto, \(f \) is a well-defined onto map. Let \(w \in Q_2 \). Suppose \(w \in C_i \) for some \(i \in \omega \). Then

\[
f^{-1}(\diamond_R \{w\}) = f^{-1}(C_i \cup \{r\}) = f^{-1}_i(C_i) \cup \{y\} = (Y_i \setminus \{y\}) \cup \{y\} = C_{Z_i}(Y_i \setminus \{y\}) = C_{Z_i}f^{-1}(w).
\]

Otherwise \(w \) is the root, and so

\[
f^{-1}(\diamond_R \{w\}) = f^{-1}(w) = \{y\} = C_{Z_i}\{y\} = C_{Z_i}f^{-1}(w).
\]

Thus, \(f : Z_1 \to Q_2 \) is an onto interior map.

Let \(n \geq 1 \). Suppose \(g : Z_n \to Q_{n+1} \) is an onto interior map. Identify \(Q_{n+1} \) with the subframe \(Q_{n+2} \setminus \max_R(Q_{n+2}) \). Let \(w_{i,j} \in \max(\xi_{n+2}) \) be the \(i^{th} \) child of \(w_i \in \max(\xi_{n+1}) \) (as in the recursive step of building the \(Z_n \)). Let \(C_{i,j} \) be the maximal cluster in \(Q_{n+2} \) whose \(p_{n+2}\)-image is \(w_{i,j} \). So \(C_{i,j} = p_{n+2}^{-1}(w_{i,j}) \). Also, let \(C_i \) be the maximal cluster in \(Q_{n+1} \) whose \(p_{n+2}\)-image is \(w_i \). Since each subspace \(Y_{i,j} \) of \(Z_{n+1} \) is homeomorphic to \(Y \), we see that \(Y_{i,j} \) is \(\omega \)-resolvable.

By Lemma 5.9, there is an onto interior map \(f_{i,j} : Y_{i,j} \to C_{i,j} \).

Define \(f : Z_{n+1} \to Q_{n+2} \) by

\[
f(z) = \begin{cases} f_{i,j}(z) & \text{if } z \in Y_{i,j}, \\ g(z) & \text{if } z \in Z_n. \end{cases}
\]

Since \(\{Y_{i,j} \mid i, j \in \omega \} \cup \{Z_n\} \) is a partition of \(Z_{n+1} \) and the \(f_{i,j} \) and \(g \) are onto, \(f \) is a well-defined onto map. Let \(w \in Q_{n+2} \). Suppose \(w \in C_{i,j} \) for some \(i, j \in \omega \). Because \(Z_n \) is closed in \(Z_{n+1} \), both \(g \) and \(f_{i,j} \) are interior maps, and \(g^{-1}(\diamond_R C_i) = X_i \), we have

\[
f^{-1}(\diamond_R \{w\}) = f^{-1}_i(C_{i,j}) \cup g^{-1}(\diamond_R C_i) = Y_{i,j} \cup X_i = C_{Z_{n+1}}Y_{i,j} = C_{Z_{n+1}}(C_{Y_{i,j}}f_{i,j}^{-1}(w)) = C_{Z_{n+1}}f^{-1}(w).
\]

Otherwise \(w \in Q_{n+1} \), and so

\[
f^{-1}(\diamond_R \{w\}) = g^{-1}(\diamond_R \{w\}) = C_{Z_n}g^{-1}(w) = C_{Z_{n+1}}f^{-1}(w).
\]

Thus, \(f : Z_{n+1} \to Q_{n+2} \) is an onto interior map.

As an immediate consequence, we obtain:

Corollary 5.11. For each \(n \geq 1 \), \(\textbf{S}_4Z_n \) is the logic of a countable dense-in-itself \(\omega \)-resolvable Tychonoff space of modal Krull dimension \(n \).

Moreover, since \(\textbf{S}_4Z = \textbf{S}_4Z_1 \), we obtain the following topological completeness for the Zeman logic:

Corollary 5.12. \(\textbf{S}_4Z \) is the logic of a countable dense-in-itself \(\omega \)-resolvable Tychonoff nodec space.

That \(\textbf{S}_4Z \) is the logic of nodec spaces was shown in [3, Theorem 4.6], but the proof required the use of Alexandroff nodec spaces. The above corollary strengthens this result considerably by providing a topologically “nice” nodec space whose logic is \(\textbf{S}_4Z \).
§6. Krull dimension of Heyting algebras. In this section we turn to Heyting algebras, which are closely related to S4-algebras [38,42]. We utilize this connection and our results about the Krull dimension of S4-algebras to define the Krull dimension of a Heyting algebra both externally and internally, and show that these definitions are equivalent. We also show how to give an equivalent definition of the modal Krull dimension of a topological space in terms of the Heyting algebra of open sets.

Definition 6.1. A Heyting algebra is a bounded implicative lattice; that is, a bounded distributive lattice such that \land has a residual \rightarrow satisfying

$$x \leq a \rightarrow b$$

iff $a \land x \leq b$.

As usual, we let $\neg a$ denote $a \rightarrow 0$.

If \mathfrak{A} is an S4-algebra, then $\mathfrak{A}(\mathfrak{A}) := \{\Box a \mid a \in \mathfrak{A}\}$ is a Heyting algebra in which $a \rightarrow b = \Box(-a \lor b)$. Conversely, if \mathfrak{A} is a Heyting algebra, then the free Boolean extension $\mathfrak{B}(\mathfrak{A})$ of \mathfrak{A} can be equipped with \Box so that $\mathfrak{A}(\mathfrak{A}) := (\mathfrak{B}(\mathfrak{A}), \Box)$ is an S4-algebra, \mathfrak{A} is isomorphic to $\mathfrak{A}(\mathfrak{A}(\mathfrak{A}))$, and $\mathfrak{A}(\mathfrak{A}(\mathfrak{A}))$ is isomorphic to a subalgebra of \mathfrak{A} (see, e.g., [42, Sections IV.1 and IV.3] or [21, Sections II.2 and II.5]).

As with S4-algebras, there are two typical examples of Heyting algebras. Firstly, the collection \mathfrak{A}^*_X of all open sets of a topological space X is a Heyting algebra, where $U \rightarrow V = \mathbf{I}(U \setminus V)$. By the Stone representation theorem [44], every Heyting algebra is represented as a subalgebra of \mathfrak{A}^*_X for some topological space X (see [38,42]). Secondly, the R-upsets of an S4-frame form a Heyting algebra, but since R-upsets do not distinguish between points that are R-related to each other, we may restrict ourselves to those S4-frames that are in addition antisymmetric. More precisely, the Heyting algebras of R-upsets of \mathfrak{F} and the skeleton of \mathfrak{F} are isomorphic, and every Heyting algebra is represented as a subalgebra of the Heyting algebra of R-upsets of some partially ordered S4-frame (see, e.g., [21,25]).

The dual \mathfrak{F}_* of a Heyting algebra \mathfrak{F} is the spectrum of prime filters of \mathfrak{F}. If \mathfrak{A} is an S4-algebra and \mathfrak{A}_* is the dual of \mathfrak{A}, then the dual $\mathfrak{A}(\mathfrak{A}_*)$ of $\mathfrak{A}(\mathfrak{A}_*)$ is obtained by taking the skeleton of \mathfrak{A}_*. Conversely, if \mathfrak{A} is a Heyting algebra, then the dual $\mathfrak{A}(\mathfrak{A}_*)$ of $\mathfrak{A}(\mathfrak{A}_*)$ is isomorphic to the dual \mathfrak{F}_* of \mathfrak{F} (see, e.g., [21, Section III.4]).

Let \mathfrak{F} be a Heyting algebra and $a \in \mathfrak{F}$. The relativization of \mathfrak{F} with respect to a is the Heyting algebra \mathfrak{F}_a whose underlying set is the interval $[a, 1]$ and \land, \lor, and \rightarrow in \mathfrak{F}_a coincide with those in \mathfrak{F}. If $\mathfrak{F} = \mathfrak{A}^*_X$ is the Heyting algebra of all opens of a topological space X and U is an open subset of X, then the relativization of \mathfrak{F} with respect to U is isomorphic to the Heyting algebra of all opens of the subspace $X \setminus U$.

We are ready to define Krull dimension of Heyting algebras. As with S4-algebras, we first define Krull dimension of Heyting algebras externally and then provide an equivalent internal definition of it. We also show that Krull dimensions of an S4-algebra \mathfrak{A} and the associated Heyting algebra $\mathfrak{F}(\mathfrak{A})$ coincide.

Definition 6.2. Let \mathfrak{F} be a Heyting algebra. Define the **Krull dimension** $\text{kdim}(\mathfrak{F})$ of \mathfrak{F} as the supremum of the lengths of finite R-chains in \mathfrak{F}_*. If the supremum is not finite, then we write $\text{kdim}(\mathfrak{F}) = \infty$.

Lemma 6.3.

1. If \mathfrak{A} is an S4-algebra, then $\text{kdim}(\mathfrak{A}) = \text{kdim}(\mathfrak{A}(\mathfrak{A}))$.
2. If \mathfrak{F} is a Heyting algebra, then $\text{kdim}(\mathfrak{F}) = \text{kdim}(\mathfrak{A}(\mathfrak{F}))$.

Proof. (1) Since \(S(\mathfrak{A})_s \) is the skeleton of \(\mathfrak{A}_s \), we see that the corresponding \(R \)-chains in \(\mathfrak{A}_s \) and \(S(\mathfrak{A})_s \) have the same length. Thus, \(k\dim(\mathfrak{A}) = k\dim(S(\mathfrak{A})) \).

(2) This is obvious since \(S(\mathfrak{A})_s \) is isomorphic to \((\mathfrak{A}(S))_s \).

As with \(S4 \)-algebras, the concept of Krull dimension of a Heyting algebra \(\mathfrak{H} \) is closely related to that of the depth of \(\mathfrak{H} \). It is well known that whether the depth of \(\mathfrak{H} \) is \(\leq n \) is described by the following formulas in the language of intuitionistic logic.

Definition 6.4. For \(n \geq 1 \), consider the formulas:

\[
ibd_1 = p_1 \lor \neg p_1,
\]

\[
ibd_{n+1} = p_{n+1} \lor (p_{n+1} \rightarrow ibd_n).
\]

The intuitionistic language is interpreted in a Heyting algebra \(\mathfrak{H} \) by assigning to propositional letters elements of \(\mathfrak{H} \) and by interpreting conjunction, disjunction, implication, and negation as the corresponding operations of \(\mathfrak{H} \). The next lemma is well known (see, e.g., [10, Proposition 2.38]).

Lemma 6.5. Let \(\mathfrak{H} \) be a nontrivial Heyting algebra and \(n \geq 1 \). Then \(\mathfrak{H} \models ibd_n \) iff depth\((\mathfrak{H}_s) \leq n \).

To characterize the Krull dimension of a Heyting algebra internally, we require some preparation. We call an element \(a \) of a Heyting algebra \(\mathfrak{H} \) dense if \(\neg a = 0 \).

Lemma 6.6. Let \(\mathfrak{H} \) be a Heyting algebra, \(a \in \mathfrak{H} \), and \(b \in \mathfrak{H}_a \). If \(b \) is dense in \(\mathfrak{H}_a \), then \(b \) is dense in \(\mathfrak{H} \).

Proof. Since \(b \) is dense in \(\mathfrak{H}_a \) and \(a \) is the bottom of \(\mathfrak{H}_a \), we have \(b \rightarrow a = a \). Therefore, \(\neg b = b \rightarrow 0 \leq b \rightarrow a = a \). On the other hand, \(a \leq b \) implies \(\neg b \leq \neg a \). Thus, \(\neg b \leq a \land \neg a = 0 \), and hence \(b \) is dense in \(\mathfrak{H} \).

Lemma 6.7. Let \(\mathfrak{A} \) be an \(S4 \)-algebra and let \(a, b \in S(\mathfrak{A}) \) with \(b \leq a \). Then \(a \) is dense in \(S(\mathfrak{A})_b \) iff \(\neg a \) is nowhere dense in \(\mathfrak{A}_{\neg b} \).

Proof. Since \(a, b \) are open, \(\neg a, \neg b \) are closed. Therefore, since \(\neg a \leq \neg b \), we have \(\neg a = \Diamond \neg a = \neg b \land \Diamond \neg a = \Diamond \neg b \neg a \). Thus,

\[
a \text{ is dense in } S(\mathfrak{A})_b \text{ iff } \neg a = 0 \text{ in } S(\mathfrak{A})_b
\]

iff \(a \rightarrow b = b \) in \(S(\mathfrak{A})_b \)

iff \(\Box (\neg a \lor b) = b \) in \(\mathfrak{A} \)

iff \(\Box (\neg b \rightarrow \neg a) = b \) in \(\mathfrak{A} \)

iff \(\neg b \land \Box (\neg b \rightarrow \neg a) = 0 \) in \(\mathfrak{A} \)

iff \(\Box \neg b \neg b = 0 \) in \(\mathfrak{A}_{\neg b} \)

iff \(\Box \neg b \Diamond \neg b \neg a = 0 \) in \(\mathfrak{A}_{\neg b} \)

iff \(\neg a \) is nowhere dense in \(\mathfrak{A}_{\neg b} \).

Remark 6.8. When \(b = 0 \), we obtain that \(a \) is dense in \(S(\mathfrak{A}) \) iff \(\neg a \) is nowhere dense in \(\mathfrak{A} \).

We are ready to give an internal recursive definition of the Krull dimension of a Heyting algebra.

Definition 6.9. The Krull dimension \(k\dim(\mathfrak{H}) \) of a Heyting algebra \(\mathfrak{H} \) can be defined as follows:
Heyting algebras coincide, so Definitions 6.2 and 6.9 are equivalent. By (1), \(k\dim(\mathcal{A}) \leq n \) if \(k\dim(\mathcal{A})_b \leq n - 1 \) for every dense \(b \in \mathcal{A} \), \(k\dim(\mathcal{A}) = n \) if \(k\dim(\mathcal{A}) \leq n \) and \(k\dim(\mathcal{A}) \leq n - 1 \), \(k\dim(\mathcal{A}) = \infty \) if \(k\dim(\mathcal{A}) \leq n \) for any \(n = -1, 0, 1, 2, \ldots \).

The next two results concern the internal definition of the Krull dimension.

Lemma 6.10. Let \(\mathcal{A} \) be a Heyting algebra and let \(a \in \mathcal{A} \). Then \(k\dim(\mathcal{A}a) \leq k\dim(\mathcal{A}) \).

Proof. If \(k\dim(\mathcal{A}) = \infty \), then there is nothing to prove. Suppose \(k\dim(\mathcal{A}) = n \). Let \(b \in \mathcal{A}a \) be dense in \(\mathcal{A}a \). By Lemma 6.6, \(b \) is dense in \(\mathcal{A} \). Since \(k\dim(\mathcal{A}) = n \), we see that \(k\dim(\mathcal{A}b) \leq n - 1 \). Because \((\mathcal{A}a)b = \mathcal{A}b \), we conclude that \(k\dim(\mathcal{A}a) \leq n \). Thus, \(k\dim(\mathcal{A}a) \leq k\dim(\mathcal{A}) \).

Theorem 6.11.

1. If \(\mathcal{A} \) is an \(S4 \)-algebra, then \(k\dim(\mathcal{A}) = k\dim(\mathcal{A}(\mathcal{A})) \).
2. If \(\mathcal{A} \) is a Heyting algebra, then \(k\dim(\mathcal{A}) = k\dim(\mathcal{A}(\mathcal{A})) \).

Proof. (1) By Theorem 2.14, \(k\dim(\mathcal{A}) \geq n \) iff there is a sequence \(c_0, \ldots, c_n \) of nonzero closed elements of \(\mathcal{A} \) such that \(c_0 = 1 \) and \(c_{i+1} \) is nowhere dense in \(\mathcal{A}_{c_i} \) for each \(i \in \{0, \ldots, n - 1\} \). By [4, Theorem 6.9], \(k\dim(\mathcal{A}(\mathcal{A})) \geq n \) iff there is a sequence \(1 = b_0 > b_1 > \cdots > b_n > 0 \) in \(\mathcal{A}(\mathcal{A}) \) such that \(b_{i-1} \) is dense in \(\mathcal{A}(\mathcal{A})_{b_i} \) for each \(i \in \{1, \ldots, n\} \). The two conditions are equivalent by Lemma 6.7. The result follows.

(2) Since \(\mathcal{A} \) is isomorphic to \(\mathcal{A}(\mathcal{A}(\mathcal{A})) \), we have \(k\dim(\mathcal{A}) = k\dim(\mathcal{A}(\mathcal{A})) \).

By (1), \(k\dim(\mathcal{A}(\mathcal{A}(\mathcal{A}))) = k\dim(\mathcal{A}(\mathcal{A})) \). Thus, \(k\dim(\mathcal{A}) = k\dim(\mathcal{A}(\mathcal{A})) \).

As a consequence we obtain:

Corollary 6.12. The external and internal definitions of the Krull dimension of a Heyting algebra coincide, so Definitions 6.2 and 6.9 are equivalent.

Proof. Apply Corollary 2.16, Lemma 6.3, and Theorem 6.11.

Corollary 6.13. For a topological space \(X \), we have \(m\dim(X) = k\dim(\mathcal{H}(X)) \).

Proof. Since \(\mathcal{H}(X) \) is the Heyting algebra of opens of \(X \), by Lemma 6.3 (or Theorem 6.11), \(m\dim(X) = k\dim(\mathcal{H}(X)) = k\dim(\mathcal{H}(X)) \).

Let \(\mathcal{L}_n \) be the \((n + 1)\)-element linear Heyting algebra. Then \((\mathcal{L}_n)_a \) is isomorphic to the \(n \)-element chain \(\mathcal{F}_n \) shown in Figure 1. Let \(\chi(\mathcal{L}_n) \) be the Jankov–Fine formula of \(\mathcal{L}_n \). Another immediate consequence of our results is the following:

Corollary 6.14. Let \(\mathcal{A} \) be a nontrivial Heyting algebra and \(n \geq 1 \). The following are equivalent:

1. \(k\dim(\mathcal{A}) \leq n - 1 \).
2. There does not exist a sequence \(1 = b_0 > b_1 > \cdots > b_n > 0 \) in \(\mathcal{A} \) such that \(b_{i-1} \) is dense in \(\mathcal{A}_{b_i} \) for each \(i \in \{1, \ldots, n\} \).
3. \(\mathcal{A} \models \text{id}_{b_n} \).
4. \(\text{depth}(\mathcal{A}(\mathcal{L}_n)) \leq n \).
5. \(\mathcal{A} \models \neg \chi(\mathcal{L}_n) \).
6. \(\mathcal{L}_n+1 \) is not isomorphic to a subalgebra of a homomorphic image of \(\mathcal{A} \).
7. \(\mathcal{L}_n+1 \) is not isomorphic to a subalgebra of \(\mathcal{A} \).

§7. Comparison to other dimension functions. We conclude the paper with a comparison of modal Krull dimension to other well-known topological dimension...
functions. We recall that if X is a regular space, then the Menger-Urysohn dimension of X is denoted by $\text{ind}(X)$, if X is a Tychonoff space, then the Čech-Lebesgue dimension of X is denoted by $\dim(X)$, and if X is a normal space, then the Brouwer-Čech dimension of X is denoted by $\text{Ind}(X)$ (see, e.g., [19, Chapter 7] for a detailed account of these three dimension functions). Also, for a spectral space X, let $\kdim(X)$ denote the Krull dimension of X, and for a T_0-space X, let $\gdim(X)$ denote Isbell’s graduated dimension of X [29].

Proposition 7.1. Let X be a topological space.

1. If X is a spectral space, then $\kdim(X) \leq \mdim(X)$.
2. If X is a T_0-space, then $\gdim(X) \leq \mdim(X)$.
3. If X is a regular space, then $\text{ind}(X) \leq \mdim(X)$.
4. If X is a normal space, then $\text{Ind}(X) \leq \mdim(X)$ and $\dim(X) \leq \mdim(X)$.

Proof. (1) The Krull dimension of a spectral space X can be defined as the supremum of the lengths of finite chains in the specialization order R of X. Define $\varepsilon : X \to (2^X)_*$ by $\varepsilon(x) = \{ A \in 2^X \mid x \in A \}$. It is well known and easy to check that xRy in X iff $\varepsilon(x)R\varepsilon(y)$ in $(2^X)_*$. Therefore, the supremum of the lengths of finite chains in the specialization order of X can be no larger than the supremum of the lengths of finite chains in $(2^X)_*$. The result follows.

(2) Recall that Isbell’s graduated dimension of a T_0-space X is the least n such that some lattice basis of δ_X is a directed union of finite topologies of Krull dimension n. Suppose the Isbell dimension of X is n. The lattice of all opens δ_X is a directed union of finite topologies τ_i since the variety of distributive lattices is locally finite. Because the Krull dimension of each τ_i is $\geq n$, we see that $\mdim(X) \geq n$, as desired.

(3) Induction on $n \geq -1$. The base case is clear since $\text{ind}(X) = -1$ iff $X = \emptyset$, which happens iff $\mdim(X) = -1$. For the inductive step, suppose $\mdim(X) = n$. If Y is closed and nowhere dense in X, then $\mdim(Y) \leq n - 1$. By the inductive hypothesis, $\text{ind}(Y) \leq n - 1$. Because the boundary of an open set is (closed and) nowhere dense in X, it follows that the boundary B of any open subset of X has $\text{ind}(B) \leq n - 1$. Thus, $\text{ind}(X) \leq n$.

(4) Let X be normal. Replacing each occurrence of ind in the proof of (3) by Ind yields $\text{Ind}(X) \leq \mdim(X)$. By [19, Theorem 7.2.8], $\dim(X) \leq \text{Ind}(X) \leq \mdim(X)$.

Remark 7.2.

- It remains open whether $\dim(X) \leq \mdim(X)$ for any Tychonoff space X.
- For appropriately chosen spaces, the inequalities in Proposition 7.1 are strict. For example, if $X = \omega^n + 1$, then $\kdim(X) = \gdim(X) = \text{ind}(X) = \text{Ind}(X) = \dim(X) = 0$, but $\mdim(X) = n$ by Example 3.7(3).

§8. Acknowledgments. We are very thankful to the referees. Their careful reading and detailed comments have improved both the presentation and the proofs considerably. In addition, one of the referees suggested a more convenient version of the formulas zem_n, which coupled with Sahlqvist correspondence, have simplified a number of proofs in Section 4. The first two authors acknowledge the support of Shota Rustaveli National Science Foundation grant #DI-2016-25.
REFERENCES

