Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at $\sqrt{s} = 8$ TeV

DOI
10.1103/PhysRevLett.113.171801

Publication date
2014

Document Version
Final published version

Published in
Physical Review Letters

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for Scalar Diphoton Resonances in the Mass Range 65–600 GeV with the ATLAS Detector in pp Collision Data at $\sqrt{s} = 8$ TeV

G. Aad et al.*

(ATLAS Collaboration)

(Received 25 July 2014; published 20 October 2014)

A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section times the branching ratio to two photons.

The upper limits set extend over a considerably wider mass range than previous searches.

DOI: 10.1103/PhysRevLett.113.171801 PACS numbers: 14.80.Da, 13.85.Qk, 14.70.Bh, 14.80.Ec

In July 2012, the ATLAS and CMS collaborations reported the discovery of a new particle [1,2] whose measured couplings and properties are compatible with the standard model Higgs boson (H) [3–6]. However, several extensions to the standard model—in particular, models featuring an extended Higgs sector [7–13]—predict new scalar resonances below or above the H mass which may be narrow when their branching ratio to two photons is non-negligible.

This Letter presents a search for a scalar particle X of mass m_X decaying via narrow resonances into two photons. It extends the method developed for the measurement of the H couplings in the $H \rightarrow \gamma\gamma$ channel [3] to the range 65 < m_X < 600 GeV. Analytical descriptions of the signal and background distributions are fitted to the measured diphoton invariant mass spectrum $m_{\gamma\gamma}$ to determine the signal and background yields. The result is presented as a limit on the production cross section times the branching ratio $BR(X \rightarrow \gamma\gamma)$, restricted to a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

The ATLAS detector [14] at the LHC [15] covers the pseudorapidity range $|\eta| < 2.5$, surrounded by electromagnetic and hadronic calorimeters and an external muon spectrometer.

The search is carried out using the $\sqrt{s} = 8$ TeV pp collision data set collected in 2012, with stable beam conditions and all ATLAS subsystems operational, which corresponds to an integrated luminosity of $L = 20.3 \pm 0.6$ fb$^{-1}$ [17]. The data were recorded using a diphoton trigger that required two electromagnetic clusters with transverse energies E_T above 20 GeV, both fulfilling identification criteria based on shower shapes in the electromagnetic calorimeter. The efficiency of the diphoton trigger [18] is (98.7 ± 0.5)% for signal events passing the analysis selection.

The event selection requires at least one reconstructed primary vertex with two or more tracks with transverse momenta $p_T > 0.4$ GeV, and at least two photon candidates with $E_T > 22$ GeV and $|\eta| < 2.37$, excluding the barrel and end cap transition regions of the calorimeter, $1.37 < |\eta| < 1.56$.

Photon reconstruction is seeded by clusters of electromagnetic calorimeter cells. Clusters without matching tracks are classified as unconverted photons. Clusters with matched tracks are considered as electron candidates but are classified as converted photons if they are associated with two tracks consistent with a $\gamma \rightarrow e^+e^-$ conversion process, or a single track leaving no hit in the innermost layer of the inner tracking detector. The photon energy calibration procedure is the same as in Ref. [3].

Photon candidates are required to fulfill identification criteria based on shower shapes in the electromagnetic calorimeter, and on energy leakage into the hadronic calorimeter [19]. Identification efficiencies, averaged over η, range from 70% to above 99% for the E_T range under consideration. To further reduce the background from jets, the calorimeter isolation transverse energy E_{iso}^{γ} is required.
to be smaller than 6 GeV, where \(E_T^{iso} \) is defined as the sum of transverse energies of the positive-energy topological clusters \([20]\) within a cone of size \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.4 \) around the photon candidate. The core of the photon shower is excluded, and \(E_T^{iso} \) is corrected for the leakage of the photon shower into the isolation cone. The contributions from the underlying event and pileup are subtracted using the technique proposed in Ref. \([21]\) and implemented as described in Ref. \([22]\). In addition, the track isolation—defined as the scalar sum of the \(p_T \) of the primary vertex tracks with \(p_T > 1 \) GeV in a \(\Delta R = 0.2 \) cone around the photon candidate, excluding the conversion tracks—is required to be smaller than 2.6 GeV.

The \(m_{\gamma\gamma} \) invariant mass is evaluated using the leading photon (\(\gamma_1 \)) and subleading photon (\(\gamma_2 \)) energies measured in the calorimeter, the azimuthal angle \(\Delta \phi \) and the pseudorapidity \(\Delta \eta \) separations between the photons determined from their positions in the calorimeter, and the position of the reconstructed diphoton vertex \([3]\).

After selection, the data sample consists of a continuum background with dominantly \(\gamma\gamma \), \(\gamma \)-jet, and jet-jet events and Drell–Yan (DY) production of electron pairs where both electrons are misidentified as photons. Two peaking backgrounds arise from the \(Z \) boson component of the DY and from \(H \rightarrow \gamma\gamma \).

To increase the sensitivity, the search is split into two analyses: a categorized low-mass analysis covering the range \(65 < m_X < 110 \) GeV and an inclusive high-mass analysis covering \(110 < m_X < 600 \) GeV. To provide sidebands on both sides of the tested mass point \(m_X \), the \(m_{\gamma\gamma} \) ranges are wider than the \(m_X \) ranges probed and overlap at the transition between the two analyses.

The low-mass analysis requires a precise modeling of the DY background, dominated by the \(Z \) boson resonance, where both electrons are misidentified as photons, mostly classified as converted photons. The loss of signal sensitivity is mitigated by separating the events into three categories with different signal-to-background ratios, according to the conversion status of the photon pair: two unconverted (UU), one converted and one unconverted (CU), or two converted (CC) photons. Table I shows the fractions of signal and DY events expected in each category.

In each category, the \(Z \) resonance shape is described by a double-sided Crystal Ball function \([23]\). Because of the limited size of the fully simulated \(Z \rightarrow ee \) sample \([25,26]\) where both electrons are misidentified as photons, the shape parameters are determined by a fit to a dielectron data sample, where both electrons are required to fulfill shower shape identification criteria and the same \(E_T \) thresholds as the photons.

Since most of the electrons misidentified as photons underwent large bremsstrahlung, the invariant mass distribution of the \(Z \) boson reconstructed as a photon pair is wider and shifted to lower masses by up to 2 GeV with respect to the \(Z \) boson mass reconstructed as an electron pair. The \(Z \rightarrow ee \) invariant mass distributions extracted from data in each category are transformed by applying \(E_T \)-dependent shifts and smearing factors to the electron \(E_T \) and \(\phi \), to match the kinematics of the electrons misidentified as photons. Two sets of transformations are derived for \(\gamma_1 \) and \(\gamma_2 \) depending on their conversion status, using a \(Z \rightarrow ee \) sample generated with POWHEG \([27,28]\), interfaced with PYTHIA8 \([29]\) for showering and hadronization. Figure 1 illustrates the effect of the electrons’ transformations on the invariant mass shapes in the fully simulated \(Z \rightarrow ee \) sample. Systematic uncertainties on the template shapes and the \(Z \) peak position are evaluated by varying the parameters of the electrons’ transformations by \(\pm 1\sigma \).

The DY normalization is computed from the \(e \rightarrow \gamma \) fake rates, defined as the ratios of \(e\gamma \) to \(ee \) pairs measured in \(Z \rightarrow ee \) data, separately for \(\gamma_1 \) and \(\gamma_2 \) and each conversion status. A correction factor obtained from fully simulated \(Z \rightarrow ee \) events is applied to account for additional effects, mainly the differences in isolation efficiencies and vertex reconstruction efficiency between \(\gamma\gamma \) and \(ee \) events. The associated uncertainties (9% to 25%) are dominated by the

<table>
<thead>
<tr>
<th>(\gamma\gamma) category</th>
<th>UU</th>
<th>CU</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{data}})</td>
<td>272184</td>
<td>253804</td>
<td>63224</td>
</tr>
<tr>
<td>(N_{\text{DY}})</td>
<td>1080 \pm 260</td>
<td>3400 \pm 600</td>
<td>2700 \pm 250</td>
</tr>
<tr>
<td>(f_{\text{DY}})</td>
<td>15.0%</td>
<td>47.3%</td>
<td>37.7%</td>
</tr>
<tr>
<td>(f_X)</td>
<td>48.7%</td>
<td>42.5%</td>
<td>8.8%</td>
</tr>
</tbody>
</table>

FIG. 1 (color online). Invariant mass distributions in the CC category for fully simulated \(Z \rightarrow ee \) events reconstructed as \(ee \) (dotted lines), reconstructed as \(\gamma\gamma \) (squares), and reconstructed as \(ee \) after transforming the electrons to match the kinematics of the electrons misidentified as converted photons (circles).
The determination of the analytical form of the continuum background and the corresponding uncertainties follow the method detailed in Ref. [1]. The sum of a Landau distribution and an exponential distribution is used over the full \(m_{\gamma\gamma} \) range. The bias on the signal yield induced by the analytical shape function is required to be lower than 20% of the statistical uncertainty on the fitted signal yield due to the photon energy resolution uncertainty ranges being negligible. The systematic uncertainty on the signal shape scale uncertainty is 0.6% [3]. The systematic uncertainty on the X peak position due to the photon energy scale uncertainty is 0.6% [3].

The expected invariant mass distribution of the narrow resonance signal X is also modeled with a double-sided Crystal Ball function in the mass range \(65 \leq m_X \leq 600 \) GeV, using fully simulated ggF(X) samples generated as for \(H \), where \(H \) is replaced by a scalar boson with a constant width of 4 MeV. Polynomial parametrizations of the signal shape parameters as a function of \(m_X \) are obtained from a simultaneous fit to all the generated mass points \(m_X \), separately for the high-mass analysis and the three low-mass analysis categories. The signal shape parameters extracted from ggF(X) are compared to the other production modes: VBF(\(X \)), WX, ZX, and \(t\bar{t}X \); the bias on the signal yield due to the choice of ggF(X) shape is negligible. The systematic uncertainty on the signal shape due to the photon energy resolution uncertainty ranges from 10% to 40% as a function of \(m_X \) [3]. The systematic uncertainty on the X peak position due to the photon energy scale uncertainty is 0.6% [3].

The fiducial cross section \(\sigma_{\text{fid}}BR(X \rightarrow \gamma\gamma) \) includes an efficiency correction factor \(C_X \) through

\[
\sigma_{\text{fid}}BR(X \rightarrow \gamma\gamma) = \frac{N_{\text{data}}}{C_X N_{\text{MC}}} \quad \text{with} \quad C_X = \frac{N_{\text{MC}}}{N_{\text{MC}}}.
\]

The expected invariant mass distribution of the narrow resonance signal X is also modeled with a double-sided Crystal Ball function in the mass range \(65 \leq m_X \leq 600 \) GeV, using fully simulated ggF(X) samples generated as for \(H \), where \(H \) is replaced by a scalar boson with a constant width of 4 MeV. Polynomial parametrizations of the signal shape parameters as a function of \(m_X \) are obtained from a simultaneous fit to all the generated mass points \(m_X \), separately for the high-mass analysis and the three low-mass analysis categories. The signal shape parameters extracted from ggF(X) are compared to the other production modes: VBF(\(X \)), WX, ZX, and \(t\bar{t}X \); the bias on the signal yield due to the choice of ggF(X) shape is negligible. The systematic uncertainty on the signal shape due to the photon energy resolution uncertainty ranges from 10% to 40% as a function of \(m_X \) [3]. The systematic uncertainty on the X peak position due to the photon energy scale uncertainty is 0.6% [3].

The expected invariant mass distribution of the narrow resonance signal X is also modeled with a double-sided Crystal Ball function in the mass range \(65 \leq m_X \leq 600 \) GeV, using fully simulated ggF(X) samples generated as for \(H \), where \(H \) is replaced by a scalar boson with a constant width of 4 MeV. Polynomial parametrizations of the signal shape parameters as a function of \(m_X \) are obtained from a simultaneous fit to all the generated mass points \(m_X \), separately for the high-mass analysis and the three low-mass analysis categories. The signal shape parameters extracted from ggF(X) are compared to the other production modes: VBF(\(X \)), WX, ZX, and \(t\bar{t}X \); the bias on the signal yield due to the choice of ggF(X) shape is negligible. The systematic uncertainty on the signal shape due to the photon energy resolution uncertainty ranges from 10% to 40% as a function of \(m_X \) [3]. The systematic uncertainty on the X peak position due to the photon energy scale uncertainty is 0.6% [3].

The expected invariant mass distribution of the narrow resonance signal X is also modeled with a double-sided Crystal Ball function in the mass range \(65 \leq m_X \leq 600 \) GeV, using fully simulated ggF(X) samples generated as for \(H \), where \(H \) is replaced by a scalar boson with a constant width of 4 MeV. Polynomial parametrizations of the signal shape parameters as a function of \(m_X \) are obtained from a simultaneous fit to all the generated mass points \(m_X \), separately for the high-mass analysis and the three low-mass analysis categories. The signal shape parameters extracted from ggF(X) are compared to the other production modes: VBF(\(X \)), WX, ZX, and \(t\bar{t}X \); the bias on the signal yield due to the choice of ggF(X) shape is negligible. The systematic uncertainty on the signal shape due to the photon energy resolution uncertainty ranges from 10% to 40% as a function of \(m_X \) [3]. The systematic uncertainty on the X peak position due to the photon energy scale uncertainty is 0.6% [3].
where \(N_{\text{data}} \) is the number of fitted signal events in data, \(N_{\text{reco}}^{MC} \) the number of simulated signal events passing the selection criteria and \(N_{\text{fid}}^{MC} \) the number of simulated signal events generated within the fiducial volume. The fiducial volume, defined from geometrical and kinematical constraints at the generated particle level, is optimized to reduce the model dependence of \(C_X \) using fully simulated samples of the five \(X \) production modes to cover a large variety of topologies. The photon selection at generation level is similar to the selection applied to the data: two photons with \(E_T > 22 \) GeV and \(|\eta| < 2 \) are required; for \(m_X \) greater than 110 GeV, the relative cuts \(E_T^{\gamma 1}/m_{\gamma\gamma} > 0.4 \) and \(E_T^{\gamma 2}/m_{\gamma\gamma} > 0.3 \) are imposed. The particle isolation, defined as the scalar sum of \(p_T \) of all the stable particles (except neutrinos) found within a \(\Delta R = 0.4 \) cone around the photon direction, is required to be less than 12 GeV. The \(C_X \) factor is parametrized from the ggF(\(X \)) samples and ranges from 0.56 to 0.71 as a function of \(m_X \). Systematic uncertainties include the maximum difference between the

\(C_X \) of the five production modes, the effect of the underlying event (U.E.) and pileup.

The statistical analysis of the data uses unbinned maximum likelihood fits. The DY and \(H \) shapes and normalizations are allowed to float within the uncertainties. In the low-mass analysis, a simultaneous fit to the three conversion categories is performed. Only two excesses with 2.1 \(\sigma \) and 2.2 \(\sigma \) local significances above the background are observed over the full mass range 65–600 GeV, for \(m_X = 201 \) GeV and \(m_X = 530 \) GeV, respectively. This corresponds to a deviation of less than 0.5 \(\sigma \) from the background-only hypothesis. Consequently, a 95% limit on \(\sigma_{\text{fid}} BR(X \rightarrow \gamma\gamma) \) is computed using the procedure of Ref. [1]. The systematic uncertainties listed in Table II are accounted for by nuisance parameters in the likelihood function. In the low-mass analysis, the dominant uncertainties are the DY normalization and the residual topology dependence of \(C_X \). In the high-mass analysis, the largest uncertainties arise from the energy resolution and the
theoretical uncertainty on the production rate of the standard model Higgs boson around 126 GeV.

The observed and expected limits, shown in Fig. 4, are in good agreement, consistent with the absence of a signal. The limits on $\sigma_{\text{gg}}BR(X \rightarrow \gamma\gamma)$ for an additional scalar resonance range from 90 fb for the theoretical uncertainty on the production rate of the 113, PRL, are the first such limits and CMS collaborations [1,35], are complementary to spin-2 particles searches [36,37], and are the first such limits independent of the event topology.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS and CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom) and BNL (U.S.), and in the Tier-2 facilities worldwide.

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector, and the z axis along the beam line. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, with ϕ being the azimuthal angle around the beam line. Observables labeled transverse are projected into the x-y plane. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$.
[23] A double-sided Crystal Ball function is composed of a Gaussian distribution at the core, connected with two power-law distributions describing the lower and upper tails [24].
[31] Differences between this choice of reference mass and the new mass measurements [32,33] are covered by the energy scale uncertainties listed in Table II.
Department of Physics, University of Washington, Seattle, Washington, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada

SLAC National Accelerator Laboratory, Stanford, California, USA

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic

Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Cape Town, Cape Town, South Africa

School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University, Sweden

The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, Ontario, Canada

TRIUMF, Vancouver, British Columbia, Canada

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy

ICTP, Trieste, Italy

Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana, Illinois, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

\(^a\)Deceased.

\(^b\)Also at Department of Physics, King’s College London, London, United Kingdom.

\(^c\)Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

\(^d\)Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

\(^e\)Also at TRIUMF, Vancouver BC, Canada

\(^f\)Also at Department of Physics, California State University, Fresno CA, USA.

\(^g\)Also at Tomsk State University, Tomsk, Russia.

\(^h\)Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

\(^i\)Also at Università di Napoli Parthenope, Napoli, Italy.

\(^j\)Also at Institute of Particle Physics (IPP), Canada.