Search for Higgs boson decays to a photon and a Z boson in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector

DOI
10.1016/j.physletb.2014.03.015

Publication date
2014

Document Version
Final published version

Published in
Physics Letters B
Search for Higgs boson decays to a photon and a Z boson in pp collisions at √s = 7 and 8 TeV with the ATLAS detector

ATLAS Collaboration *

A R T I C L E I N F O

Article history:
Received 13 February 2014
Received in revised form 5 March 2014
Accepted 5 March 2014
Available online 13 March 2014
Editor: H. Weerts

A B S T R A C T

A search is reported for a neutral Higgs boson in the decay channel $H \rightarrow Z\gamma$, $Z \rightarrow \ell^+\ell^-$ $(\ell = e, \mu)$, using 4.5 fb$^{-1}$ of pp collisions at √s = 7 TeV and 20.3 fb$^{-1}$ of pp collisions at √s = 8 TeV, recorded by the ATLAS detector at the CERN Large Hadron Collider. The observed distribution of the invariant mass of the three final-state particles, $m_{\ell\ell\gamma}$, is consistent with the Standard Model hypothesis in the investigated mass range of 120–150 GeV. For a Higgs boson with a mass of 125.5 GeV, the observed upper limit at the 95% confidence level is 11 times the Standard Model expectation. Upper limits are set on the cross section times branching ratio of a neutral Higgs boson with mass in the range 120–150 GeV between 0.13 and 0.5 pb for √s = 8 TeV at 95% confidence level.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In July 2012 a new particle decaying to dibosons ($\gamma\gamma$, ZZ, WW) was discovered by the ATLAS [1] and CMS [2] experiments at the CERN Large Hadron Collider (LHC). The observed properties of this particle, such as its couplings to fermions and bosons [3,4] and its spin and parity [5,6], are consistent with those of a Standard Model (SM) Higgs boson with a mass near 125.5 GeV [3]. This Letter presents a search for a Higgs boson H decaying to $Z\gamma$, $Z \rightarrow \ell^+\ell^-$ $(\ell = e, \mu)$, using pp collisions at √s = 7 and 8 TeV recorded with the ATLAS detector at the LHC during 2011 and 2012. The Higgs boson is assumed to have SM-like spin and production properties, but in order to retain sensitivity to additional, non-SM Higgs bosons, its mass is allowed to take any value between 120 and 150 GeV. The integrated luminosity presently available enables the exclusion of large anomalous couplings to $Z\gamma$, compared with the SM prediction. The signal is expected to yield a narrow peak in the reconstructed $\ell\ell\gamma$ invariant-mass distribution over a smooth background dominated by continuum $Z+\gamma$ production, $Z \rightarrow \ell\ell\gamma$ radiative decays and $Z +$ jets events where a jet is misidentified as a photon. A similar search was recently published by the CMS Collaboration [7], which set an upper limit of 9.5 times the SM expectation, at 95% confidence level (CL), on the $pp \rightarrow H \rightarrow Z\gamma$ cross section for $m_H = 125$ GeV.

In the SM, the Higgs boson is produced mainly through five production processes: gluon fusion (ggF), vector-boson fusion (VBF), and associated production with either a W boson (WH), a Z boson (ZH) or a $t\bar{t}$ pair ($t\bar{t}H$) [8–10]. For a mass of 125.5 GeV the SM $pp \rightarrow H$ cross section is $\sigma = 22$ (17) pb at √s = 8 (7) TeV. Higgs boson decays to $Z\gamma$ in the SM proceed through loop diagrams mostly mediated by W bosons, similar to $H \rightarrow \gamma\gamma$. The $H \rightarrow Z\gamma$ branching ratio of an SM Higgs boson with a mass of 125.5 GeV is $B(H \rightarrow Z\gamma) = 1.6 \times 10^{-3}$, to be compared to $B(H \rightarrow \gamma\gamma) = 2.3 \times 10^{-3}$. Including the branching fractions of the Z decays to leptons leads to a $pp \rightarrow H \rightarrow \ell\ell\gamma$ cross section of 2.3 (1.8) fb at 8 (7) TeV, similar to that of $pp \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ and only 5% of that of $pp \rightarrow H \rightarrow \gamma\gamma$.

Modifications of the $H \rightarrow Z\gamma$ coupling with respect to the SM prediction are expected if H is a neutral scalar of a different origin [11,12] or a composite state [13], as well as in models with additional colourless charged scalars, leptons or vector bosons coupled to the Higgs boson and exchanged in the $H \rightarrow Z\gamma$ loop [14–16]. A determination of both the $H \rightarrow \gamma\gamma$ and $H \rightarrow Z\gamma$ decay rates can help to determine whether the newly discovered Higgs boson is indeed the one predicted in the SM, or provide information on the quantum numbers of new particles exchanged in the loops or on the compositeness scale. While constraints from the observed rates in the other final states, particularly the diphoton channel, typically limit the expected $H \rightarrow Z\gamma$ decay rate in the models mentioned above to be within a factor of two of the SM expectation, larger enhancements can be obtained in some scenarios by careful parameter choices [13,14].

2. Experimental setup and dataset

The ATLAS detector [17] is a multi-purpose particle detector with approximately forward–backward symmetric cylindrical
geometry.\(^\text{2}\) The inner tracking detector (ID) covers \(|\eta| < 2.5\) and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field and by a high-granularity lead/liquid–argon (LAr) sampling electromagnetic calorimeter. The electromagnetic calorimeter measures the energy and the position of electromagnetic showers with \(|\eta| < 3.2\). It includes a presampler (at \(|\eta| < 1.8\)) and three sampling layers, longitudinal in shower depth, up to \(|\eta| < 2.5\). LAr sampling calorimeters are also used to measure hadronic showers in the end-cap (1.5 < \(|\eta| < 3.2\)) and forward (3.1 < \(|\eta| < 4.9\)) regions, while an iron/scintillator tile calorimeter measures hadronic showers in the central region (\(|\eta| < 1.7\)). The muon spectrometer (MS) surrounds the calorimeters and consists of three large superconducting air-core toroid magnets, each with eight coils, a system of precision tracking chambers (\(|\eta| < 2.7\)), and fast tracking chambers (\(|\eta| < 2.4\)) for triggering. A three-level trigger system selects events to be recorded for offline analysis.

Events are collected using the lowest threshold unrescaled single-lepton or dilepton triggers.\(^{18}\) For the single-muon trigger the transverse momentum, \(p_\text{T}\), threshold is 24 (18) GeV for \(\sqrt{s} = 8\) (7) TeV, while for the single-electron trigger the transverse energy, \(E_\text{T}\), threshold is 25 (20) GeV. For the dimuon triggers the thresholds are \(p_\text{T} > 13\) GeV for each muon, while for the di-electron triggers the thresholds are \(E_\text{T} > 12\) GeV for each electron. At \(\sqrt{s} = 8\) TeV a dimuon trigger is also used with asymmetric thresholds \(p_\text{T1} > 18\) GeV and \(p_\text{T2} > 8\) GeV. The trigger efficiency with respect to events satisfying the selection criteria is 99\% in the \(ee\) channel and 92\% in the \(\mu\mu\gamma\) channel due to the reduced geometric acceptance of the muon trigger system in the \(|\eta| < 1.05\) and \(|\eta| > 2.4\) region. Events with data quality problems are discarded. The integrated luminosity after the trigger and data quality requirements corresponds to 20.3 fb\(^{-1}\) (4.5 fb\(^{-1}\))\(^{19}\) at \(\sqrt{s} = 8\) (7) TeV.

3. Simulated samples

The event generators used to model SM signal and background processes in samples of Monte Carlo (MC) simulated events are listed in Table 1.

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF, VBF</td>
<td>POWHEG [26–22] + PYTHIA8 [23]</td>
</tr>
<tr>
<td>WH, ZH, t(\bar{t})H</td>
<td>PYTHIA8</td>
</tr>
<tr>
<td>(Z + \gamma) and (Z \rightarrow \ell\ell\gamma)</td>
<td>SHERPA (24,25)</td>
</tr>
<tr>
<td>(Z + \text{jets})</td>
<td>SHERPA, ALPGEN [26] + HERWIG [27]</td>
</tr>
<tr>
<td>(t\ell)</td>
<td>MC@NLO [28,29] + HERWIG</td>
</tr>
<tr>
<td>(WZ)</td>
<td>SHERPA, POWHEG + PYTHIA8</td>
</tr>
</tbody>
</table>

PYTHIA 8.170 using the CTEQ6L1 PDFs\(^{32}\). Signal events are generated for Higgs boson masses \(m_H\) between 120 and 150 GeV, in intervals of 5 GeV, at both \(\sqrt{s} = 7\) TeV and \(\sqrt{s} = 8\) TeV. For the same value of the mass, events corresponding to different Higgs boson production modes are combined according to their respective SM cross sections.

The predicted SM cross sections and branching ratios are compiled in Refs. [8–10]. The production cross sections are computed at next-to-next-to-leading order in the strong coupling constant \(\alpha_s\) and at next-to-leading order (NLO) in the electroweak coupling constant \(\alpha\), except for the \(t\bar{t}H\) cross section, which is calculated at NLO in \(\alpha_s\)\(^{33–43}\). Theoretical uncertainties on the production cross section arise from the choice of renormalisation and factorisation scales in the fixed-order calculations as well as the uncertainties on the PDFs and the value of \(\alpha_s\) used in the perturbative expansion. They depend only mildly on the centre-of-mass energy and on the Higgs boson mass in the range 120 < \(m_H\) < 150 GeV.

The scale uncertainties are uncorrelated among the five Higgs boson production modes that are considered: for \(m_H = 125.5\) GeV at \(\sqrt{s} = 8\) TeV, the uncertainties are around ±8% for \(gg \rightarrow H\) and \(t\bar{t}H\) and around ±2.5% for the other three Higgs boson production modes. The Higgs boson branching ratios are computed using the HDECAY and ProcaHyf programs\(^{44–46}\). The relative uncertainty on the \(H \rightarrow Z\gamma\) branching ratio varies between ±4% for \(m_H = 120\) GeV and ±6% for \(m_H = 150\) GeV. An additional ±5%\(^{47}\) accounts for the effect, in the selected phase space of the \(\ell\ell\gamma\) final state, of the interfering \(H \rightarrow t\bar{t}\gamma\) decay amplitudes that are neglected in the calculation of Refs. [8–10]. They originate from internal photon conversion in Higgs boson decays to diphotons (\(H \rightarrow \gamma\gamma \rightarrow \ell\ell\gamma\)) or from radiative Higgs boson decays to dileptons (\(H \rightarrow \ell\ell^* \rightarrow \ell\ell\gamma\) in the Z mass window)\(^{48,49}\).

Various background samples are also generated: they are used to study the background parameterisation and possible systematic biases in the fit described in Section 6 and not to extract the final result. The samples produced with ALPGEN or MC@NLO are interfaced to HERWIG 6.510\(^{27}\) for parton showering, fragmentation into particles and to model the underlying event, using JIMMY 4.31\(^{50}\) to generate multiple-parton interactions. The SHERPA, MC@NLO and POWHEG samples are generated using the CT10 PDFs, while the ALPGEN samples use the CTEQ6L1 ones.

All Monte Carlo samples are processed through a complete simulation of the ATLAS detector response\(^{51}\) using GEANT4\(^{52}\). Additional \(pp\) interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. The MC samples are reweighted to reproduce the distribution of the mean number of interactions per bunch crossing (9 and 21 on average in the data taken at \(\sqrt{s} = 7\) and 8 TeV, respectively) and the length of the luminous region observed in data.

4. Event selection and backgrounds

4.1 Event selection

Events are required to contain at least one primary vertex, determined from a fit to the tracks reconstructed in the inner detector and consistent with a common origin. The primary vertex with the largest sum of the squared transverse momenta of the tracks associated with it is considered as the primary vertex of the hard interaction.
The selection of leptons and photons is similar to that used for the $H \rightarrow \gamma\gamma$ and $H \rightarrow 4\ell$ measurements [1], the main difference being the minimum transverse momentum threshold. Events are required to contain at least one photon and two opposite-sign same-flavour leptons.

Muon candidates are formed from tracks reconstructed either in the ID or in the MS [53]. They are required to have transverse momentum $p_{T} > 10$ GeV and $|\eta| < 2.7$. In the central barrel region $|\eta| < 0.1$, which lacks MS coverage, ID tracks are identified as muons based on the associated energy deposits in the calorimeter. These candidates must have $p_{T} > 15$ GeV. The inner detector tracks associated with muons that are identified inside the ID acceptance are required to have a minimum number of associated hits in each of the ID sub-detectors (to ensure good track reconstruction) and to have transverse (longitudinal) impact parameter d_{0} (z_{0}), with respect to the primary vertex, smaller than 1 mm (10 mm).

Electrons and photons are reconstructed from clusters of energy deposits in the electromagnetic calorimeter [54]. Tracks matched to electron candidates (and, for 8 TeV data, from photon conversions) and having enough associated hits in the silicon detectors are fitted using a Gaussian-Sum Filter, which accounts for bremsstrahlung energy loss [55].

Electron candidates are required to have a transverse energy greater than 10 GeV, pseudorapidity $|\eta| < 2.47$, and a well-reconstructed ID track pointing to the electromagnetic calorimeter cluster. The cluster should satisfy a set of identification criteria that require the longitudinal and transverse shower profiles to be consistent with those expected for electromagnetic showers [56]. The electron track is required to have a hit in the innermost pixel layer of the ID when passing through an active module and is also required to have a longitudinal impact parameter, with respect to the primary vertex, smaller than 10 mm.

Photon candidates are required to have a transverse energy greater than 15 GeV and pseudorapidity $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$, where the first calorimeter layer has high granularity. Photons reconstructed in or near regions of the calorimeter affected by read-out or high-voltage failures are not accepted. The identification of photons is performed through a cut-based selection based on shower shapes measured in the first two longitudinal layers of the electromagnetic calorimeter and on the leakage into the hadronic calorimeter [57]. To further suppress hadronic background, the calorimeter isolation transverse energy E_{T}^{iso} [1] in a cone of size $\Delta R = \sqrt{(\Delta\eta)^{2} + (\Delta\phi)^{2}} = 0.4$ around the photon candidate is required to be lower than 4 GeV, after subtracting the contributions from the photon itself and from the underlying event and pile-up.

Removal of overlapping electrons and muons that satisfy all selection criteria and share the same inner detector track is performed: if the muon is identified by the MS, then the electron candidate is discarded; otherwise the muon candidate is rejected. Photon candidates within a $\Delta R = 0.3$ cone of a selected electron or muon candidate are also rejected, thus suppressing background from $Z \rightarrow \ell\ell\gamma$ events and signal from radiative Higgs boson decays to dileptons.

Z boson candidates are reconstructed from pairs of same-flavour, opposite-sign leptons passing the previous selections. At least one of the two muons from $Z \rightarrow \mu\mu$ must be reconstructed both in the ID and the MS.

Higgs boson candidates are reconstructed from the combination of a Z boson and a photon candidate. In each event only the Z candidate with invariant mass closest to the Z pole mass and the photon with largest transverse energy are retained. In the selected events, the triggering leptons are required to match one (or in the case of dilepton-triggered events, both) of the Z candidate’s leptons. Track and calorimeter isolation requirements, as well as additional track impact parameter selections, are applied to the leptons forming the Z boson candidate [1]. The track isolation $\sum p_{T}$ inside a $\Delta R = 0.2$ cone around the lepton, excluding the lepton track, divided by the lepton p_{T}, must be smaller than 0.15. The calorimeter isolation for electrons, computed similarly to E_{T}^{iso} for photons but with $\Delta R = 0.2$, divided by the electron E_{T}, must be lower than 0.2. Muons are required to have a normalised calorimeter isolation E_{T}^{iso}/p_{T} less than 0.3 (0.15 in the case of muons without an ID track) inside a $\Delta R = 0.2$ cone around the muon direction. For both the track- and calorimeter-based isolation any contributions due to the other lepton from the candidate Z decay are subtracted. The transverse impact parameter significance $d_{0}/\sigma_{d_{0}}$ of the ID track associated with a lepton within the acceptance of the inner detector is required to be less than 3.5 and 6.5 for muons and electrons, respectively. The electron impact parameter is affected by bremsstrahlung and it thus has a broader distribution.

Finally, the dilepton invariant mass $(m_{\ell\ell})$ and the invariant mass of the $\ell\ell\gamma$ final-state particles $(m_{\ell\ell\gamma})$ are required to satisfy $m_{\ell\ell} > m_{Z} - 10$ GeV and $115 < m_{\ell\ell\gamma} < 170$ GeV, respectively. These criteria further suppress events from $Z \rightarrow \ell\ell\gamma$, as well as reducing the contribution to the signal from internal photon conversions in $H \rightarrow \gamma\gamma$ and radiation from leptons in $H \rightarrow \ell\ell$ to a negligible level [47]. The number of events satisfying all the selection criteria in $\sqrt{s} = 8$ TeV ($\sqrt{s} = 7$ TeV) data is 7798 (1041) in the $Z \rightarrow ee$ channel and 9530 (1400) in the $Z \rightarrow \mu\mu$ channel.

The same reconstruction algorithms and selection criteria are used for simulated events. The simulation is corrected to take into account measured data-MC differences in photon and lepton efficiencies and energy or momentum resolution. The acceptance of the kinematic requirements for simulated $H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$ signal events at $m_{H} = 125.5$ GeV is 54% for $\ell = e$ and 57% for $\ell = \mu$, due to the larger acceptance in muon pseudorapidity. The average photon reconstruction and selection efficiency is 68% (61%) while the $Z \rightarrow \ell\ell$ reconstruction and selection efficiency is 74% (67%) and 88% (88%) for $\ell = e$ and $\ell = \mu$, respectively, at $\sqrt{s} = 8$ (7) TeV. The larger photon and electron efficiencies in 8 TeV data are due to a re-optimisation of the photon and electron identification criteria prior to the 8 TeV data taking. Including the acceptance and the reconstruction, selection and trigger efficiencies, the overall signal efficiency for $H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$ events at $m_{H} = 125.5$ GeV is 27% (22%) for $\ell = e$ and 33% (27%) for $\ell = \mu$, at $\sqrt{s} = 8$ (7) TeV. The relative efficiency is about 5% higher in the VBF process and 5–10% lower in the W, Z, $t\bar{t}$-associated production modes, compared to signal events produced in the dominant gluon-fusion process. For m_{H} increasing between 120 and 150 GeV the overall signal efficiency varies from 0.87 to 1.25 times the efficiency at $m_{H} = 125.5$ GeV.

4.2. Invariant-mass calculation

In order to improve the three-body invariant-mass resolution of the Higgs boson candidate events and thus improve discrimination against non-resonant background events, three corrections are applied to the three-body mass $m_{\ell\ell\gamma}$. First, the photon pseudorapidity η_{γ} and its transverse energy $E_{T,\gamma} = E_{T}/cosh\eta_{\gamma}$ are recalculated using the identified primary vertex as the photon’s origin, rather than the nominal interaction point (which is used in the standard ATLAS photon reconstruction). Second, the muon momenta are corrected for collision final-state-radiation (FSR) by including any reconstructed electromagnetic cluster with E_{T} above 15 GeV lying close (typically with $\Delta R < 0.15$) to a muon track. Third, the lepton four-momenta are recomputed by means of a Z-mass-constrained kinematic fit previously used in the ATLAS $H \rightarrow 4\ell$ search [1]. The
The selected events are classified into four categories, based on the pp centre-of-mass energy and the lepton flavour. To enhance the sensitivity of the analysis, each event class is further divided into categories with different signal-to-background ratios and invariant-mass resolutions, based on (i) the pseudorapidity difference $\Delta \eta_{\gamma Z}$ between the photon and the Z boson and (ii) p_T^{γ}, the component of the Higgs boson candidate p_T that is orthogonal to the $Z\gamma$ thrust axis in the transverse plane [58]. Higgs boson candidates are classified as high- ($low-p_T^{\gamma}$) candidates if their p_T^{γ} is greater (smaller) than 30 GeV. In the analysis of $\sqrt{s} = 8$ TeV data, low-p_T^{γ} candidates are further split into two classes, high- and low-$|\Delta \eta_{\gamma Z}|$, depending on whether $|\Delta \eta_{\gamma Z}|$ is greater or less than 2.0, yielding a total of ten event categories. Signal events are typically characterised by a larger p_T^{γ} and a smaller $|\Delta \eta_{\gamma Z}|$ than background events, which are mostly due to $q \bar{q} \to Z + \gamma$ events in which the Z boson and the photon are back-to-back in the transverse plane. Signal events with high p_T^{γ} or low $|\Delta \eta|$ are enriched in VBF, VH and t\bar{t} events, in which the Higgs boson is more boosted, and in gluon fusion events in which the leptons and the photon are harder or more central in the detector than in signal events with low p_T^{γ} and high $|\Delta \eta|$. This results in a better $\ell\ell\gamma$ invariant mass resolution for the high p_T^{γ} and low $|\Delta \eta|$ categories, which is also characterised by a better signal-to-background ratio.

As an example, the expected number of signal and background events in each category with invariant mass within a ±5 GeV window around $m_H = 125$ GeV, the observed number of events in data (N_0), and the FWHM of the signal invariant-mass distribution, modelled as described in Section 4.2, are given. The signal is assumed to have SM-like properties, including the production cross section times branching fraction. The background yield is extrapolated from the selected data event yield in the invariant-mass region outside the ±5 GeV window around $m_H = 125$ GeV, using an analytic background model described in Section 5. The uncertainty on the FWHM from the limited size of the simulated signal samples is negligible in comparison to the systematic uncertainties described in Section 5.

4.4. Sample composition

The main backgrounds originate from continuum $Z + \gamma$, $Z \to \ell\ell$ production, from radiative $Z \to \ell\ell\gamma$ decays, and from $Z + j$ and $Z \to \ell\ell$ events in which a jet is misidentified as a photon. Small contributions arise from $t\bar{t}$ and WZ events. Continuum $Z + \gamma$ events are either produced by $q \bar{q}$ in the t- or u-channels, or from parton-to-photon fragmentation. The requirements $m_{\ell\ell} > m_Z - 10$ GeV, $m_{\ell\ell\gamma} > 115$ GeV and $|\Delta \eta_{\ell\ell\gamma}| > 0.3$ suppress the contribution from $Z \to \ell\ell\gamma$, while the photon isolation requirement reduces the importance of the $Z + \gamma$ fragmentation component. The latter, together with the photon identification requirements, is also effective in reducing $Z + j$ events.

In this analysis, the estimated background composition is not used to determine the amount of expected background, which is directly fitted to the data mass spectrum, but is used to normalise the background Monte Carlo samples used for the optimisation of

Table 2

<table>
<thead>
<tr>
<th>\sqrt{s} [TeV]</th>
<th>Category</th>
<th>N_0</th>
<th>N_B</th>
<th>N_0/N_B</th>
<th>FWHM [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>μ high p_T^{γ}</td>
<td>2.3</td>
<td>310</td>
<td>0.13</td>
<td>3.8</td>
</tr>
<tr>
<td>8</td>
<td>μ low p_T^{γ}</td>
<td>3.7</td>
<td>1600</td>
<td>0.09</td>
<td>3.8</td>
</tr>
<tr>
<td>8</td>
<td>μ low p_T^{γ}, low $</td>
<td>\Delta \eta</td>
<td>$</td>
<td>0.8</td>
<td>600</td>
</tr>
<tr>
<td>8</td>
<td>e high p_T^{γ}</td>
<td>1.9</td>
<td>260</td>
<td>0.12</td>
<td>3.9</td>
</tr>
<tr>
<td>8</td>
<td>e low p_T^{γ}, low $</td>
<td>\Delta \eta</td>
<td>$</td>
<td>2.9</td>
<td>1300</td>
</tr>
<tr>
<td>8</td>
<td>e high p_T^{γ}, low $</td>
<td>\Delta \eta</td>
<td>$</td>
<td>0.6</td>
<td>430</td>
</tr>
<tr>
<td>7</td>
<td>μ high p_T^{γ}</td>
<td>0.4</td>
<td>40</td>
<td>0.06</td>
<td>3.9</td>
</tr>
<tr>
<td>7</td>
<td>μ low p_T^{γ}</td>
<td>0.6</td>
<td>340</td>
<td>0.03</td>
<td>3.9</td>
</tr>
<tr>
<td>7</td>
<td>e high p_T^{γ}</td>
<td>0.3</td>
<td>25</td>
<td>0.06</td>
<td>3.9</td>
</tr>
<tr>
<td>7</td>
<td>e low p_T^{γ}</td>
<td>0.5</td>
<td>240</td>
<td>0.03</td>
<td>4.0</td>
</tr>
</tbody>
</table>
the selection criteria and the choice of mass spectra background-fitting functions and the associated systematic uncertainties. Since the amplitudes for $Z + \gamma$, $Z \to \ell\ell$ and $Z \to \ell\ell\gamma$ interfere, only the total $\ell\ell\gamma$ background from the sum of the two processes is considered, and denoted with $Z\gamma$ in the following. A data-driven estimation of the background composition is performed, based on a two-dimensional sideband method [57,59] exploiting the distribution of the photon identification and isolation variables in control regions enriched in $Z + \text{jets}$ events, to estimate the relative $Z\gamma$ and $Z + \text{jets}$ fractions in the selected sample. The $Z\gamma$ and $Z + \text{jets}$ contributions are estimated in situ by applying this technique to the data after subtracting the 1% contribution from the $t\bar{t}$ and WZ backgrounds. Simulated events are used to estimate the small backgrounds from $t\bar{t}$ and WZ production (normalized to the data luminosity using the NLO MC cross sections), on which a conservative uncertainty of $\pm 50\%$ accounts for observed data-MC differences in the rates of fake photons and leptons from misidentified jets as well as for the uncertainties on the MC cross section due to the missing higher orders of the perturbative expansion and the PDF uncertainties. Simulated events are also used to determine the $Z\gamma$ contamination in the $Z + \text{jets}$ background control regions and the correlation between photon identification and photon isolation for $Z + \text{jets}$ events. The contribution to the control regions from the $H \to Z\gamma$ signal is expected to be small compared to the background and is neglected in this study. The fractions of $Z\gamma$, $Z + \text{jets}$ and other ($tt + WZ$) backgrounds are estimated to be around 82%, 17% and 1% at both $\sqrt{s} = 7$ and 8 TeV. The relative uncertainty on the $Z\gamma$ purity is around 5%, dominated by the uncertainty on the correlation between the photon identification and isolation in $Z + \text{jets}$ events, which is estimated by comparing the ALPGEN and SHERPA predictions. Good agreement between data and simulation is observed in the distributions of $m_{\ell\ell\gamma}$, as well as in the distributions of several other kinematic quantities that were studied, including the dilepton invariant mass and the lepton and photon transverse momenta, pseudorapidity and azimuth.

5. Experimental systematic uncertainties

The following sources of experimental systematic uncertainties on the observed signal yields in each category were considered:

- The uncertainty in the population of the $\ell\ell\gamma$ background and is neglected in this study. The fractions of $Z\gamma$, $Z + \text{jets}$ and other ($tt + WZ$) backgrounds are estimated to be around 82%, 17% and 1% at both $\sqrt{s} = 7$ and 8 TeV. The relative uncertainty on the $Z\gamma$ purity is around 5%, dominated by the uncertainty on the correlation between the photon identification and isolation in $Z + \text{jets}$ events, which is estimated by comparing the ALPGEN and SHERPA predictions. Good agreement between data and simulation is observed in the distributions of $m_{\ell\ell\gamma}$, as well as in the distributions of several other kinematic quantities that were studied, including the dilepton invariant mass and the lepton and photon transverse momenta, pseudorapidity and azimuth.

- The uncertainty from the photon identification efficiency is obtained from a comparison between data-driven measurements and the simulated efficiencies in various photon and electron control samples [60] and varies between 2.6% and 3.1% depending on the category. The uncertainty from the photon reconstruction efficiency is negligible compared to that from the photon identification efficiency.

- The uncertainty from the muon trigger, reconstruction and identification efficiencies is estimated by varying the efficiency corrections applied to the simulation within the uncertainties of data-driven efficiency measurements. The total uncertainty for events in which the Z boson candidate decays to electrons, varies between 2.5% and 3% depending on the category. The lepton reconstruction, identification and trigger efficiencies, as well as their energy and momentum scales and resolutions, are determined using large control samples of $Z \to \ell\ell$, $W \to \ell\nu$ and $J/\psi \to \ell\ell$ events [53,56].

- The uncertainty from the electron trigger, reconstruction and identification efficiencies is estimated by varying the efficiency corrections applied to the simulation within the uncertainties of data-driven efficiency measurements. The total uncertainty for events in which the Z boson candidate decays to electrons, varies between 2.5% and 3% depending on the category. The lepton reconstruction, identification and trigger efficiencies, as well as their energy and momentum scales and resolutions, are determined using large control samples of $Z \to \ell\ell$, $W \to \ell\nu$ and $J/\psi \to \ell\ell$ events [53,56].

Other sources of uncertainty (muon trigger, reconstruction and identification efficiencies, lepton energy scale, resolution, and impact parameter selection efficiencies, lepton and photon isolation efficiencies) were investigated and found to have a negligible impact on the signal yield compared to the mentioned sources of uncertainty. The total relative uncertainty on the signal efficiency in each category is less than 5%, more than twice as small as the corresponding theoretical systematic uncertainty on the SM production cross section times branching ratio, described in Section 3. The uncertainty in the population of the p_T categories due to the description of the Higgs boson p_T spectrum is determined by varying the QCD scales and PDFs used in the HRES2 program. It is estimated to vary between 1.8% and 3.6% depending on the category.

The following sources of experimental systematic uncertainties on the signal $m_{\ell\ell\gamma}$ distribution were considered:

- The uncertainty on the peak position (0.2 GeV) is dominated by the photon energy scale uncertainty, which arises from the following sources: the calibration of the electron energy scale from $Z \to ee$ events, the uncertainty on its extrapolation to the energy scale of photons, dominated by the description of the detector material, and imperfect knowledge of the energy scale of the presampler detector located in front of the electromagnetic calorimeter.

- The uncertainty from the photon and electron energy resolution is estimated as the relative variation of the width of the signal $m_{\ell\ell\gamma}$ distribution after varying the corrections to the resolution of the electromagnetic particle response in the simulation within their uncertainties. It amounts to 3% for events in which the Z boson candidate decays to muons and to 10% for events in which the Z boson candidate decays to electrons.

- The uncertainty from the muon momentum resolution is estimated as the relative variation of the width of the signal $m_{\ell\ell\gamma}$ distribution after varying the muon momentum smearing corrections within their uncertainties. It is smaller than 1.5%.

To extract the signal, the background is estimated from the observed $m_{\ell\ell\gamma}$ distribution by assuming an analytical model, chosen from several alternatives to provide the best sensitivity to the signal while limiting the possible bias in the fitted signal to be within 20% of the statistical uncertainty on the signal yield due to background fluctuations. The $m_{\ell\ell\gamma}$ range used for the fit is also chosen according to the same criteria. The models are tested by performing signal + background fits of the $m_{\ell\ell\gamma}$ distribution of large simulated background-only samples scaled to the luminosity of the data and evaluating the ratio of the fitted signal yield to the statistical uncertainty on the fitted signal itself. The largest observed bias in the fitted signal for any Higgs boson mass in the range 120–150 GeV is taken as an additional systematic uncertainty; it varies between 0.5 events in poorly populated categories and 8.3 events in highly populated ones.

All systematic uncertainties, except that on the luminosity, are taken as fully correlated between the $m_{\ell\ell\gamma}$ distribution and the $\ell\ell\gamma$ distribution, and are taken as fully correlated between the $\sqrt{s} = 7$ TeV and the $\sqrt{s} = 8$ TeV analyses.

6. Results

6.1. Likelihood function

The final discrimination between signal and background events is based on a simultaneous likelihood fit to the $m_{\ell\ell\gamma}$ spectra in the invariant-mass region $115 < m_{\ell\ell\gamma} < 170$ GeV. The likelihood function depends on a single parameter of interest, the Higgs boson production signal strength μ, defined as the signal yield.
normalised to the SM expectation, as well as on several nuisance parameters that describe the shape and normalisation of the background distribution in each event category and the systematic uncertainties. Results for the signal production cross section times branching ratio are also provided. In that case, the likelihood function depends on two parameters of interest, the signal cross sections times branching ratios at \(\sqrt{s} = 7 \) TeV and \(\sqrt{s} = 8 \) TeV, and the systematic uncertainties on the SM cross sections and branching ratios are removed.

The background model in each event category is chosen based on the studies of sensitivity versus bias described in the previous section. For 2012 data, fifth- and fourth-order polynomials are chosen to model the background in the low-\(p_T \) categories while an exponentiated second-order polynomial is chosen for the high-\(p_T \) categories. For 2011 data, a fourth-order polynomial is used for the low-\(p_T \) categories and an exponential function is chosen for the high-\(p_T \) ones. The signal resolution functions in each category are described by the model illustrated in Section 4.2, fixing the fraction of events in each category to the MC predictions. For each fixed value of the Higgs boson mass between 120 and 150 GeV, in steps of 0.5 GeV, the parameters of the signal model are obtained, separately for each event category, through interpolation of the fully simulated MC samples.

For each of the nuisance parameters describing systematic uncertainties the likelihood is multiplied by a constraint term for each of the experimental systematic uncertainties evaluated as described in Section 5. For systematic uncertainties affecting the expected total signal yields for different centre-of-mass or lepton flavour, a log-normal constraint is used while for the uncertainties on the fractions of signal events in different \(p_T \) categories and on the signal \(m_{\ell\ell\gamma} \) resolution a Gaussian constraint is used [61].

6.2. Statistical analysis

The data are compared to background and signal-plus-background hypotheses using a profile likelihood test statistic [61]. Higgs boson decays to final states other than \(\ell\ell\gamma \) are expected to contribute negligibly to the background in the selected sample. For each fixed value of the Higgs boson mass between 120 and 150 GeV, fits are performed in steps of 0.5 GeV to determine the best value of \(\mu \) (\(\mu_0 \)) or to maximise the likelihood with respect to all the nuisance parameters for alternative values of \(\mu \), including \(\mu = 0 \) (background-only hypothesis) and \(\mu = 1 \) (background plus Higgs boson of that mass, with SM-like production cross section times branching ratio). The compatibility between the data and the background-only hypothesis is quantified by the \(p \)-value of the \(\mu = 0 \) hypothesis, \(p_0 \), which provides an estimate of the significance of a possible observation. Upper limits on the signal strength at 95% \(CL_s \) are set using a modified frequentist (\(CL_s \)) method [62], by identifying the value \(\mu_{up} \) for which the \(CL_s \) is equal to 0.05. Closed-form asymptotic formulae [63] are used to derive the results. Fits to the data are performed to obtain observed results. Fits to Asimov pseudo-data [63], generated either according to the \(\mu = 1 \) or \(\mu = 0 \) hypotheses, are performed to compute expected \(p_0 \) and \(CL_s \) upper limits, respectively.

Fig. 2 shows the \(m_{\ell\ell\gamma} \) distribution of all events selected in data, compared to the sum of the background-only fits to the data in each of the ten event categories. No significant excess with respect to the background is visible, and the observed \(p_0 \) is compatible with the data being composed of background only. The smallest \(p_0 \) (0.05), corresponding to a significance of 1.6\(\sigma \), occurs for a mass of 141 GeV. The expected \(p_0 \) ranges between 0.34 and 0.44 for a Higgs boson with a mass 120 < \(m_H \) < 150 GeV and SM-like cross section and branching ratio, corresponding to significances around

0.2\(\sigma \). The expected \(p_0 \) at \(m_H = 125.5 \) GeV is 0.42, corresponding to a significance of 0.2\(\sigma \), while the observed \(p_0 \) at the same mass is 0.27 (0.6\(\sigma \)).

Observed and expected 95% \(CL \) upper limits on the value of the signal strength \(\mu \) are derived and shown in Fig. 3. The expected limit ranges between 5 and 15 and the observed limit varies between 3.5 and 18 for a Higgs boson mass between 120 and 150 GeV. In particular, for a mass of 125.5 GeV, the observed and expected limits are equal to 11 and 9 times the Standard Model prediction, respectively. At the same mass the expected limit on \(\mu \) assuming the existence of an SM (\(\mu = 1 \)) Higgs boson with \(m_H = 125.5 \) GeV is 10. The results are dominated by the statistical uncertainties: neglecting all systematic uncertainties, the observed and expected 95% \(CL \) limits on the cross section at 125.5 GeV decrease by about 5%.

Upper limits on the \(pp \rightarrow H \rightarrow Z\gamma \) cross section times branching ratio are also derived at 95% \(CL \) for \(\sqrt{s} = 7 \) and 8 TeV. For \(\sqrt{s} = 8 \) TeV, the limit ranges between 0.13 and 0.5 pb; for \(\sqrt{s} = 7 \) TeV, it ranges between 0.20 and 0.8 pb. At \(m_H = 125.5 \) GeV the expected and observed limits are 0.33 pb and 0.45 pb, respectively, for \(\sqrt{s} = 8 \) TeV, and 0.7 pb and 0.5 pb, respectively, for \(\sqrt{s} = 7 \) TeV.
7. Conclusions

A search for a Higgs boson in the decay channel $H \to Z\gamma$, $Z \to \ell\ell$ ($\ell = e, \mu$), in the mass range 120–150 GeV, was performed using 4.5 fb$^{-1}$ of proton–proton collisions at $\sqrt{s} = 7$ TeV and 20.3 fb$^{-1}$ of proton–proton collisions at $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the LHC. No excess with respect to the background is found in the $\ell\ell$ invariant-mass distribution and 95% CL upper limits on the cross section times branching ratio are derived. For $\sqrt{s} = 7$ TeV, the limit ranges between 0.13 and 0.5 pb. Combining $\sqrt{s} = 7$ and 8 TeV data and dividing the cross section by the Standard Model expectation, for a mass of 125.5 GeV, the observed 95% confidence limit is 11 times the SM prediction.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN, CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR and Neckar, Germany; SRF and STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, the United States of America; INFN, Italy; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America; and SWF, Russia.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, United States
41 Physics Department, University of Texas at Dallas, Richardson, TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Ambrosini Institute of Physics, IV. Fakultät für Physik, Universität Hamburg, Hamburg, Germany; (b) Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany;
52 (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
53 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
54 Department of Physics, Indiana University, Bloomington, IN, United States
55 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
56 University of Iowa, Iowa City, IA, United States
57 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
58 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
59 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
60 Graduate School of Science, Kobe University, Kobe, Japan
61 Faculty of Science, Kyoto University, Kyoto, Japan
62 Kyoto University of Education, Kyoto, Japan
63 Department of Physics, Kyushu University, Fukuoka, Japan
64 (a) Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
65 Physics Department, Lancaster University, Lancaster, United Kingdom
66 INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
67 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
68 Department of Physics, Ljubljana University, Ljubljana, Slovenia
69 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
70 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
71 Department of Physics and Astronomy, University College London, London, United Kingdom
72 Louisiana Tech University, Ruston, LA, United States
73 Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
74 Fysikalinstitutet, Lunds universitet, Lund, Sweden
75 Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain
76 Institut für Physik, Universität Mainz, Mainz, Germany
77 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
78 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
79 Department of Physics, University of Massachusetts, Amherst, MA, United States
80 Department of Physics, McGill University, Montreal, QC, Canada
81 School of Physics, University of Melbourne, Victoria, Australia
82 Department of Physics, The University of Michigan, Ann Arbor, MI, United States
83 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
84 INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
85 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
86 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
87 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
88 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
89 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
90 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
91 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
92 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
93 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
94 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
95 Nagasaki Institute of Applied Science, Nagasaki, Japan
96 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
97 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
98 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
99 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
100 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
101 Department of Physics, Northern Illinois University, DeKalb, IL, United States
102 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
103 Department of Physics, New York University, New York, NY, United States
104 Ohio State University, Columbus, OH, United States
105 Faculty of Science, Okayama University, Okayama, Japan
106 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
107 Department of Physics, Oklahoma State University, Stillwater, OK, United States
108 Palacký University, RCPMT, Olomouc, Czech Republic

