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Abstract: We first briefly summarize several well-known properties of regular tessellations of the
three two-dimensional maximally symmetric manifolds, E2, S2, and H2, by bounded regular tiles.
For instance, there exist infinitely many regular tessellations of the hyperbolic plane H2 by curved
hyperbolic equilateral triangles whose vertex angles are 2π/d for d = 7, 8, 9, . . . On the other hand, we
prove that there is no curved hyperbolic regular tetrahedron which tessellates the three-dimensional
hyperbolic space H3. We also show that a regular tessellation of H3 can only consist of the hyperbolic
cubes, hyperbolic regular icosahedra, or two types of hyperbolic regular dodecahedra. There exist
only two regular hyperbolic space-fillers of H4. If n > 4, then there exists no regular tessellation
of Hn.

Keywords: Euclidean space; spherical and hyperbolic geometry; hypersphere; n-simplex; n-cube;
icosahedron; 120-cell; 600-cell

MSC: 51M20

1. Introduction

There exist three three-dimensional maximally symmetric manifolds: the Euclidean
space E3, the hypersphere S3, and the hyperbolic space H3, see e.g., ([1], Chapt. 13, [2],
p. 721). There are no other maximally symmetric manifolds up to scaling. One way to
imagine these manifolds is to tile them with congruent bounded regular polyhedral cells.
For S3 and H3, these cells are obviously curved. Their edges are geodesics and their faces
are formed by families of geodesics.

For simplicity, the term “regular” will be often omitted from now on. We shall deal not
only with the three-dimensional case but, for any integer n ≥ 1, we shall look for all regular
face-to-face tessellations of the n-dimensional maximally symmetric manifolds, En, Sn, and
Hn, by congruent bounded regular polytopic cells (Euclidean, spherical, or hyperbolic).
The unit hypersphere Sn is defined as follows:

Sn = {x ∈ En+1 | |x| = 1},

where | · | denotes the standard Euclidean norm. Note that the Gaussian sectional curvature
of Sn is equal to 1 at each point. The hyperbolic space Hn is the maximally symmetric
n-dimensional Riemannian manifold, whose sectional curvature is equal to (−1) at each
point and each pair of principal directions. This manifold is simply connected.

Now, we briefly summarize some well-known facts about regular polytopes in Eu-
clidean space En that will be used later. In E2, there exist infinitely many regular polygons:
equilateral triangles, squares, pentagons, etc. Nevertheless, in E3 there exist only five
regular polyhedra (called Platonic bodies) whose faces are congruent regular polygons, and
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the same number of faces meet at every vertex. Denote by v, e, and f the number of their
vertices, edges, and faces, respectively. Then the famous Euler formula,

f + v = e + 2, (1)

is clearly valid. The Platonic bodies can be arranged into dual pairs with faces and vertices
interchanged (see Table 1). Note that the regular tetrahedron is self-dual.

The number d of edges coming together at every vertex is said to be the vertex degree.
Thus, we obtain

dv = 2e. (2)

It is easy to find that the dihedral angles between two adjacent faces of the tetrahedron and
octahedron in E3 are (see [3])

α1 = arccos 1
3 ≈ 70.529◦ and α3 = 180◦ − α1 ≈ 109.471◦, (3)

respectively. The dihedral angle of the dodecahedron is

α4 = 180◦ − arctan 2 ≈ 116.565◦ (4)

and of the icosahedron

α5 = arccos
(
−

√
5

3

)
≈ 138.19◦. (5)

Table 1. Five Platonic bodies in E3. Here, f is the number of their faces, e is the number of their
edges, v is the number of vertices, d is the degree of each vertex, α is the dihedral angle (rounded to
integers) between two adjacent faces, Si denotes for the symmetric group of all permutations and Ai

the alternating group of all even permutations of i elements (see [4], p. 86).

Name f e v d α Point Group

tetrahedron 4 triangles 6 4 3 71◦ A4
cube 6 squares 12 8 3 90◦ S4

octahedron 8 triangles 12 6 4 109◦ S4
dodecahedron 12 pentagons 30 20 3 117◦ A5
icosahedron 20 triangles 30 12 5 138◦ A5

For n > 3, we may define a regular polytope in En by induction: all its (n − 1)-
dimensional facets are congruent regular polytopes and all of its vertices have the same
vertex degree.

If n = 4, then there exist exactly six regular polytopes, see Table 2. In this case, relation
(2) holds again, and the following Euler–Poincaré formula,

f + v = e + c, (6)

is valid. Here, the symbol c stands for the number of congruent polyhedral cells on their
surface. They can only be from Table 1. The other symbols have the same meaning as for
n = 3.

Theorem 1. For every n ≥ 5, there exist exactly three regular polytopes in En, namely, the
n-simplex, the n-cube, and the n-orthoplex.

See [5], and for their volumes see ([6], pp. 452–453).
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Table 2. Regular polytopes in E4 discovered by Ludwig Schläfli. The symbol c stands for the number
of polyhedral cells on their surfaces. The other symbols have the same meaning as in Table 1.

Name c f e v d Duality

4-simplex 5 tetrahedra 10 10 5 4 self-dual
4-cube 8 cubes 24 32 16 4 dual to 4-orthoplex

4-orthoplex 16 tetrahedra 32 24 8 6 dual to 4-cube
24-cell 24 octahedra 96 96 24 8 self-dual
120-cell 120 dodecahedra 720 1200 600 4 dual to 600-cell
600-cell 600 tetrahedra 1200 720 120 12 dual to 120-cell

2. Two-Dimensional Regular Tessellations

Below we present several well-known results for the dimension n = 2, which will
be used in Section 3 to derive local properties of regular tessellations for n = 3. A regular
polygon in E2, S2, and H2 is a bounded (possibly curved) polygon all of whose sides are
geodesics of the same length and all its vertex angles have the same size. In Euclidean
plane E2, there exist, up to translation, rotation, reflection, and scaling, only three regular
tessellations; namely, by equilateral triangles with vertex degree d = 6, by squares with
d = 4, and by regular hexagons with d = 3 (see Figure 1).

Figure 1. The hexagonal tessellation of E2 is dual to the triangular tessellation and vice versa.

Consider now a Platonic body, all of whose vertices belong to S2. The radial projection
(sometimes also called the central orthographic projection) from the center of S2 maps
all edges onto S2. This generates five regular tessellations of S2 by spherical polygons
with at least three sides. Their vertices are consequently connected by geodesics, and the
sum of all angles around every vertex equals 360◦. These regular tessellations are called
the projected tetrahedron, the projected octahedron, the projected icosahedron, the projected cube,
and the projected dodecahedron. There exist, however, other regular tessellations of S2 (see
Figure 2).

Theorem 2. Every regular tessellation of S2 is obtained by the radial projection of all five Platonic
bodies onto S2 and by connecting two antipodal points by d ≥ 2 great semicircles, ending at these
vertices with mutual angle 2π/d.

Proof. Formulas (1) and (2) are evidently also valid for each regular tessellation of the
sphere S2. Furthermore, for p-gonal spherical tiles, we find that

2e = f p. (7)
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Multiplying (1) by 2d and substituting (2) and (7), we get the following necessary condition:

p f (d − 2) = 2d( f − 2). (8)

Hence, every regular tessellation of S2 has to satisfy the Diophantine Equation (8).
First, let p ≥ 6. Then, we find that (8) has no solution for d ≥ 3, since the following

relation,

0 = p f (d − 2)− 2d( f − 2) ≥ 6 f d − 12 f − 2d f + 4d = 4d( f + 1)− 12 f ≥ 12( f + 1)− 12 f = 12,

is impossible.
The remaining cases can be investigated by inspection. By equality (8) for p = 5,

we obtain 3d f = 10 f − 4d < 10 f , i.e., d ≤ 3, which yields only one solution, d = 3 and
f = 12. Similarly, for p = 4 we also get only one solution d = 3 and f = 6. For p = 3 there
exist three solutions, d ∈ {3, 4, 5} and f ∈ {4, 8, 20}, respectively. We find that the above
solutions can be obtained by the radial projection of all five Platonic bodies onto the sphere
S2 (cf. Figure 2).

Finally, for p = 2, the above Diophantine Equation (8) has infinitely many solutions
for any d = f ≥ 2. Here, the case d = f = 2 corresponds to two hemispheres.

Figure 2. Regular tessellations of S2. The projected tetrahedron in the center is self-dual. The projected
cube is dual to the projected octahedron and the projected dodecahedron is dual to the projected
icosahedron. The hosohedron tessellation depicted on the right consists of d ≥ 2 congruent lune tiles
(2-gons). Its dual is on the left. It is formed by two hemispheres.

To summarize the above result, there are only the following regular tessellations of
the sphere S2 (see Figure 2):

• By 12 spherical regular pentagons for d = 3;
• By 6 spherical squares for d = 3;
• By 4, 8, and 20 spherical equilateral triangles for the vertex degree d ∈ {3, 4, 5},

respectively;
• By d = f > 2 spherical 2-gons with mutual vertex angle 2π/d;
• By f = 2 hemispheres.
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Remark 1. The size of the foregoing spherical space-fillers of S2 cannot be chosen arbitrarily (as in
E2), because they must fit to the unit sphere. For instance, there are three different equilateral trian-
gular space-fillers of S2 whose vertex angles are 120◦, 90◦, and 72◦ (see Figure 2). Obviously, their
edges have uniquely determined lengths, π − arccos(1/3), π/2, and 2 arctan(1/τ), respectively,
where τ = (

√
5 + 1)/2 is the golden section. In higher dimensional tessellations of Sn and Hn, for

any n ≥ 2, all edges also have uniquely defined lengths.

The dual tessellation of a regular tessellation is formed by taking the center of each
polygon (possibly curved) as a vertex and joining the centers of neighboring polygons
by geodesics (see e.g., Figure 1). Thus, the existence of a dual tessellation is obvious.
The projected dodecahedron and the projected icosahedron posses the global five-fold
symmetry in every vertex. On the other hand, no uniform crystal mesh in En for any n ≤ 3
exists with a global five-fold symmetry, but for n ≥ 4, a global five-fold symmetry can be
achieved (see [7]). According to ([8], p. 135), the regular tessellations of the hyperbolic plane
H2 may have a global seven-fold symmetry, eight-point symmetry, etc., in every vertex.

The hyperbolic plane H2 has somewhat non-intuitive geometry. In particular, Hilbert
proved (see [9]) that H2 cannot be isometrically imbedded into E3. In 1955, Blanuša [10]
proved that H2 can be isometrically imbedded into E6. Nevertheless, it is not known
whether the dimension 6 can be reduced.

Therefore, we should somehow deform the hyperbolic plane to get some idea of
what its regular tessellations look like (see [11]). For instance, the hyperbolic plane can be
represented by the interior of the unit circle k (the so-called Poincaré disk) in E2. Let us point
out that its geodesics are circular arcs that are perpendicular to k (cf. Figure 3). Note that
these arcs may degenerate to a straight line passing through the center of k. One can derive
that there exists exactly one circular arc passing through two different arbitrary points, A
and B, that is perpendicular to the boundary circle k at its endpoints P ∈ k and Q ∈ k. The
circular arc has its center outside k (if it is not a straight line). The distance between the
points A and B is defined, e.g., in ([3], p. 163).

k

k’

α β

γ

P Q
C

A
B

Figure 3. (Left): The shortestconnections are represented by circular arcs (or straight lines passing
through the center). They are orthogonal to k at their endpoints. Lambert’s formula states that
α + β + γ < 180◦ in the curved triangle ABC. (Right): Regular tessellation of the Poincaré disk by
hyperbolic squares. The angle at each of their four vertices is only 60◦.

Note that the length of a circle k′ (with radius r) concentric to k is larger than 2πr, see
the left part of Figure 3. This is similar to measuring the length of a circle around a saddle
point on some curved surface.

There exist infinitely many different tessellations by regular curved hyperbolic poly-
gons of H2; namely:
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• by hyperbolic equilateral triangles with vertex degree d ≥ 7; more precisely, for every
d ≥ 7 there exists one equilateral hyperbolic triangle with vertex angles 2π/d that
tile H2,

• By hyperbolic squares for any d ≥ 5 (see the right part of Figure 3);
• By hyperbolic pentagons for any d ≥ 4;
• By hyperbolic hexagons for any d ≥ 4; and
• By hyperbolic heptagons, octagons, etc., for any d ≥ 3.

Note that d stands also for the number of hyperbolic polygons meeting at every vertex.
An analogue of the hosohedron tessellation from Figure 2 in two-dimensional Eu-

clidean space E2 consists of congruent parallel strips of four quadrants, etc. Since such
individual tiles are unbounded, we shall not take them into account. For the same reason,
we shall not consider an analogue of the hosohedron tessellation in the hyperbolic plane H2.

3. Three-Dimensional Regular Tessellations

David Brander [12] proved that, for any n > 1, the hyperbolic space Hn can be
isometrically imbedded into E6n−6. An open question is whether the huge dimension
6n − 6 is optimal or if it can be reduced. Note that there is a local isometric imbedding from
Hn to E2n−1, see [13].

Regular face-to-face tessellations of En, Sn, and H3 for n > 1 are formed by congruent
bounded regular polytopic cells that are possibly curved. They can again be defined by
induction, namely, its (n − 1)-dimensional facets are regular cells (possibly curved) and all
their vertices have the same vertex degree.

The dual tessellation of a given three-dimensional congruent regular tessellation is
defined as in Section 2.

Lemma 1. For any regular tessellation there exists its dual.

Lemma 2. Let d be the vertex degree of a three-dimensional regular tessellation and let each edge be
surrounded by p cells. Then, the faces of the dual space-filler cell are p-gons (possibly curved) and
their number is d.

Proofs of Lemmas 1 and 2 immediately follow from the assumed geometric regularity.

The Euclidean space E3 can be tessellated only by cubes with vertex degree d = 6 and
with m = 8 cubes meeting at each vertex.

Suppose now that all vertices of each Schläfli regular polytope in E4 lie on the unit
hypersphere S3. Then S3 can be tessellated by means of the radial projection of every
polytope from Table 2 into S3. Therefore, v ∈ {5, 8, 16, 24, 120, 600} vertices can be uniformly
distributed on S3 and, in this way, we obtain the following regular tessellations of S3 by
regular spherical cells:

• Five, sixteen, and six-hundred spherical tetrahedral cells with vertex degree d ∈
{4, 6, 12}, respectively. From this, one can derive that m ∈ {4, 8, 20} cells meet at each
vertex and each edge is surrounded by p ∈ {3, 4, 5} cells, respectively. Hence, the
corresponding dihedral angles are 120◦, 90◦, and 72◦. The projected five-cell regular
tessellation is self-dual;

• Eight spherical cubes with d = 4, where m = 4 cubes meet at each vertex and p = 3
cubes surround each edge. This tessellation is dual to the projected tetrahedral 16-cell;

• Twenty-four spherical octahedral cells with d = 8 and with m = 6 cells meeting at each
vertex and p = 3 octahedral cells around each edge. This tessellation is also self-dual.

• One-hundred-and-twenty spherical dodecahedral cells with d = 4. Furthermore,
m = 4 cells meet at each vertex. There are p = 3 dodecahedral cells around each
edge. The dihedral angle α4 given by (4) is very close to 120◦. Therefore, the radial
projection onto S3 only slightly deforms the usual 120-cell. This tessellation is dual to
the projected tetrahedral 600-cell.
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There are, however, other regular tessellations of S3 having only two antipodal points
(as in the two-dimensional case sketched on the right part of Figure 2). Their tiles resemble
slices (we shall again not consider analogues these tessellations in E3 and H3, since the
corresponding tiles are unbounded, see [14]). For instance, the equator of S3 represented
by the sphere S2 is tessellated as shown in Figure 2.

Obviously, the Euler–Poincaré relation (6) holds again for the above regular spherical
tessellations of S3. They can be visualized in E3 by means of the stereographic projection.
Furthermore, notice that the curved icosahedral cell does not appear in the above list of
all regular tessellations of S3, since the corresponding angle α5 given by (5) is greater than
120◦. Therefore, it is a natural candidate for a space-filler of H3. We will again deal with a
hyperbolic geometry as in the two-dimensional case (see [15]).

The hyperbolic space H3 can be visualized similarly to H2 in Figure 3. Instead of the
Poincaré disk, we have to consider the Poincaré ball whose boundary is a two-dimensional
sphere that does not belong to H3. In such a visualization, faces of curved cells are parts of
spherical surfaces. In the next theorem, we show that the manifold H3 can be tessellated,
for instance, by curved icosahedral cells with d = 20 and m = 12 cells meeting at every
vertex. Every edge is surrounded by p = 3 cells. This tessellation is self-dual, since each
edge is surrounded by three cells; i.e., the dual space-filler has triangular faces by Lemma 2
(see the right cell of Figure 4).

Figure 4. Schematic visualizations of curved hyperbolic dodecahedral and icosahedral space-filler
cells of H3. (From Wolfram MathWorld).

Furthermore, let us point out that the quantities d, m, p in Table 3 below attain the
same values as v, f , d from Table 1, respectively, i.e., formulae similar to (1) and (2) hold
again for d, m, p. The proof of the following theorem differs from that presented in ([14],
p. 157).

Theorem 3. There are at most four regular tessellations of H3, namely, by a hyperbolic cube, by
one of the two types of hyperbolic dodecahedra, and by a hyperbolic icosahedron.

Proof. We shall investigate regular tessellations of all three manifolds—E3, S3, and H3—
using properties stated in Sections 1 and 2. A necessary condition for the existence of a
regular tessellation of a three-dimensional maximally symmetric manifold is that local
symmetries represented by the symmetric group S4 or alternating groups A4 and A5 (see
Table 1 and [16]) have to be satisfied at each vertex. The reason is that these manifolds are
locally almost Euclidean at each point. In other words, the intersection of an arbitrarily
small sphere centered at each vertex with a maximally symmetric manifold should allow
for the production of regular tessellations on this sphere (see the first column of Table 3
and Figure 2).
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Obviously, we have only a finite number of different face-to-face regular tessellations
for n = 3 (up to translation, rotation, reflection, and scaling) contrary to the case n = 2.
All admissible cases are summarized in Table 3 except for regular tessellations of S3 that
have only two antipodal points. These exceptional cases can be excluded, since they do not
contribute to the number of regular tessellations of H3 by bounded tiles.

The first row of Table 3 contains all possible types of tiles that can be used, i.e., three-
dimensional cells that can possibly be curved. In this way, we obtain 5× 5 = 25 possibilities
to inspect. They include the six regular tessellations of S3 mentioned above and one regular
tessellation of E3 by ordinary cubes.

Some other cases can be excluded a priori. Consider, for instance, the local projected
dodecahedron in the left lower corner of Table 3. Since its faces are spherical pentagons (see
Figure 2), we immediately find that the corresponding space-filler cannot be a tetrahedral,
cubic, octahedral, or dodecahedral cell. This is indicated by the symbol y in Table 3.
Similarly, we can exclude four cases corresponding to the local projected cube, which are
indicated by x. Consequently, the symbols x and y mean that the cross-section of the cell
with an arbitrarily small sphere S2 centered in an arbitrary vertex is not a spherical square
nor a spherical pentagon, i.e., these cases are impossible.

Table 3. Possible regular tessellations of E3, S3, and H3. The corresponding projected cells are in
parentheses. The first column shows the local two-dimensional spherical tessellation about every
vertex. In the first row, the symbol d stands for the vertex degree, m is the number of cells meeting at
each vertex, and p is the number of cells surrounding each edge. The first row then continues with
the type of three-dimensional tiles that can be used (i.e., cells possibly curved). The symbols x, y, z
indicate cases that cannot happen (see the proof of Theorem 3).

Projected d m p Tetrahedron Cube Octahedron Dodecahedron Icosahedron

tetrahedron 4 4 3 S3 (5-cell) S3 (8-cell) z S3 (120-cell) z
octahedron 6 8 4 S3 (16-cell) E3 z H3 z

cube 8 6 3 x x S3 (24-cell) x x
icosahedron 12 20 5 S3 (600-cell) H3 z H3 z

dodecahedron 20 12 3 y y y y H3

Notice that the regular tessellations on the main diagonal of Table 3 are self-dual.
The other dual tessellations are placed symmetrically with respect to the main diagonal.
Therefore, we can exclude other possibilities by the following duality argument indicated
by the symbol z in Table 3. If such a tessellation were to exist, then by Lemma 1 its dual
tessellation would also exist, which is a contradiction. Assume, for example, that there
exists an icosahedral tessellation such that its intersection with a small ball centered at any
vertex yields a spherical tetrahedron (see the first z in the last column of Table 3). Then, by
Lemma 1 there should exist a dual tessellation, which contradicts the nonexistence of the
regular tessellation indicated by the first y of the last row in Table 3.

The remaining four cases in Table 3 are indicated by H3. Two of them on the main
diagonal are self-dual.

Corollary 1. There is no regular hyperbolic tetrahedral and also no octahedral space-filler of H3.

The proof follows directly from Table 3, which contains all admissible cases. So there is no
analogy with triangular tessellations of the hyperbolic plane H2 in the three-dimensional case.

Now let us introduce the four hyperbolic space-filler cells predicted by Theorem 3.
First, consider the regular tessellation of H3 made by hyperbolic cubes. From Table 3, we
can see that there are p = 5 hyperbolic cubes around any edge. Hence, their dihedral
angles are 72◦ (see Figure 5). Moreover, each vertex is surrounded by m = 20 cells.
Hence, the intersection of the corresponding regular tessellation with an arbitrarily small
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two-dimensional sphere centered at each vertex leads to the regular tessellation (projected
icosahedron sketched in Figure 2).

Figure 5. A simple visualization of the curved cubic space-filler cell of H3. Its dihedral angles are
equal to 72◦.

Corollary 2. In the regular tessellations by a cubic space-filler of S3, E3, and H3, every edge is
surrounded by p ∈ {3, 4, 5} cubic cells, and every vertex is surrounded by m ∈ {4, 8, 20} cubic
cells, respectively. There are no other cubic space-fillers for the dimension n = 3.

The proof also follows from Table 3. The corresponding dihedral angles of these cubes
are 120◦, 90◦, and 72◦.

By Lemma 1, there exists the dual regular tessellation to the regular hyperbolic tessella-
tion, where each edge is surrounded by p = 5 cubic cells with vertex degree d = 12. Hence,
by Lemma 2, the corresponding dual space-filler cell has 12 pentagonal faces. The dihedral
angle α4 ≈ 117◦ of the usual Euclidean dodecahedron changes to 90◦ in the hyperbolic
case, since p = 4 hyperbolic dodecahedra surround each edge (see Table 3). Each vertex is
surrounded by m = 8 dodecahedral hyperbolic cells.

Nevertheless, there are two different regular tessellations of H3 formed by hyperbolic
dodecahedra. For the second type, p = 5, the corresponding dihedral angle is 72◦, and each
vertex is surrounded by m = 20 cells. Hence, the intersection of the corresponding regular
tessellation with an arbitrarily small two-dimensional sphere centered at each vertex leads
to the projected icosahedron (see Figure 2). This tessellation is self-dual.

Finally, the dihedral angle α5 ≈ 138◦ of the usual Euclidean icosahedron changes to
120◦ in the hyperbolic case, since there is a place for p = 3 hyperbolic icosahedra around any
edge, see Table 3. Each vertex is surrounded by m = 12 icosahedral cells. The intersection
of the corresponding regular tessellation with an arbitrarily small two-dimensional sphere
S2 centered at each vertex leads to the projected dodecahedron (see Figure 2).

4. Four-Dimensional Tessellations

The Euclidean space En can be tessellated by n-cubes for any positive integer n. By [5]
for n = 4, the 4-orthoplex and the 24-cell are space-fillers as well (see Table 4). Their
dihedral angles between adjacent cells are 120◦ in both cases.

Using the radial projection of the regular polytopes in En+1 into the hypersphere
Sn, we get from Theorem 1 that S4 for each n ≥ 4 can be tessellated by hyperspherical
n-simplices, hyperspherical n-cubes, and hyperspherical n-orthoplexes. Let us note that the
regular tessellations on the main diagonal of Table 4 are self-dual, and there exist only two
dual tessellations of S4 that are placed symmetrically with respect to the main diagonal.
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There are, again, other regular tessellations of S4 that have only two antipodal points
(like in the two-dimensional case). The equator of S4 represented by the hypersphere S3

can be tessellated by the spherical cells of Section 3. Nevertheless, we shall again not
consider these special cases, since they do not lead to regular tessellations of E4 and H4 by
bounded tiles.

Table 4. Possible regular tessellations of the three four-dimensional maximally symmetric manifolds
E4, S4, and H4. The first column shows local three-dimensional spherical tessellation about every
vertex. In the first row, the symbol d stands for the vertex degree and m is the number of hypercells
meeting at each vertex. The first row then continues with the type of four-dimensional tiles that are
used. The symbols u, w, x, y, and z again indicate cases that cannot happen.

Projected d m 4-Simplex 4-Cube 4-Orthoplex 24-Cell 120-Cell 600-Cell

4-simplex 5 5 S4 S4 z z z z
4-orthoplex 8 16 S4 E4 z z z z

4-cube 16 8 x x E4 x x x
24-cell 24 24 y y y E4 y y
600-cell 120 600 u u u u H4 u
120-cell 600 120 w w w w w H4

Theorem 4. There exist exactly two bounded regular hyperbolic space-filler cells of H4, namely, the
hyperbolic 120-cell and 600-cell.

The proof is similar to that for the manifold H3 from the previous section.

5. Higher-Dimensional Tessellations

The Euclidean space En can be tessellated by n-cubes for any n ≥ 1. Using Theorem 1
and the radial projection, we find that the spherical n-cubes tessellate Sn for any n ≥ 1. By
Theorems 3 and 5, hyperbolic n-cubes tessellate Hn only for n ≤ 3.

According to Section 2, there exist infinitely many regular space-fillers of the hyperbolic
plane H2. On the other hand, the following statement holds:

Theorem 5. There is no regular tessellation of Hn for n ≥ 5.

The proof follows from Theorems 1 and 4. The main results of this paper are summa-
rized in Table 5.

Table 5. The number of regular tessellations (which do not have only two antipodal points) of the
maximally symmetric manifolds.

n En Sn Hn

1 1 1 not def.
2 3 5 ∞
3 1 6 4
4 3 3 2
5 1 3 0
6 1 3 0
...

...
...

...
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