A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

Konakov, S.A.; Krzhizhanovskaya, V.V.

DOI
10.1088/1742-6596/574/1/012144

Publication date
2015

Document Version
Final published version

Published in
Journal of Physics. Conference Series

License
CC BY

Citation for published version (APA):
A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/574/1/012144)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 145.18.165.18
This content was downloaded on 26/01/2015 at 13:16

Please note that terms and conditions apply.
A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

S A Konakov 1, V V Krzhizhanovskaya 1,2,3

1 St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia
2 University of Amsterdam, 1098 XH Amsterdam, The Netherlands
3 ITMO University, 197101, St. Petersburg, Russia

E-mail: konakov.st@gmail.com

Abstract. We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the «Plasmalab System 100» reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

1. Introduction

Silicon nitride thin films are used in solar cells, nano- and microelectronics, and other micro-technologies [1]. Plasma enhanced chemical vapor deposition (PECVD) at low-pressure RF glowing discharge is the most applicable technology for silicon film production because a high-quality hydrogenated amorphous silicon nitride (SiN_xH_y) can be obtained on large-area surface at low temperature [2]. Chemical composition and physical properties of the deposited films depend on process parameters in a highly non-linear way. It is extremely difficult to predict film properties before deposition, and experiments are expensive and time-consuming. Multiphysics computer simulation is the most efficient way for technology optimization.

The goal of our research is the development of a reliable model and investigation of correlation between process parameters and chemical composition of SiN_xH_y. We modeled a real PECVD reactor, and used experimental results and our previous studies [3, 4, 5] to build the chemical kinetics model. For process optimization at the macroscale level we have chosen a continuum modeling approach. Other researchers also used this approach to simulate silicon nitride PECVD from silane (SiH4), ammonia (NH3), nitrogen (N2) and argon (Ar) [6, 7, 8], but they did not consider all four source gases together, as presented in our work. Recent progress in silicon nitride atomic structure investigation by Fourier transform infrared (FTIR) spectroscopy [9, 10] allowed us to develop a new model of surface chemistry mechanism.
2. Mathematical model
A continuum modeling approach is justified at Knudsen numbers $Kn \sim 5 \cdot 10^{-3}$ calculated for our conditions. The PECVD processes require modeling gas dynamics, heat and mass transfer, electromagnetism and chemical kinetics. Mass conservation law (1) and Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture (2) describe the gas dynamics in the process chamber:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0,$$

$$\frac{\partial (\rho u_i)}{\partial t} + \nabla \cdot (\rho \mathbf{V} u_i) = -\frac{\partial p}{\partial x_i} + \nabla \cdot (\mu \nabla u_i) \quad i = x, y, z,$$

where ρ is density, t is time, \mathbf{V} is velocity vector, u_i is projection of velocity vector on i axis, μ is the kinematic viscosity. Heat transfer equation can be written as

$$\frac{\partial (\rho \varepsilon)}{\partial t} + \nabla \cdot (\rho \mathbf{V} \varepsilon) = \nabla \cdot (k_{\text{eff}} \nabla T) + \frac{\partial p}{\partial t} + S_t,$$

where h_o is enthalpy, k_{eff} is thermal conductivity, T is temperature, p is pressure, S_t is the heat source due to chemical reactions. A model of capacitively coupled plasma (CCP) is based on Maxwellian electron energy distribution function. Electron balance is given by

$$\frac{\partial n_e}{\partial t} + \nabla \cdot \mathbf{J}_e = S,$$

where n_e is electron density, \mathbf{J}_e is electron flux and S is a source of electrons due to chemical reactions. Energy balance in plasma can be written as

$$\frac{3}{2} \frac{\partial}{\partial t} (n_e T_e) + \nabla \cdot (\frac{5}{2} T_e \mathbf{J}_e - \chi \nabla T_e) = P - P_c$$

where T_e electron temperature, χ is a constant for electron termodiffusion, P is power adsorbed in plasma and P_c is an energy loss due to electron impact reactions. The spatial distribution of electrostatic potential φ is described by the Poisson equation:

$$-\nabla \cdot \varepsilon_r \nabla \varphi = e (\sum_i q_i n_i - n_e),$$

where ε_r is relative permittivity, q_i is charge of ions, n_i is ion density, e is elementary charge. Mass transfer equation for the i^{th} species can be written as

$$\frac{\partial}{\partial t} (\rho Y_i) + \frac{\partial}{\partial x_j} (\rho u_j Y_i) = \frac{\partial}{\partial x_j} J_{ij} + M_i \omega_i,$$

where ρ is density, Y_i is a mass fraction of i^{th} species, J_{ij} is projection of diffusion flux vector on j axis, M_i is molar mass of i^{th} species, ω_i is chemical reaction rate.

3. Model of chemical kinetics in plasma
The model of chemical processes in plasma describes reactions in the bulk and on the surface. For the gas phase processes we considered 24 species: source gases Ar, N$_2$, NH$_3$, SiH$_4$, ions N$_2^+$, NH$_3^+$, NH$_4^+$, Ar$^+$; molecules and radicals H, NH$_2$, NH, SiH$_3$, SiH$_2$H$_2$, Si$_2$H$_6$; aminosilanes H$_2$Si(NH)$_2$, HSi(NH)$_3$, HSi(NH$_2$)$_2$, Si(NH$_2$)$_2$, Si(NH$_3$)$_2$, Si(NH$_2$)$_3$, Si(NH$_3$)$_3$; excited state of argon Ar* and electron e. The model of 37 bulk chemical reactions is based on [7, 8]. The cross-sections of electron impact reactions are taken from [11].

A deposition model consists of three stages: (1) adsorption to the surface, (2) diffusion along the surface to the next reactant and (3) embedding of products into the substrate. We considered the most stable species that can be adsorbed on the surface: H$_2$Si(NH$_2$), HSi(NH$_2$)$_2$, HSi(NH$_2$)$_3$, NH$_2$, Si(NH$_2$)$_2$, SiH$_3$, SiH$_4$. Sticking coefficients defining the probability of adsorption were taken from [7, 8]. The surface reaction model was developed based on the experimental data of Fourier transform infrared spectroscopy (FTIR) [9, 10]. An example of the spectrum decomposition into the Gaussian components is shown in Figure 1. It was found that silicon nitride films are composed of four functional groups with chemical bonds Si–Si–N, H–Si–N$_2$, SiH$_4$ and H–Si–N$_3$. We suggested 7 reactions between the adsorbed components producing these molecular groups and found reaction rates by matching the simulation results with experimental data. Another 14 reactions describe adsorption to the surface and ions neutralization.
Figure 1. Infrared spectrum and Gaussian components for the Si–N absorption bands. Experiment.

Figure 2. Simulation result: distribution of electron density in a PECVD reactor. Flow rate of SiH$_4$-Ar mixture is 400 sccm, N$_2$ is 600 sccm and NH$_3$ is 20 sccm.

4. Implementation and results

A finite volume method on a regular rectangular computational mesh was used for solving equations (1)-(7) by the CGS-Pre iterative solver. 20 time steps were performed in each RF discharge cycle with a maximum of 500 numerical iterations per time step. Typical simulation time was 18 hours per experiment. We simulated a two-dimensional geometry of «Plasmalab System 100» PECVD reactor by Oxford Instruments Plasma Technology. The frequency of CCP discharge was 13.56 MHz, power 20 W, temperature 350 ºC, and pressure 0.65 Torr.

We carried out two series of experiments: In the first one we varied the total gas flow rate, keeping the ratio of source gases constant. In the second series we varied the flow rate of silane-argon mixture under the constant flow rate of other gases: 600 sccm of N$_2$ and 20 sccm of NH$_3$. An example of 2D distribution of electron density in a simulated PECVD reactor is shown in Figure 2. A comparison of simulation results with experimental data is presented in Figures 3 and 4.

Figure 3. Influence of the total gas flow on deposition rate. Simulations and experiments.

Figure 4. Influence of the silane flow on deposition rate. Simulations and experiments.

Maximum discrepancy between the simulated deposition rate and experimental data is less than 5%, but further model fine-tuning is still possible. Two important observations can be made: (1) The deposition rate grows a little (by 10%) with a four-fold increase in the total gas flow rate at fixed source gas proportion. (2) The influence of silane flow rate is non-linear, with a maximum of deposition rate at 200 sccm. At lower silane flow rates, the deposition rate is lower because there are fewer silicon atoms for producing aminosilanes. At higher flow rates, low deposition rate is explained by higher film density and possibly by higher silane formation and removal by the flow.

Chemical composition of the films in the second series is shown in Figures 5 and 6. Simulation results are in good agreement with the experimental data. The Si$_3$–Si–N fraction increases with growing SiH$_4$ flow rate (Figure 5), thus increasing the Si/N ratio (Figure 6). The Si$_3$N$_4$ and H$_2$–Si–N$_2$ fractions depend non-linearly on the silane flow rate, thus allowing to find process parameters that provide certain film properties.
Figure 5. Influence of silane gas flow on film composition: fractions of the four groups of chemical bonds. Simulations and experiments.

Figure 6. Influence of silane gas flow on film composition: fractions of atoms in the film. Simulations and experiments.

5. Conclusions
We developed and validated a mathematical model of plasma enhanced chemical vapor deposition (PECVD) of hydrogenated silicon nitride SiN$_x$H$_y$ thin films. The model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. A new model of surface chemistry has been suggested, based on the latest experiments and spectral analysis of films deposited under different process conditions. The model correctly predicts the deposition rate and film chemical composition, thus it can be used for optimization of PECVD technology.

Acknowledgements. This work was supported by the Government of Russian Federation (contract 11.G34.31.0019 under Leading Scientist Programme and Grant 074-U01 under "5-100-2020" Programme) and by the Georgius-Agricola-Scholarship program by TU Dresden. We specially thank Dr. Lars Rebohle from the Institute of Ion-Beam Physics and Materials Research of Helmholtz-Zentrum Dresden-Rossendorf for providing experimental facilities and for his great support.

References