Unwanted souvenirs

Travel-related acquisition of antibiotic-resistant Enterobacteriaceae and enteric pathogens

van Hattem, J.M.

Citation for published version (APA):

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Dissemination of the mcr-1 colistin resistance gene

Jarne M van Hattem,† Maris S Arcilla,† Sébastien Matamoros, Damian C Melles, John Penders, Menno D de Jong, Constance Schultsz; COMBAT consortium
†Contributed equally

COMBAT consortium: Martin CJ Bootsma, Perry JJ van Genderen, Abraham Goorhuis, Martin Grobusch, Nicky Molhoek, Astrid ML Oude Lashof, Willemien JM van Rooijen, Ellen E Stobberingh and Henri A Verbrugh

Lancet Infect Dis. 2016 Feb;16(2):147-9
Plasmid-mediated transferable colistin resistance encoded by the *mcr-1* gene was described in *Escherichia coli* and *Klebsiella pneumoniae* isolates from pigs and chicken at a prevalence of around 20%, and in clinical isolates from human beings at a prevalence of around 1% in China.\(^1\) The prevalence of the *mcr-1* gene in Enterobacteriaceae in other countries and in the community is unknown.

We did a prospective study of acquisition of fecal colonisation and carriage with extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae in 2001 Dutch travellers (the COMBAT study),\(^2\) from November, 2012, to November, 2013. Acquisition was defined as the absence of ESBL-producing Enterobacteriaceae in a fecal swab sample taken immediately before travel and detection of ESBL-producing Enterobacteriaceae in a sample taken within 1–2 weeks after return to the Netherlands. Of 1847 travellers at risk, 633 (34%) acquired ESBL-producing Enterobacteriaceae. Nine of these 633 travellers acquired ESBL-producing *Escherichia coli* with a colistin minimum inhibitory concentration of 4–8 mg/L (EUCAST clinical breakpoint for resistance >2 mg/L) as detected using Vitek-2 and confirmed by E-test. After publication of the report by Yi-Yun Liu and colleagues,\(^1\) these nine isolates were tested by PCR for the presence of the *mcr-1* gene. The gene was detected in six of nine isolates and sequencing of the amplicons showed a 100% homology over the length of the fragments with the published sequence.\(^1\) Three ESBL-producing *E coli* were *mcr-1* PCR negative, suggesting colistin resistance due to other mechanisms.\(^1\) Analysis of ESBL genes by microarray,\(^4\) PCR, and sequencing showed that the *mcr-1* positive ESBL-producing *E coli* belonged to multiple groups (table).

Of the six travellers who acquired ESBL-producing *E coli* carrying the *mcr-1* gene, two unrelated travellers visited Peru and Bolivia, two unrelated travellers visited China, one visited Tunisia, and one visited multiple countries in southeast Asia (Thailand, Vietnam, Laos, and Cambodia). The duration of travel ranged between 8 and 40 days (mean 21.3 days). None of the travellers had accessed medical care and none had used antimicrobial drugs during travel, while five had experienced traveller’s diarrhoea. Analysis of subsequent fecal samples collected at 1, 3, 6, and 12 months after return to the Netherlands did not show ESBL-producing *E coli*, suggesting short-term colonisation with colistin resistant ESBL-producing *E coli* or loss of plasmids carrying ESBL and potentially *mcr-1* genes.

Of the six travellers who acquired ESBL-producing *E coli* carrying the *mcr-1* gene, two unrelated travellers visited Peru and Bolivia, two unrelated travellers visited China, one visited Tunisia, and one visited multiple countries in southeast Asia (Thailand, Vietnam, Laos, and Cambodia). The duration of travel ranged between 8 and 40 days (mean 21.3 days). None of the travellers had accessed medical care and none had used antimicrobial drugs during travel, while five had experienced traveller’s diarrhoea. Analysis of subsequent fecal samples collected at 1, 3, 6, and 12 months after return to the Netherlands did not show ESBL-producing *E coli*, suggesting short-term colonisation with colistin resistant ESBL-producing *E coli* or loss of plasmids carrying ESBL and potentially *mcr-1* genes.

We did a prospective study of acquisition of fecal colonisation and carriage with extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae in 2001 Dutch travellers (the COMBAT study),\(^2\) from November, 2012, to November, 2013. Acquisition was defined as the absence of ESBL-producing Enterobacteriaceae in a fecal swab sample taken immediately before travel and detection of ESBL-producing Enterobacteriaceae in a sample taken within 1–2 weeks after return to the Netherlands. Of 1847 travellers at risk, 633 (34%) acquired ESBL-producing Enterobacteriaceae. Nine of these 633 travellers acquired ESBL-producing *Escherichia coli* with a colistin minimum inhibitory concentration of 4–8 mg/L (EUCAST clinical breakpoint for resistance >2 mg/L) as detected using Vitek-2 and confirmed by E-test. After publication of the report by Yi-Yun Liu and colleagues,\(^1\) these nine isolates were tested by PCR for the presence of the *mcr-1* gene. The gene was detected in six of nine isolates and sequencing of the amplicons showed a 100% homology over the length of the fragments with the published sequence.\(^1\) Three ESBL-producing *E coli* were *mcr-1* PCR negative, suggesting colistin resistance due to other mechanisms.\(^1\) Analysis of ESBL genes by microarray,\(^4\) PCR, and sequencing showed that the *mcr-1* positive ESBL-producing *E coli* belonged to multiple groups (table).
Table. Characteristics of travellers and acquired fecal *Escherichia coli* isolates carrying the mcr-1 gene

<table>
<thead>
<tr>
<th>Travel destination</th>
<th>Traveller with isolate 1</th>
<th>Traveller with isolate 2</th>
<th>Traveller with isolate 3</th>
<th>Traveller with isolate 4</th>
<th>Traveller with isolate 5</th>
<th>Traveller with isolate 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thailand, Vietnam, Cambodia, Laos</td>
<td>Tunisia</td>
<td>Peru, Bolivia, Colombia</td>
<td>China</td>
<td>China</td>
<td>Peru, Bolivia</td>
<td></td>
</tr>
<tr>
<td>Travel duration (days)</td>
<td>21</td>
<td>8</td>
<td>40</td>
<td>14</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Age (years)</td>
<td>56</td>
<td>55</td>
<td>25</td>
<td>54</td>
<td>62</td>
<td>26</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>ESBL gene (ESBL group)</td>
<td>CTXM-14 (CTX-M group 9)</td>
<td>CTXM-1 (CTX-M group 1)</td>
<td>CTXM-15 (CTX-M group 1)</td>
<td>CTXM-65 (CTX-M group 9)</td>
<td>CTXM-55 (CTX-M group 1)</td>
<td>CTXM-55 (CTX-M group 1)</td>
</tr>
<tr>
<td>Minimum inhibitory concentration of antimicrobial drug (mg/L)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin-clavulanic acid</td>
<td>16</td>
<td>8</td>
<td>>16</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>16</td>
<td>8</td>
<td>32</td>
<td>16</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>≤1</td>
<td>≤1</td>
<td>≤1</td>
<td>≤1</td>
<td>≤1</td>
<td>≤1</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≥1</td>
<td>>8</td>
<td>≥1</td>
<td>>8</td>
<td>≥1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
<td>>8</td>
<td>≤1</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>8</td>
<td>≤4</td>
<td>8</td>
<td>≤4</td>
<td>≤4</td>
<td>≤4</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>256</td>
<td>≤16</td>
<td>128</td>
<td>32</td>
<td>≤16</td>
<td>≤16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
<td>>2</td>
</tr>
</tbody>
</table>

ESBL = extended-spectrum β-lactamase. *Determined using Vitek-2, except for colistin for which E-test results are provided.
Colistin is used as an ultimate refuge antimicrobial drug in the treatment of infections caused by multidrug resistant Gram-negative microorganisms. Our data suggest a worrisome spread of the mcr-1 gene in E coli in the community across at least three continents. The diversity of ESBL genes present in mcr-1 positive isolates suggests that the mcr-1 gene might be carried on multiple plasmid backbones.

This research was funded by Netherlands Organization for Health, Research and Development (ZonMw; 50-51700-98-120) and EU-H2020 programme (COMPARE, 643476). We declare no competing interests.
References

