Oesophagogastric cancer: exploring the way to an individual approach

Stiekema, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
BIOBANKING OF FRESH-FROZEN ENDOSCOPIC BIOPSY SPECIMENS FROM OESOPHAGEAL ADENOCARCINOMA
CHAPTER 10

ABSTRACT

Background
The process of preparing endoscopic oesophageal adenocarcinoma samples for next-generation DNA/RNA sequencing is poorly described. Therefore, we assessed the feasibility and pitfalls of preparing oesophageal adenocarcinoma endoscopic biopsies towards DNA/RNA samples suitable for next-generation sequencing.

Methods
In this prospective study, four tumour biopsy samples were collected from consecutive oesophageal cancer patients during esophagogastroduodenoscopy and fresh-frozen in liquid nitrogen. DNA and RNA were isolated from samples with a tumour percentage of at least 50%. For next-generation sequencing, double-stranded DNA (dsDNA) is required and high quality RNA preferred. The quantity dsDNA and RNA quantity and quality were assessed with the Nanodrop 2000 spectrophotometer and Agilent 2100 Bioanalyzer.

Results
Biopsy samples of 69 consecutive patients with oesophageal adenocarcinoma were included. In 5 patients (7%), the tumour percentage was less than 50% in all four biopsies. Using a protocol allowing simultaneous DNA and RNA isolation, the median dsDNA yield was 2.4 μg (range 0.1 – 12.0 μg) and the median RNA yield was 0.5 μg (range 0.01 – 2.05 μg). The median RIN of samples that were fresh-frozen within 30 minutes after sampling was 6.7 (range 4.2 – 8.9), compared to 2.5 (1.8 – 4.5) for samples that were fresh-frozen after 2 hours.

Conclusions
The results from this study show that obtaining dsDNA and RNA for next-generation sequencing from endoscopic oesophageal adenocarcinoma samples is feasible. Tumour percentage and dsDNA/RNA yield and quality emphasize the need for sampling multiple biopsies and minimizing the delay before fresh-freezing.
INTRODUCTION

The last decade of biomedical science is characterized by major technological advances. The increasing availability of tissue-based microarrays and, more recently, sequencing technology enable us to analyze tissue genome and transcriptome with unprecedented speed at relatively low costs.\(^1\) Due to these advances, it is likely that large scale DNA and RNA analyses of tumour samples will be incorporated not only in future research, but also in clinical practice. A high quality preserved tissue in combination with well-documented clinical data is considered a prerequisite for the generation of reliable data. Earlier papers on tissue collection and biobanking have mainly focused on the methodology of biobanking using surgical resection specimens.\(^2\)\(^-\)\(^5\) Currently, the standard potentially curative treatment of oesophageal cancer consists of neoadjuvant chemo(radio)therapy followed by surgical resection.\(^5\)\(^\)\(^,\)\(^7\) The collection of untreated tumour samples is therefore limited to endoscopic biopsies. The small size of these biopsies poses a challenge in obtaining sufficient amounts of high quality DNA and RNA. Several studies on gene expression profiling of oesophageal cancer using endoscopic biopsies have been published.\(^9\)\(^-\)\(^12\) However, detailed descriptions of sample collection and work-up are lacking in current literature. Such descriptions are invaluable in guiding biobanking initiatives and future experimental study design in oesophageal cancer. The aim of the current study was to assess the feasibility of preparing untreated oesophageal adenocarcinoma endoscopic biopsies towards DNA and RNA samples suitable for next-generation sequencing. This information is important, since it can help in guiding future and ongoing biobanking initiatives which are essential for studies aimed at genomically characterizing this often lethal cancer.

METHODS

Patients
In September 2008, our prospective study started with collecting endoscopic biopsies of oesophageal cancer for genomic profiling. Patients with oesophageal cancer who presented with potentially curable disease were eligible for the study. In the current study, only patients with oesophageal adenocarcinoma who had undergone neoadjuvant chemoradiotherapy followed by surgical resection were included. Clinical patient data were collected in a prospectively maintained database. Biopsy samples were collected after oral and written informed consent was obtained. The study was approved by the ethical committee.

Sample collection
During endoscopy, four tumour biopsy samples and two biopsy samples from normal oesophageal tissue were obtained using a 2.2 mm biopsy forceps. The samples were placed on gauze with NaCl 0.9% to prevent dehydration, and preferably immediately transported to the pathology department and fresh frozen in liquid nitrogen. The time of fresh-freezing was recorded. All samples were stored at -80 °C until further processing.
Tumour percentage

The tumour percentage in each biopsy sample was estimated by the following method: Using a cryostat at -20°C up to twenty slides of 30 μm thickness were prepared and immediately stored at -80°C. Before and after these 20 slides, an 8 μm slide was prepared for hematoxylin and eosin (H&E) staining. The tumour percentage was scored in both 8 μm slides by a pathologist. The average of the tumour percentage in both 8 μm slides was considered the tumour percentage in the biopsy sample. When the average tumour percentage was below 50%, a second biopsy sample was processed, and so on until a sample with a tumour percentage of at least 50% was found.

Figure 1. Work-up of endoscopic biopsy samples from patients with oesophageal adenocarcinoma who were treated with chemoradiotherapy followed by surgery

DNA and RNA extraction and quality control

Due to the limited availability of tumour tissue, DNA and RNA were simultaneously extracted from every sample using the DNA/RNA AllPrep microkit (Qiagen, Basel, Switzerland), according to the manufacturer’s instructions. After extraction, DNA samples were kept at 4°C and RNA samples were stored at -80°C. DNA and RNA quantity was first measured with the Nanodrop 2000 spectrophotometer. When the total RNA yield was less than 0.1 μg, a second biopsy sample with a tumour percentage ≥ 50% -if available- was used for RNA isolation with the Qiagen RNeasy kit. Double-stranded DNA (dsDNA) quantity and RNA quality was analyzed on the Agilent 2100 Bioanalyzer. Currently, the most common method to assess RNA integrity is by calculating the RNA integrity number (RIN) from an electrophoretic trace. This number varies between 1 (totally degraded RNA) and 10 (intact RNA). DNA and RNA input recommendations for next-generation sequencing differ between protocols. Double-stranded DNA and RNA with little to no signs of degradation (RIN > 8) are preferably used. For the purpose of this study, the cut-
of for a sufficient quantity of high quality DNA was set at a minimum of 1.0 μg dsDNA. For RNA this was at least 0.1 μg RNA with a RIN of at least 8. These numbers are according the requirements suggested in the Illumina TruSeq DNA and RNA sequencing library preparation protocols.

Statistics

Differences in the median RIN between samples with a different interval between sampling and fresh-freezing were compared using the Kruskal–Wallis test. All tests were two-sided and a P value < 0.05 was considered statistically significant. SPSS statistical software (SPSS, Chicago, IL, version 20.0) was used for analysis.

Figure 2. Percentage of 69 patients in whom a given number of biopsy samples was used before a sample with a tumour percentage ≥ 50% was obtained

Percentages do not add up to 100% due to rounding

RESULTS

Between September 2008 and May 2013, endoscopic biopsy samples of 118 patients with oesophageal cancer who were referred for potentially curative treatment were obtained according to the study protocol. Twenty-eight patients with squamous cell carcinoma, one patient with a neuroendocrine carcinoma and one patient with an undifferentiated carcinoma were excluded from the analysis. Of the remaining 88 patients diagnosed with adenocarcinoma, 10 patients appeared to have metastatic disease during further diagnostic work-up and were treated with palliative therapy. Seven patients were treated with definitive chemoradiotherapy. One patient did not complete chemoradiotherapy because of severe pulmonary complications. In another patient, fresh frozen material had to be used for routine diagnostics. This left a homogeneous cohort of 69 patients with oesophageal adenocarcinoma included in this study (Figure 1).
A. and B. (magnified): tumour biopsy with a considerable amount of normal stroma (tumour percentage below 50%)
C. and D. (magnified): tumour biopsy with a tumour percentage above 50%

Tumour percentage
In 33 of 69 study patients (48%), more than one tumour biopsy was required to obtain a sample with a tumour percentage of at least 50%. In total, 129 biopsy samples were used in this study: one biopsy was sufficient for a tumour percentage ≥50% in 36 patients (52%), a second biopsy was necessary in 16 patients (23%), a third biopsy in 7 patients (10%), and a fourth biopsy in 5 patients (7%) (Figure 2). In the endoscopic biopsies of another 5 patients (7%), the tumour percentage was below 50% in all four samples. This left 64 samples that were suitable for subsequent DNA and RNA isolation. Low tumour percentages were mainly caused by normal epithelium, stromal tissue and/or leukocyte infiltration (Figure 3a and b).

DNA/RNA quantity and quality
DNA and RNA quantity and quality results are summarized in Table 1. First, a protocol was used that allows isolation of both DNA and RNA from the same sample (DNA/RNA AllPrep kit). In 57 of 64 samples (89%), the dsDNA quantity was at least 1.0 μg. In 18 of 64 samples (28%), RNA quantity was lower than 0.1 μg. In 12 of these patients, a second biopsy with a tumour percentage ≥ 50% was available. In all these samples, more than 0.1 μg RNA was isolated with the RNeasy kit. The median RIN of all 58 RNA samples with a yield higher than 0.1 μg was 5.5 (range 1.8 – 8.9). Only 4 of 58 samples (7%) had a RIN
Table 1. DNA and RNA quantity and quality using the Qiagen Allprep and RNeasy kits

<table>
<thead>
<tr>
<th></th>
<th>DNA/RNA AllPrep kit</th>
<th>RNeasy kit*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 64)</td>
<td>(N = 12)</td>
</tr>
<tr>
<td>dsDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Concentration (ng/μl)(^1)</td>
<td>47 (2 – 240)(^\dagger)</td>
<td>-</td>
</tr>
<tr>
<td>- Total yield (μg)(^1)</td>
<td>2.4 (0.1 – 12.0)(^\dagger)</td>
<td>-</td>
</tr>
<tr>
<td>- Number (%) of samples with yield > 1.0 μg(^1)</td>
<td>57 (89%)</td>
<td>-</td>
</tr>
<tr>
<td>RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Concentration (ng/μl)(^2)</td>
<td>33 (1 – 808)(^\dagger)</td>
<td>75 (25 – 194)(^\dagger)</td>
</tr>
<tr>
<td>- Total yield (μg)(^2)</td>
<td>0.5 (0.01 – 11.0)(^\dagger)</td>
<td>3.1 (1.2 – 9.7)(^\dagger)</td>
</tr>
<tr>
<td>- Number (%) of samples with yield > 0.1 μg</td>
<td>46 (72%)</td>
<td>12 (100%)</td>
</tr>
<tr>
<td>- RIN(^2)</td>
<td>5.5 (2.3 – 8.4)(^\dagger)</td>
<td>5.7 (1.8 – 8.9)(^\dagger)</td>
</tr>
</tbody>
</table>

dsDNA, double-stranded DNA
* From twelve patients in whom the RNA yield was less than 0.1 μg using the AllPrep kit, a second biopsy with sufficient tumour was available for RNA isolation using the RNeasy kit.
\(^\dagger\) Median (range)
\(^1\) Concentration and total yield according to the Agilent 2100 Bioanalyzer
\(^2\) Concentration and total yield according to the Nanodrop 2000 spectrophotometer

above 8. Thirty samples (52%) had a RIN between 5 – 8 and in 24 samples (41%) the RIN was lower than 5.
From 52 samples, the time interval between biopsy sampling and fresh-freezing was available. RIN values decreased significantly with increased time periods before fresh-freezing of biopsy samples (Figure 4). In 18 of 24 samples (75%) frozen after 1 hour, the RIN was below 5.

DISCUSSION

The current study results provide a detailed description of our prospective biobanking efforts with untreated oesophageal cancer endoscopic biopsies. Several important issues were encountered which should be taken into account in future biobanking projects. Low tumour percentages in biopsy samples led to a considerable sample loss. In 5 of 69 (7%) patients, the tumour percentage was below 50% in all (four) endoscopic biopsy samples obtained for research purposes. In 57 of 64 samples (89%) with a tumour percentage of at least 50%, more than 1.0 μg of dsDNA could be isolated. Sufficient RNA (at least 0.1 μg) was isolated from 58 of 64 samples (91%). A time delay between sampling and fresh-freezing of biopsies had a negative effect on RNA quality: in 18 of 24 samples (75%) frozen after 1 hour RNA showed considerable degradation (RIN lower than 5).

Tumour percentage

When studying DNA from tumour tissue, these samples are preferably representative with an adequate number of tumour cells. Lower tumour percentages can significantly decrease the sensitivity of detecting genomic aberrations by diluting tumour DNA with DNA from normal tissue. This is exemplified in a study with colon cancer samples in
which the ability to correctly identify KRAS mutations was diminished with a decreasing tumour percentage. In contrast, the effect of normal tissue 'contamination' on RNA gene expression profiling has been questioned. In most studies aimed to develop prognostic gene expression signatures, only samples with a high (> 50%) percentage of tumour cells are allowed. However, in a study validating the 70-gene breast cancer prognosis signature, the minimum tumour percentage was decreased to 30% since this figure also generated a reliable read-out. Consequently, no definite thresholds are defined but most in most studies samples with a minimum tumour percentage between 50-70% are used. Due to the introduction of neoadjuvant treatment strategies, untreated oesophageal cancer tissue samples can only be obtained by endoscopic biopsy. The acquisition of representative tumour samples during endoscopy is more challenging than that of adequate material from surgical resection specimens, but methods to estimate the tumour percentage in oesophageal biopsy samples vary widely in current literature. In some studies, the tumour percentage was assessed on each biopsy sample.

Figure 4. Effect of a time interval between sampling and fresh-freezing on RNA quality of endoscopic biopsies of oesophageal adenocarcinoma

Numbers above box plots display the median (range) RNA integrity number
RIN, RNA integrity number
* Kruskal – Wallis test
used for downstream applications,11,12 while in other studies an adjacent biopsy sample was used.8,10 Our results underline the need to assess the tumour percentage in all biopsy samples used for downstream applications. Low tumour percentages in biopsy samples led to a considerable sample loss, emphasizing the need to obtain multiple biopsies.

DNA/RNA quantity and quality
Assessing the quantity and quality of DNA/RNA is pivotal in determining which protocol is used for preparing the samples for sequencing. Currently, intact double-stranded DNA is needed for next-generation sequencing. For RNA sequencing, protocols allowing the input of minute quantities of degraded RNA have been developed, but sequencing results are still better with protocols requiring intact RNA.16 Since archival formalin-fixed paraffin embedded tissue usually yields degraded DNA and RNA, fresh-frozen specimens are preferred. In the current study, the majority of samples yielded a sufficient quantity (> 1.0 μg) intact dsDNA. In contrast, RNA was degraded in a large number of samples. Although it is generally believed that fresh tissue should be frozen as quickly as possible to prevent RNA degradation, there are some conflicting results in current literature. In two studies with resection specimens from colon and pancreatic cancer, a prolonged time period before fresh-freezing did not adversely affect RNA quality.3,4 These results are in contrast to a study by Hong et al., in which colorectal carcinoma biopsy samples obtained from resection specimens were left at 4 °C for 10 to 90 minutes before fresh-freezing in liquid nitrogen.17 The mean RIN for samples frozen after 10 minutes was 7.5, compared to 4.2 for samples frozen after 90 minutes. Moreover, 18 of 20 samples (90%) of samples frozen after 90 minutes had a RIN < 7. In a study by Maher et al., 25 endoscopic biopsy samples from oesophageal cancer patients were collected for gene expression analysis.10 They report that in 13 of 25 samples (52%), RNA of sufficient quantity and quality was obtained for microarray analysis. In this study, biopsy samples were immediately placed in an RNA protective agent (RNAlater) before fresh-freezing. Taken together, a short time interval between tissue sampling and fresh-freezing seems especially important for small endoscopic biopsy samples.

The use of different protocols for DNA and RNA isolation adds complexity to the interpretation of the current literature on biobanking. Protocols allowing simultaneous isolation of DNA and RNA greatly increase the efficient use of valuable tissue, but the performance regarding DNA and RNA yield and quality in comparison to dedicated kits has been questioned. In a study by Mathieson et al., the AllPrep kit was compared with two dedicated kits for DNA (Puregene) and RNA (RNeasy) isolation.18 The dedicated DNA isolation kit performed better than the AllPrep kit in yield and quality, but RNA yield and quality were comparable between the AllPrep and RNeasy kit. In the current study, the RNeasy kit when the total RNA yield with the AllPrep kit was < 0.1 μg and another biopsy sample with an adequate tumour percentage was available. The RNA yield from these samples was higher, but RNA quality still differed considerably. It was not the goal of the current study to compare the efficiency of different kits and protocols and these results
need to be interpreted with caution. Still, it is possible that the results of DNA and RNA isolation can be improved when dedicated kits are used, with the use of more tissue as a likely trade-off.

Concluding remarks
In conclusion, the results from this study show that obtaining high quality DNA and RNA from endoscopic oesophageal adenocarcinoma samples is feasible, but requires thorough logistical planning. Both the tumour percentage in biopsy samples and DNA/RNA yield and quality emphasize the need for sampling multiple biopsies and minimizing the time delay before fresh-freezing in the biobanking process of oesophageal adenocarcinoma.
REFERENCES