Revealing a new symbiotic X-ray binary with Gemini Near-Infrared Integral Field Spectrograph

Published in: Monthly Notices of the Royal Astronomical Society

DOI: 10.1093/mnras/stu611

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Revealing a new symbiotic X-ray binary with Gemini Near-infrared Integral Field Spectrograph

Arash Bahramian, Jeanette C. Gladstone, Craig O. Heinke, Rudy Wijnands, Ramanpreet Kaur and Diego Altamirano

1 Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1, Canada
2 Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
3 Physics Department, Suffolk University, 41 Temple Street, Boston, MA 02114, USA
4 Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ, UK

Accepted 2014 March 26. Received 2014 March 17; in original form 2014 January 31

ABSTRACT

We use K-band spectroscopy of the counterpart to the rapidly variable X-ray transient XMMU J174445.5−295044 to identify it as a new symbiotic X-ray binary. XMMU J174445.5−295044 has shown a hard X-ray spectrum (we verify its association with an INTEGRAL/Imager on Board the INTEGRAL Satellite 18–40 keV detection in 2013 using a short Swift/X-Ray Telescope observation), high and varying N_H, and rapid flares on time-scales down to minutes, suggesting wind accretion on to a compact star. We observed its near-infrared counterpart using the Near-infrared Integral Field Spectrograph at Gemini-North, and classify the companion as ~M2 III. We infer a distance of 3.1±1.8 kpc (conservative 1σ errors), and therefore calculate that the observed X-ray luminosity (2–10 keV) has reached to at least 4×10^{34} erg s$^{-1}$. We therefore conclude that the source is a symbiotic X-ray binary containing a neutron star (or, less likely, black hole) accreting from the wind of a giant.

Key words: binaries: symbiotic – stars: late-type – stars: neutron – infrared: stars – X-rays: binaries – X-rays: individual: XMMU J174445.5−295044.

1 INTRODUCTION

Symbiotic binaries transfer mass via the winds of cold (usually late K or M) giants on to compact objects: white dwarfs, neutron stars, or black holes (Kenyon 1986), with orbital periods typically in the 100–1000s of days (Belczynski et al. 2000). They were first identified by the presence of high-ionization emission lines in optical spectra of otherwise cold giants, indicating the presence of two components of vastly different temperatures. ROSAT X-ray studies of symbiotic binaries distinguished three classes (α, β, γ) by the X-ray spectral shape (Murset, Wolff & Jordan 1997), with higher energy X-ray measurements adding two further classes showing highly absorbed spectra (Luna et al. 2013). A small but rapidly increasing number of symbiotic systems have been identified as containing a neutron star as an accretor, through the measurement of pulsations and/or hard X-ray emission above 20 keV, and are known as symbiotic X-ray binaries (Masetti et al. 2006).

Only seven symbiotic X-ray binaries have been positively identified so far: GX 1+4 (Davidsen, Malina & Bowyer 1977); 4U 1700+24 (Masetti et al. 2002); 4U 1954+319 (Masetti et al. 2006); Sct X-1 (Kaplan et al. 2007); IGR J16194−2810 (Masetti et al. 2007); IGR J16358−4726 (Nespoli, Fabregat & Mennickent 2010); and XTE J1743−363 (Bozzo et al. 2013). Several other likely candidate systems have also been proposed (e.g. Nucita, Carpano & Guainazzi 2007; Masetti et al. 2011; Hynes et al. 2014). The identification and characterization of a symbiotic X-ray binary require clear information on the nature of the accretor (e.g. from pulsations or unusual luminosities) and the donor (e.g. from spectroscopy).

Heinke et al. (2009) identified XMMU J174445.5−295044 as a rapidly variable (time-scales down to 100s of seconds) Galactic transient, using nine XMM–Newton, Chandra, and Suzaku observations. It showed 2–10 keV X-ray fluxes up to $>3 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$, and variations in N_H from 8×10^{22} up to 15×10^{22} cm$^{-2}$. The rapid variations and variable N_H suggested accretion from a clumpy wind, rather than an accretion disc. Heinke et al. (2009) also identified a bright near-infrared (IR) counterpart (2MASS J17444541−2950446) within the 2 arcsec XMM error circle. Heinke et al. (2009) calculated the probability of a star of this brightness in K$_S$ appearing in the X-ray error circle as only 2 per cent, indicating that it is almost certainly the true counterpart. This star appears highly obscured and shows IR colours typical of late-type stars, which Heinke et al. suggested indicates that XMMU J174445.5−295044 is a symbiotic star or symbiotic X-ray binary.

The INTEGRAL Galactic bulge monitoring program (Kuulkers et al. 2007) reported an X-ray transient detected by the Joint European X-Ray Monitor (JEM-X) on 2012 March 23...
(Chenevez et al. 2012), at 17:44:48, −29:51:00, with an uncertainty of 1.3 arcmin at 95 per cent confidence, consistent with XMMU J174445.5−295044. The 10−25 keV flux of 1.5 ± 0.3 × 10^{−10} erg cm^{-2} s^{-1} is larger than previously reported for XMMU J174445.5−295044, but the high estimated N_H (not specified, but the JEM-X source was undetected below 10 keV, indicating N_H > 10^{23} cm^{-2}) suggests that this is likely the same source, as it is known to exhibit similarly large intrinsic extinction (Heinke et al. 2009). In 2013 March, the INTEGRAL/Imager on-Board the INTEGRAL Satellite (IBIS) telescope detected a hard transient at 9.3 ± 1.4 × 10^{−11} erg cm^{-2} s^{-1} (17−60 keV), at position 17:44:41.76, −29:48:18.0, uncertainty 4.2 arcmin (Krivonos et al. 2013). Krivonos et al. note that this position is consistent with XMMU J174445.5−295044, but suggest that follow-up observations are needed to verify whether it is the same source.

In this paper, we present Gemini Near-infrared Integral Field Spectrograph (NIFS) spectroscopy of 2MASS J17444541−295044, and conclude that its spectral type indicates a M2 III giant. We also describe a Swift/X-Ray Telescope (XRT) observation permitting the confident identification of the 2013 INTEGRAL/IBIS transient (Krivonos et al. 2013) with XMMU J174445.5−295044. We combine these results to infer a peak L_X > 4 × 10^{34} erg s^{-1}. These results together allow us to confidently identify XMMU J174445.5−295044 as a symbiotic X-ray binary containing a neutron star or black hole accretor, rather than a white dwarf.

2 DATA AND ANALYSIS

2.1 Swift/XRT

We observed XMMU J174445.5−295044 with Swift/XRT on 2013 March 30 (2 d after the INTEGRAL/IBIS detection of Krivonos et al. 2013) in photon-counting mode. The observation was interrupted after an on-source exposure of ~150 s due to a gamma-ray burst alert. We detect a single source in the 23.6 arcmin diameter field, showing seven counts. Using FTOOLS XRCTCENTROID we determine the position to be RA = 17°:44′:46.26 and Dec. = −29°:50′:56.08 with positional uncertainty of 9 arcsec, consistent within <2σ with the position of XMMU J174445.5−295044. Given the lack of other X-ray sources nearby (see fig. 4 of Heinke et al. 2009), the Swift/XRT source is thus certainly the same as XMMU J174445.5−295044.

We reprocessed the Swift/XRT data (using HEASOFT 6.14), extracted a spectrum with XSELECT, and created an effective area file with XRMKARF. We fit the Swift/XRT spectrum with an absorbed power law using CSTAT statistics (Cash 1979) in XSPEC 12.8.1, fixing the photon index to 1.18 (as found in the deepest and most constrained observation of Heinke et al. 2009). We measure N_H = 4.5^{+3.2}_{−1.5} × 10^{22} and an unabsorbed 2−10 keV flux of 8.5^{+10.3}_{−3.0} × 10^{−12} erg cm^{-2}, the second-highest 2−10 keV flux recorded from XMMU J174445.5−295044.

If the INTEGRAL/IBIS measurement is extrapolated (using the spectrum above) to the 2−10 keV band, the Swift/XRT flux measurement is 1/3 of the INTEGRAL measurement. Such a high flux from XMMU J174445.5−295044 only 2 d after the INTEGRAL/IBIS detection, combined with the lack of other detections within the 4.2 arcmin INTEGRAL/IBIS error circle, indicates that XMMU J174445.5−295044 was the origin of the INTEGRAL/IBIS detection. The 2012 INTEGRAL/JEM-X detection (Chenevez et al. 2012), with a smaller error circle of 1.3 arcmin, can also be confidently assigned to XMMU J174445.5−295044.

We created long-term X-ray light curves of XMMU J174445.5−295044, calculating X-ray luminosities in the 2−10 keV band using our calculated 3.1 kpc distance (see below). In Fig. 1, we show the published detections of XMMU J174445.5−295044 (including our Swift measurement, 2013) data point has statistical error bars smaller than the marker size.

![Figure 1](http://mnras.oxfordjournals.org/ at Universiteit van Amsterdam on April 16, 2015)
and associating the two INTEGRAL detections, extrapolating their flux down to 2–10 keV).

2.2 Infrared data

2.2.1 Data and reduction

We observed XMMU J174445.5−295044 with NIFS (McGregor et al. 2002) mounted on the Fredrick C. Gillett telescope at Gemini-North Observatory. The observation was done in queue mode on 2012 July 9 under program ID GN-2012A-Q-114 (PI: C. O. Heinke). NIFS provides spectroscopy with spectral resolving power $R \sim 5000$ over a 3.0 × 3.0 arcsec2 field of view in the Z through K band (9500–24 000 Å). We performed the observation in K band with standard methods for near-IR, with a series of observations pointing on-source and blank sky. Blank sky observations were done in order to subtract sky emission from on-source observations. In order to remove telluric features in the spectrum of our target, we observed the A0V star HIP 88566 at similar airmass. For wavelength calibration, an exposure of argon/xenon arc lamps was taken. Also for spatial distortion removal and calibration, exposures with a Ronchi mask were taken.

We reduced and reprocessed the data using Gemini IRAF package V1.12 beta 2 included in IRAF1 (V2.16) distributed in UREKA2. NIFS package contains recipes for three stages of data reduction (baseline calibration, telluric data, and science data) in 'NIFSEXAMPLES'. In baseline calibration we made flat-field and bad pixel map, performed wavelength calibration and determined the spatial curvature and spectral distortion in the Ronchi flat.

The spectra of A0V stars in the K band only show one significant feature, at Brγ (21661 Å). We removed this stellar feature from our reference spectrum to obtain a pure telluric spectrum. After extracting the one-dimensional spectrum of the telluric star, we divided the spectrum with a blackbody spectrum and included a Voigt profile fit to the Brγ feature (following Barbosa et al. 2008) to mimic the A0V spectrum of our calibration source. This spectrum was created using MK1DSPEC in ARTDATA package. We assumed a temperature of ~9800 K for the blackbody continuum of the A0V telluric star (Adelman 2004) and determined the Voigt profile parameters by fitting with the task SPLT. We then eliminated telluric features in the science spectrum using the achieved pure telluric spectrum with the task NFTELLURIC. The final output of the reduction stage is calibrated telluric-corrected data in the form of a three-dimensional data cube with two spatial dimensions, each 62 pixels wide, and one spectral (wavelength) dimension of 2040 pixels. We extracted a one-dimensional spectrum by merging spatial dimensions inside a circular region with radius of 7 pixels centred on the source using DS9.

2.2.2 Spectral analysis

We measured the radial velocity of the source, using the RVIDLINES task in IRAF RV package to achieve a red/blueshift-corrected spectrum. In order to do this we first needed to identify a small number of prominent lines in the spectrum of this source. These include Al i (21 170 Å), Si i (21 360 Å), Ti (21 789, 21 903 Å), Na i (22 090 Å), and Ca i (22 614 Å). RVIDLINES provided us with a velocity correction of -12 ± 3 km s$^{-1}$, which was applied to the full spectrum. This corrected spectrum can be seen in Fig. 2.

We used various available spectral libraries for late-type stars (Kleinmann & Hall 1986; Ramirez et al. 1997; Wallace & Hinkle 1997) to identify spectral features present in the spectrum.

1 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation.

2 UREKA is provided by Association of Universities for Research in Astronomy (AURA).

3 http://www.gemini.edu/sciops/instruments/nifs/?q=node/10356
Table 1. Identified spectral lines in the spectrum. Reported wavelengths are in rest frame.

<table>
<thead>
<tr>
<th>Species</th>
<th>Wavelength (Å)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe I/Cs π (?)</td>
<td>20 295</td>
<td>3</td>
</tr>
<tr>
<td>Ti I</td>
<td>20 361</td>
<td>3</td>
</tr>
<tr>
<td>Fe I/B I (?)</td>
<td>20 563</td>
<td>3</td>
</tr>
<tr>
<td>Si I</td>
<td>20 923</td>
<td>1, 3</td>
</tr>
<tr>
<td>Mg I</td>
<td>21 067</td>
<td>1, 3</td>
</tr>
<tr>
<td>Al I</td>
<td>21 170</td>
<td>1, 3</td>
</tr>
<tr>
<td>Si I</td>
<td>21 360</td>
<td>1</td>
</tr>
<tr>
<td>Fe I/Ar I (?)</td>
<td>21 506</td>
<td>3</td>
</tr>
<tr>
<td>Ti I</td>
<td>21 789</td>
<td>1, 3</td>
</tr>
<tr>
<td>Si I</td>
<td>21 885</td>
<td>1</td>
</tr>
<tr>
<td>Ti I</td>
<td>21 903</td>
<td>1, 3</td>
</tr>
<tr>
<td>Ti I</td>
<td>22 010</td>
<td>0</td>
</tr>
<tr>
<td>Sc I</td>
<td>22 058</td>
<td>2, 3</td>
</tr>
<tr>
<td>Si I</td>
<td>22 069</td>
<td>2, 3</td>
</tr>
<tr>
<td>Na I</td>
<td>22 090</td>
<td>1, 3</td>
</tr>
<tr>
<td>Ti I</td>
<td>22 217</td>
<td>3</td>
</tr>
<tr>
<td>Fe I</td>
<td>22 263</td>
<td>1, 3</td>
</tr>
<tr>
<td>Fe I</td>
<td>22 387</td>
<td>1</td>
</tr>
<tr>
<td>Ti I</td>
<td>22 450</td>
<td>3</td>
</tr>
<tr>
<td>Ca I</td>
<td>22 614</td>
<td>1, 3</td>
</tr>
<tr>
<td>Fe I</td>
<td>22 626</td>
<td>2, 3</td>
</tr>
<tr>
<td>Ti I</td>
<td>22 627</td>
<td>2, 3</td>
</tr>
<tr>
<td>Ca I</td>
<td>22 657</td>
<td>1, 3</td>
</tr>
<tr>
<td>Fe I</td>
<td>22 745</td>
<td>3</td>
</tr>
<tr>
<td>Mg I</td>
<td>22 814</td>
<td>1, 3</td>
</tr>
<tr>
<td>12CO (2, 0)</td>
<td>22 935</td>
<td>1</td>
</tr>
<tr>
<td>12CO (3, 1)</td>
<td>23 227</td>
<td>1</td>
</tr>
<tr>
<td>13CO (2, 0)</td>
<td>23 448</td>
<td>1</td>
</tr>
<tr>
<td>12CO (4, 2)</td>
<td>23 524</td>
<td>1</td>
</tr>
<tr>
<td>13CO (3, 1)</td>
<td>23 739</td>
<td>1</td>
</tr>
<tr>
<td>12CO (5, 3)</td>
<td>23 832</td>
<td>1</td>
</tr>
</tbody>
</table>

References: 1 – Kleinmann & Hall (1986); 2 – Ramirez et al. (1997); 3 – NIST-ASD. ‘?’ indicates uncertain identifications.

To obtain accurate identification and vacuum wavelength values we compared these identifications with data available in National Institute of Standards and Technology-Atomic Spectra Database (NIST-ASD; Kramida et al. 2013). Fig. 2 shows the rest-frame spectrum of XMMU J174445.5–295044 with all identified features. These features are tabulated in Table 1.

For two-dimensional stellar classification (spectral and luminosity) of the source we followed the method discussed by Ramirez et al. (1997), Ivanov et al. (2004), and Comerón et al. (2004). This method consists of comparing the strength of a feature which is temperature dependent with a feature which is temperature- and surface gravity dependent. Following the method outlined in Comerón et al. (2004), we selected wavelength regions encompassing significant temperature-dependent features (Na I, Ca I), and one region representing a temperature- and surface gravity-dependent feature (12CO). For each feature, we use two nearby, featureless continuum regions to approximate the expected continuum level within the feature by linear interpolation. We used nearly the same feature and continuum definitions as Comerón et al. (2004; Table 2). We made a small modification to the range of the blue continuum region for the Ca I feature given by Comerón et al. (2004), shortening it by 4 Å to avoid including the relatively strong nearby Ti I (22 450 Å) line. This modification has an effect of <0.2 per cent on the equivalent width (EW) measurement. These features and continua are represented in Fig. 3. Finally, we calculated a EW for each feature, and compared these values to the values reported in Comerón et al. (2004).

To estimate errors, we divided the continuum regions into halves, and computed the EWs using either half alone. We took the largest variation from our reported values as an estimate of the error in each measurement.

3 RESULTS AND DISCUSSION

3.1 Two-dimensional spectral classification

Comerón et al. (2004) demonstrate that the 12CO feature for supergiants always shows a EW of >25 Å (see their figs 8–13). We obtained EW[12CO] = 19.4 ± 0.1 Å, which is typical for giants or dwarfs (Comerón et al. 2004). Thus we can rule out the possibility of a supergiant.

Ramirez et al. (1997) and Ivanov et al. (2004) show that log [EW(CO)/(EW(Ca I)+EW(Na I))] can be used to separate dwarfs from supergiants. Ramirez et al. (1997) show that this quantity should be between −0.22 and 0.06 for dwarfs, versus between 0.37 and 0.61 for giants. We found this quantity to be 0.67 ± 0.06 for our source, in agreement with the estimated range for giants. Presence of fairly strong 13CO bands in our spectrum is another indicator for a giant, as these features are invisible in a dwarf.

To estimate the temperature of this source, we used the first-order relationship between effective temperature (T_{eff}) in K and EW[12CO] (in Å) for giants proposed by Ramirez et al. (1997):

$$T_{eff} = (5019 ± 79) - (68 ± 4)EW[^{12}CO].$$

(1)

Considering the uncertainty in EW[12CO], we found $T_{eff} = 3700 ± 160$ K. According to van Belle et al. (1999), $T_{eff} = 3700$ K indicates M2 giant; using Richichi et al. (1999) suggests M1.5 while the relation in Ramirez et al. (1997) gives an M1.7 giant. Thus, adopting either the van Belle or Richichi calibration, the resulting spectral type is M2 III, with a reasonable range from M0 to M3. If we used the less detailed calibration from Ramirez et al. (1997), we obtain a similar result of M1.7 (M0–M3). Thus, we adopt M2 III as our spectral type, with a possible range from M0 to M3. If we used the less detailed calibration from Ramirez et al. (1997), we obtain a similar result of M1.7 (M0–M3). Thus, we adopt M2 III as our spectral type, with a possible range from M0 to M3. III.

There is no evidence for a feature at Brγ in our spectrum, either before or after our telluric subtraction. Nespoli et al. (2010) see Brγ
emission from two symbiotic X-ray binaries. However, the similar P-Cygni shape of the Brγ feature in both stars, and also in the supergiant X-ray binary IGR J16493−4348 studied by them with the same method, lend support to their hypothesis that this feature is a residual artefact of their telluric removal procedure (which is more complex than ours, involving using a G star as a second telluric reference).

3.2 Extinction, distance, and nature of the accretor

We use our identification of the spectral type, with the Two Micron All Sky Survey (2MASS) photometry (Skrutskie et al. 2006) reported by Heinke et al. (2009), to estimate the extinction, and thus the distance, to XMMU J174445.5−295044, in a similar way as Kaplan et al. (2007), but explicitly accounting for the difference between the K_S and K bands. Although the 2MASS colours were measured at a different time from the NIFS spectroscopy reported here, we do not expect large variations in the temperature or observed extinction of the giant, as the stars most affected by this are of later (>M5) spectral types (Habing 1996).

M2 III stars have an absolute magnitude of $M_J = -3.92$ and intrinsic $J - K_S$ colours of 1.12 (Covey et al. 2007). Heinke et al. (2009) report a 2MASS magnitude of $m_J = 14.89$ in J for our object, and an observed $J - K_S = 4.72$.

We use $A_J/A_V = 0.282$ (Cardelli, Clayton & Mathis 1989), and $A_J/A_{K_S} = 2.5 \pm 0.2$ (Indebetouw et al. 2005). Thus we infer $A_V = (A_J/A_{K_S}) \times (A_{K_S}/A_V) = 21.3 \pm 1.7$, and $A_J = 6.0 \pm 0.2$. The extinction measurement converts [using $N_H (\text{cm}^{-2}) = (2.21 \pm 0.09) \times 10^{21} A_V$; Güver & Özel 2009] to $N_H = (4.7 \pm 0.5) \times 10^{22} \text{cm}^{-2}$, which is below the X-ray measured values (measurements of $8.6 \pm 0.4 \times 10^{22}$ and $16.5 \pm 1 \times 10^{22} \text{cm}^{-2}$ from different observations) in Heinke et al. (2009). This is consistent with expectations for a wind-accreting system, where much of the N_H is expected to be local to the compact object, and with the evidence for variation in N_H between different observations shown by Heinke et al. (2009).

Using this A_V estimate, the expected M_J for a M2 III star, and the observed J magnitude, we can thus estimate $d = 3.1$ kpc as the most likely distance to our object. The largest uncertainty in our distance estimate is our estimate of the absolute magnitude of the companion star. Allowing for a conservative 1-mag uncertainty on the absolute magnitude (estimated from Breddels et al. 2010; this is probably more precise than 1σ), we find $d = 3.1^{+3.8}_{-1.1}$ kpc. This distance is consistent with our (small) radial velocity estimate, which would be typical of a disc star observed at a very small Galactic latitude ($l = 359.1$), and with our measurement of the relative strengths of the CO and Na lines, the ratio of which is more consistent with disc giants than with giants in the bulge (Comerón et al. 2004).

From this distance estimate, we can infer the X-ray luminosities of XMMU J174445.5−295044, as plotted in Fig. 1 (errors there do not include the distance uncertainties). The majority of the X-ray detections are between 10^{33} and 10^{34} erg s$^{-1}$, but the INTEGRAL/JEM-X detection in 2012 March (Chenevez et al. 2012) gives a (2–10 keV) X-ray luminosity of $(1.1 \pm 0.2) \times 10^{35}$ erg s$^{-1}$ for $d = 3.1$ kpc; even at the lower limit on the distance ($d = 2.0$ kpc), the luminosity exceeds 4×10^{34} erg s$^{-1}$. [Similarly, the 2013 March INTEGRAL/IBIS detection gives a (2–10 keV) $L_X = 2.5 \times 10^{35}$ erg s$^{-1}$ for 3.1 kpc, or 1.1×10^{34} erg s$^{-1}$ for the 2.0 kpc lower distance limit, which further confirms the high X-ray luminosity of XMMU J174445.5−295044.] Combining this high peak X-ray luminosity (four times the maximum seen for any accreting white dwarf; Stacey et al. 2011) with the hard X-ray spectrum inferred from the later INTEGRAL/IBIS detection above 17 keV (Krivonos et al. 2013), we can confidently rule out a white dwarf nature for the accretor. Thus, we securely identify XMMU J174445.5−295044 as a symbiotic X-ray binary, with a neutron star (or, less likely, black hole) accreting from the wind of an M2 giant star.

XMMU J174445.5−295044 stands out from other symbiotic X-ray binaries only in not showing detectable X-ray pulsations (Heinke et al. 2009). The complete absence of near-IR spectroscopic evidence of accretion in our NIFS spectrum is typical of other symbiotic X-ray binaries with relatively low accretion rates. The lack of detected pulsations also means that the accretor could be a black hole, though black hole symbiotic X-ray binaries should be less common.

The increasing number of symbiotic binaries without detected emission lines in high-quality spectra being detected recently (van den Berg et al. 2006, 2012; Hynes et al. 2014) strongly suggests...
A new symbiotic X-ray binary

that there should be many more symbiotic stars (with white dwarf accretors) which also do not show optical/near-IR spectroscopic evidence of accretion (van den Berg et al. 2006). Symbiotic systems may make up an important portion of the faint Galactic X-ray source population.

ACKNOWLEDGEMENTS

The authors thank the anonymous referee for helpful comments. COH thanks Jaehyon Rhee, Tim Davidge, and Inger Jorgensen for assistance in preparing the observing plan. AB thanks E. Rosolowsky for helpful discussions. We thank the Gemini help desk for helpful discussions on the analysis of NIFS data. We acknowledge financial support from NSERC Discovery Grants (COH), an Alberta Ingenuity New Faculty Award (COH), and the Avadh Bhaita Fellowship (JCG). RW and RK are supported by a European Research Council Starting Grant. DA acknowledges support from the Royal Society.

NIST-ASD funded [in part] by the Office of Fusion Energy Sciences of the US Department of Energy, by the National Aeronautics and Space Administration, by NIST’s Standard Reference Data Program (SRDP), and by NIST’s Systems Integration for Manufacturing Applications (SIMA) Program. The Swift/XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. We acknowledge extensive use of the ADS and arXiv.

REFERENCES

Chenevez J. et al., 2012, Astron. Telegram, 4000, 1
Covey K. R. et al., 2007, AJ, 134, 2398
Kuulkers E. et al., 2007, A&A, 466, 595
Skrutskie M. F. et al., 2006, AJ, 131, 1163

This paper has been typeset from a TEX/LATEX file prepared by the author.