Detection of spectral hardening in IGR J17451-3022; evidence for a LMXB

Bahramian, A.; Heinke, C.O.; Wijnands, R.; Altamirano, D.

Published in:
The astronomer's telegram

Citation for published version (APA):
Detection of spectral hardening in IGR J17451-3022; evidence for a LMXB

ATEL #6486; A. Bahramian, C. O. Heinke (Alberta), R. Wijnands (Amsterdam), D. Altamirano (Southampton)
on 22 Sep 2014; 19:56 UT
Credential Certification: Arash Bahramian (bahramia@ualberta.ca)

Subjects: X-ray, Black Hole, Neutron Star, Transient
Referred to by ATEL #: 6501, 6533, 7028

IGR J17451-3022 is a new transient discovered by INTEGRAL JEM-X (ATEL #6451). Follow-up Swift/XRT observations found this transient to have a highly absorbed blackbody-like spectrum (ATEL #6459). Searches for pulsations using XRT in WT mode found no pulsations in the the 0.01-280 Hz range, with upper limits on the pulsed fraction of roughly 10% (ATEL #6469).

We are continuing to monitor this source using Swift/XRT. It has shown a soft thermal spectrum - consistent with ATEL #6459 - in observations performed on Sep. 15 and Sep. 19. However, the spectrum has become harder in the observation performed on Sep. 21.

The observation was done in WT mode and the source is clearly detected. We excluded photons with energies below 1.4 keV due to the expected low energy spectral residuals which appear in the windowed timing mode observations of heavily absorbed sources (see XRT Calibration Status at Leicester XRT digest). We performed spectral fitting and compared a blackbody, a disk blackbody and a power-law model. In contrast with previous observations, we found a power-law with a photon-index of 2.2±0.5 gives a better fit in this observation (reduced chi-squared of 1.2 compared to 1.6 and 1.4 for blackbody and disk blackbody respectively, for 12 degrees of freedom).

There is a 40" offset between the known position of the source and the edge of the active part of the detector, therefore we only observe a portion of the point spread function of the source. This causes significant uncertainty in estimations of the flux, thus we can just infer a lower-limit of 1.1e-10 erg/s/cm² (0.5-10 keV) on the unabsorbed flux.

The spectral hardening detected in this observation, along with the previous behaviour of this transient, is similar to outbursts of transient LMXBs, suggesting this source is a transient LMXB (with a distance >~ 8 kpc) switching from a high-soft state to a low-hard state.

We thank the Swift team for quickly arranging our observations.

Related
7361 Discovery of eclipses in the X-ray transient IGR J17451-3022
7096 INTEGRAL detection of the on-going outbursts from 1RXS J180408.9-342058 and GRO J1750-27
7039 Swift observations of 1RXS J180408.9-342058
7028 Continuing outburst of Galactic transient IGR J17451-3022
7008 MAXI/GSC observation of 1RXS J180408.9-342058 in outburst
6997 Swift/BAT detects an outburst from the neutron star binary 1RXS J180408.9-342058
6839 New Outburst of the Be/X-ray Transient GRO J1750-27 Detected with Fermi/GBM
6602 INTEGRAL/JEM-X sees enhanced activity in the Galactic center region: SAX J1747.0-2853 and IGR J17454-2919
6574 Hard X-ray spectral and timing properties of IGR J17454-2919 consistent with a black hole in the hard state
6533 Chandra Localization of IGR J17451-3022
6530 IGR J17454-2919: a new X-ray transient found by INTEGRAL/JEM-X close to the Galactic Center
6501 New Galactic transient IGR J17451-3022: still soft
6486 Detection of spectral hardening in IGR J17451-3022: evidence for a LMXB
6469 Swift observations of the ongoing outburst of IGR J17451-3022
6459 Soft, absorbed X-ray spectra of the new transient IGR J17451-3022
6451 A new X-ray transient, IGR J17451-3022, discovered by INTEGRAL/JEM-X near the Galactic Centre
1400 Further observations of GRO J1750-27 (AX J1749.1-2639) with INTEGRAL
1385 INTEGRAL Galactic bulge monitoring observations of GRO J1750-27 (AX J1749.1-2639), H1743-322 and SLX 1746-331
ATel #6486: Detection of spectral hardening in IGR J17451-3022; evidence for a LMXB

R. E. Rutledge, Editor-in-Chief
Derek Fox, Editor
Mansi M. Kasliwal, Co-Editor

rrutledge@astronomerstelegram.org
dfox@astronomerstelegram.org
mansi@astronomerstelegram.org