Nonlinear optical imaging as a diagnostic tool for cutaneous squamous cell carcinoma
Thomas, G.

Citation for published version (APA):
Thomas, G. (2015). Nonlinear optical imaging as a diagnostic tool for cutaneous squamous cell carcinoma

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 20 Dec 2018
Nonlinear optical imaging as a diagnostic tool for cutaneous squamous cell carcinoma

Giju Thomas (2015)

INVITATION
To the public defense of the PhD thesis
‘Nonlinear optical imaging as a diagnostic tool for cutaneous squamous cell carcinoma’
on Wednesday, January 14th 2015 at 13.00h
in the auditorium of Aula - Oude Lutherse Kerk
Singel 411, 1012 XA, Amsterdam, The Netherlands

The reception afterwards will take place in the Tetterode Bibliotheek (Library) next to the auditorium

Giju Thomas
Polderlaan 66A, 3074 MG Rotterdam, The Netherlands
gijuthomas82@gmail.com

Paranimfem
Riette de Bruijn
h.debruijn@erasmusmc.nl

& Bastiaan Tuk
b.tuk@erasmusmc.nl
Nonlinear optical imaging as a diagnostic tool for cutaneous squamous cell carcinoma

Giju Thomas
This research was supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO) and partly funded by the Ministry of Economic Affairs (project: 10322)

Cover Illustration: Giju Thomas
The central image shows a transverse nonlinear optical scan taken from a skin tumour of 1 mm diameter in a hairless mouse. Laser beam background obtained freely from the online public domain www.wallpapers-xs.blogspot.com.

Layout: Legatron Electronic Publishing, Rotterdam

Printed by: Ipskamp Drukkers BV, Enschede

The publication of this thesis was further financially supported by the Dutch Technology Foundation STW and the department of Biomedical Engineering and Physics, Academic Medical Centre, Amsterdam

© 2015 Giju Thomas
All rights reserved. No part of this thesis may be reproduced, distributed or transmitted in any form or by any means without prior permission of the author, or, when appropriate, the publishers of the publication.
Nonlinear optical imaging as a diagnostic tool for cutaneous squamous cell carcinoma

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D. C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 14 januari 2015, te 13.00 uur

door

Giju Thomas

geboren te Fujairah, Verenigde Arabische Emiraten
Promotiecommissie:

Promotores: Prof. dr. A.G.J.M. van Leeuwen
Prof. dr. ir. H.J.C.M. Sterenborg
Copromotor: Prof. dr. H.C. Gerritsen

Overige leden: Dr. F.R. de Gruijl
Prof. dr. C.J.F. van Noorden
Prof. dr. M.C.G. Aalders
Prof. dr. M.A.M.J. van Zandvoort
Prof. dr. J. van Rheenen

Faculteit der Geneeskunde
Contents

Abbreviations used in this thesis 7

Chapter 1 General Introduction 11

Chapter 2 Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research 29

Chapter 3 Systems Overview 51

Chapter 4 Carcinogenic damage induced to deoxyribonucleic acid by femtosecond laser pulses via combination of two- and three-photon absorption during nonlinear optical imaging 57

Chapter 5 Estimating the risk of squamous cell cancer induction in skin following nonlinear optical imaging 75

Chapter 6 Investigation of 7, 12-dimethylbenz(a)anthracene as a complete carcinogen in development of cutaneous squamous cell carcinomas by chronic exposure in immunocompetent hairless mice 103

Chapter 7 In vivo nonlinear optical imaging to monitor early microscopic changes in a murine cutaneous squamous cell carcinoma model 129

Chapter 8 In vivo nonlinear spectral imaging as a tool to monitor early spectroscopic and metabolic changes in a murine cutaneous squamous cell carcinoma model 149

Chapter 9 Discussion and Outlook 171

Chapter 10 Summary 182
 Samenvatting 184

Appendices
 Acknowledgements 187
 List of publications 189
 PhD Portfolio 193
 About the Author 195
Abbreviations used in this thesis

AK actinic keratoses
AUC area under curve
BSA bovine serum albumin
cBCC cutaneous basal cell carcinomas
cMM cutaneous malignant melanomas
cSCC cutaneous squamous cell carcinomas
CCD charge coupled device
CHO Chinese Hamster Ovary
CPDs cyclobutane pyrimidine dimers
CSLM confocal scanning laser microscopy
CT computerised tomography
CW continuous wave
DAB 3, 3'-diaminobenzidine
DAPI 4', 6-diamidino-2-phenylindole
DMBA 7, 12-dimethylbenz(a)anthracene
DNA deoxyribonucleic acid
DRS diffuse reflectance spectroscopy
FAD flavin adenine dinucleotide
EMCCD electron multiplying charge coupled device
FPs family practitioners
Fs femtoscond
GPs general practitioners
GW gigawatt
H&E haematoxylin and eosin
HFUS high frequency ultrasound
HPV human papilloma virus
LIFS laser-induced fluorescence spectroscopy
MAF multi-photon autofluorescence
MOPS 3-(N-morpholino) propanesulfonic acid
MPE multi-photon excitation
MRI magnetic resonance imaging
mW milliwatt
NADH nicotinamide adenine dinucleotide
NIR near infrared
NLOI nonlinear optical imaging
NLSI nonlinear spectral imaging
nm nanometre
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSC</td>
<td>non-melanoma skin cancer</td>
</tr>
<tr>
<td>OCT</td>
<td>optical coherence tomography</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBS-T</td>
<td>phosphate buffered saline with 0.1% Tween</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PHCCs</td>
<td>primary health care clinicians</td>
</tr>
<tr>
<td>PMT</td>
<td>photomultiplier tube</td>
</tr>
<tr>
<td>RGB</td>
<td>red, green and blue</td>
</tr>
<tr>
<td>SHG</td>
<td>second harmonic generation</td>
</tr>
<tr>
<td>THG</td>
<td>third harmonic generation</td>
</tr>
<tr>
<td>TPA</td>
<td>12-O-tetradecanoylphorbol-13-acetate</td>
</tr>
<tr>
<td>TPEF</td>
<td>two-photon excitation fluorescence</td>
</tr>
<tr>
<td>TW</td>
<td>terawatt</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
‘And God said, “Let there be light,” and there was light.

God saw that the light was good,

and He separated the light from the darkness.’

Genesis 1: 3 – 4, The Holy Bible

For my Mama and Papa

For Christ, my Saviour and Redeemer