Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at $s = 8$ TeV

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.113.171801

Link to publication

Citation for published version (APA):
Search for Scalar Diphoton Resonances in the Mass Range 65–600 GeV with the ATLAS Detector in pp Collision Data at $\sqrt{s} = 8$ TeV

G. Aad et al.*

(Submitted 25 July 2014; published 20 October 2014)

A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section times the branching ratio of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

In July 2012, the ATLAS and CMS collaborations reported the discovery of a new particle [1,2] whose measured couplings and properties are compatible with the standard model Higgs boson (H) [3–6]. However, several extensions to the standard model—in particular, models featuring an extended Higgs sector [7–13]—predict new scalar resonances below or above the H mass which may be narrow when their branching ratio to two photons is non-negligible.

This Letter presents a search for a scalar particle X of mass m_X decaying via narrow resonances into two photons. It extends the method developed for the measurement of the H couplings in the $H \rightarrow \gamma\gamma$ channel [3] to the range 65 < m_X < 600 GeV. Analytical descriptions of the signal and background distributions are fitted to the measured diphoton invariant mass spectrum $m_{\gamma\gamma}$ to determine the signal and background yields. The result is presented as a limit on the production cross section times the branching ratio $BR(X \rightarrow \gamma\gamma)$, restricted to a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The resonance with mass m_X is considered narrow when its intrinsic width is smaller than 0.09 GeV + 0.01m_X. This upper limit is defined such that the bias in the number of fitted signal events is kept below 10%. This ensures that the diphoton invariant mass width is dominated by the experimental resolution in the ATLAS detector. Model-dependent interference effects between the resonance and the continuum diphoton background are not considered.

The ATLAS detector [14] at the LHC [15] covers the pseudorapidity [16] range $|\eta| < 4.9$ and the full azimuthal angle ϕ. It consists of an inner tracking detector covering the pseudorapidity range $|\eta| < 2.5$, surrounded by electromagnetic and hadronic calorimeters and an external muon spectrometer.

The search is carried out using the $\sqrt{s} = 8$ TeV pp collision data set collected in 2012, with stable beam conditions and all ATLAS subsystems operational, which corresponds to an integrated luminosity of $L = 20.3 \pm 0.6$ fb$^{-1}$ [17]. The data were recorded using a diphoton trigger that required two electromagnetic clusters with transverse energies E_T above 20 GeV, both fulfilling identification criteria based on shower shapes in the electromagnetic calorimeter. The efficiency of the diphoton trigger [18] is (98.7 ± 0.5)% for signal events passing the analysis selection.

The event selection requires at least one reconstructed primary vertex with two or more tracks with transverse momenta $p_T > 0.4$ GeV, and at least two photon candidates with $E_T > 22$ GeV and $|\eta| < 2.37$, excluding the barrel and end cap transition region of the calorimeter, $1.37 < |\eta| < 1.56$.

Photon reconstruction is seeded by clusters of electromagnetic calorimeter cells. Clusters without matching tracks are classified as unconverted photons. Clusters with matched tracks are considered as electron candidates but are classified as converted photons if they are associated with two tracks consistent with a $\gamma \rightarrow e^+e^-$ conversion process, or a single track leaving no hit in the innermost layer of the inner tracking detector. The photon energy calibration procedure is the same as in Ref. [3].

Photon candidates are required to fulfill identification criteria based on shower shapes in the electromagnetic calorimeter, and on energy leakage into the hadronic calorimeter [19]. Identification efficiencies, averaged over η, range from 70% to above 99% for the E_T range under consideration. To further reduce the background from jets, the calorimeter isolation transverse energy E_T^{iso} is required...
to be smaller than 6 GeV, where \(E_T^{\text{iso}} \) is defined as the sum of transverse energies of the positive-energy topological clusters [20] within a cone of size \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.4 \) around the photon candidate. The core of the photon shower is excluded, and \(E_T^{\text{iso}} \) is corrected for the leakage of the photon shower into the isolation cone. The contributions from the underlying event and pileup are subtracted using the technique proposed in Ref. [21] and implemented as described in Ref. [22]. In addition, the track isolation—defined as the scalar sum of the \(p_T \) of the primary vertex tracks with \(p_T > 1 \) GeV in a \(\Delta R = 0.2 \) cone around the photon candidate, excluding the conversion tracks—is required to be smaller than 2.6 GeV.

The \(m_{\gamma \gamma} \) invariant mass is evaluated using the leading photon (\(\gamma_1 \)) and subleading photon (\(\gamma_2 \)) energies measured in the calorimeter, the azimuthal angle \(\Delta \phi \) and the pseudorapidity \(\Delta \eta \) separations between the photons determined from their positions in the calorimeter, and the position of the reconstructed diphoton vertex [3].

After selection, the data sample consists of a continuum background with dominantly \(\gamma \gamma, \gamma j \), and jet-jet events and Drell–Yan (DY) production of electron pairs where both electrons are misidentified as photons. Two peaking backgrounds arise from the Z boson component of the DY and from \(H \rightarrow \gamma \gamma \).

To increase the sensitivity, the search is split into two analyses: a categorized low-mass analysis covering the range \(65 < m_X < 110 \) GeV and an inclusive high-mass analysis covering \(110 < m_X < 600 \) GeV. To provide sidebands on both sides of the tested mass point \(m_X \), the \(m_{\gamma \gamma} \) ranges are wider than the \(m_X \) ranges probed and overlap at the transition between the two analyses.

The low-mass analysis requires a precise modeling of the DY background, dominated by the Z boson resonance, where both electrons are misidentified as photons, mostly classified as converted photons. The loss of signal sensitivity is mitigated by separating the events into three categories with different signal-to-background ratios, according to the conversion status of the photon pair: two unconverted (UU), one converted and one unconverted (CU), or two converted (CC) photons. Table I shows the fractions of signal and DY events expected in each category.

<table>
<thead>
<tr>
<th>(\gamma \gamma) category</th>
<th>UU</th>
<th>CU</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{data}})</td>
<td>272184</td>
<td>253804</td>
<td>63224</td>
</tr>
<tr>
<td>(N_{\text{DY}})</td>
<td>1080 \pm 260</td>
<td>3400 \pm 600</td>
<td>2700 \pm 250</td>
</tr>
<tr>
<td>(f_{\text{DY}})</td>
<td>15.0%</td>
<td>47.3%</td>
<td>37.7%</td>
</tr>
<tr>
<td>(f_X)</td>
<td>48.7%</td>
<td>42.5%</td>
<td>8.8%</td>
</tr>
</tbody>
</table>

In each category, the Z resonance shape is described by a double-sided Crystal Ball function [23]. Because of the limited size of the fully simulated \(Z \rightarrow ee \) sample [25,26] where both electrons are misidentified as photons, the shape parameters are determined by a fit to a dielectron data sample, where both electrons are required to fulfill shower shape identification criteria and the same \(E_T \) thresholds as the photons.

Since most of the electrons misidentified as photons underwent large bremsstrahlung, the invariant mass distribution of the Z boson reconstructed as a photon pair is wider and shifted to lower masses by up to 2 GeV with respect to the Z boson mass reconstructed as an electron pair. The \(Z \rightarrow ee \) invariant mass distributions extracted from data in each category are transformed by applying \(E_T \)-dependent shifts and smearing factors to the electron \(E_T \) and \(\phi \), to match the kinematics of the electrons misidentified as photons. Two sets of transformations are derived for \(\gamma_1 \) and \(\gamma_2 \) depending on their conversion status, using a \(Z \rightarrow ee \) sample generated with POWHEG [27,28], interfaced with PYTHIA8 [29] for showering and hadronization.

Figure 1 illustrates the effect of the electrons’ transformations on the invariant mass shapes in the fully simulated \(Z \rightarrow ee \) sample. Systematic uncertainties on the template shapes and the Z peak position are evaluated by varying the parameters of the electrons’ transformations by \(\pm 1\sigma \).

The DY normalization is computed from the \(e \rightarrow \gamma \) fake rates, defined as the ratios of \(e\gamma \) to \(ee \) pairs measured in \(Z \rightarrow ee \) data, separately for \(\gamma_1 \) and \(\gamma_2 \) and each conversion status. A correction factor obtained from fully simulated \(Z \rightarrow ee \) events is applied to account for additional effects, mainly the differences in isolation efficiencies and vertex reconstruction efficiency between \(\gamma \gamma \) and \(ee \) events. The associated uncertainties (9\% to 25\%) are dominated by the

![ATLAS Simulation](171801.pdf)
subtraction of the continuum background and the detector material description.

The determination of the analytical form of the continuum background and the corresponding uncertainties follow the method detailed in Ref. [1]. The sum of a Landau distribution and an exponential distribution is used over the full \(m_{\gamma\gamma} \) range. The bias on the signal yield induced by the analytical shape function is required to be lower than 20% of the statistical uncertainty on the fitted signal yield. Figure 2 shows background-only fits to the data in the low-mass analysis for the three conversion categories in the low-mass range. The solid lines show the sum of the Drell–Yan and the continuum background components. The dashed lines show the continuum background component only.

In the high-mass analysis, relative cuts \(E_T^{\ell}\!/m_{\gamma\gamma} > 0.4 \) and \(E_T^{\ell}\!/m_{\gamma\gamma} > 0.3 \) are added to the selection requirements to reduce the continuum backgrounds and thereby increase the signal sensitivity. In total, 108,654 events with \(100 < m_{\gamma\gamma} < 800 \) GeV are selected.

To determine the continuum background shape over this large mass range, an exponential of a second-order polynomial is fitted inside a sliding window of width \(80 \cdot (m_X - 110 \text{ GeV})/110 + 20 \text{ GeV} \), centered on the mass point \(m_X \). The analytical shape and the fit window width are chosen to fulfill the signal yield bias criterion, as defined for the low-mass analysis, to minimize the statistical uncertainty on the background.

The \(H \) background shape is modeled by a double-sided Crystal Ball function and normalized for \(m_H = 125.9 \) GeV [30,31] using the most up-to-date standard model cross-section calculations and corrections [34] of the five main production modes: gluon fusion (ggF), vector-boson fusion (VBF), Higgsstrahlung (WH, ZH), and associated production with a top quark pair (t\(t \)). The ggF and VBF samples [3] are simulated with the POWHEG generator interfaced with PYTHIA8. The WH, ZH, and \(tt \) samples [3] are simulated with PYTHIA8. Figure 3 shows background-only fits to the data in the high-mass analysis.

The expected invariant mass distribution of the narrow resonance signal \(X \) is also modeled with a double-sided Crystal Ball function in the mass range \(65 \leq m_X \leq 600 \) GeV, using fully simulated ggF(X) samples generated as for \(H \), where \(H \) is replaced by a scalar boson with a constant width of 4 MeV. Polynomial parametrizations of the signal shape parameters as a function of \(m_X \) are obtained from a simultaneous fit to all the generated mass points \(m_X \), separately for the high-mass analysis and the three low-mass analysis categories. The signal shape parameters extracted from ggF(X) are compared to the other production modes: VBF(X), WX, ZX, and \(ttX \); the bias on the signal yield due to the choice of ggF(X) shape is negligible. The systematic uncertainty on the signal shape due to the photon energy resolution uncertainty ranges from 10% to 40% as a function of \(m_X \) [3]. The systematic uncertainty on the X peak position due to the photon energy scale uncertainty is 0.6% [3].

The fiducial cross section \(\sigma_{\text{fid}} \) of \(BR(X \rightarrow \gamma\gamma) \) includes an efficiency correction factor \(C_X \) through

\[
\sigma_{\text{fid}} BR(X \rightarrow \gamma\gamma) = \frac{N_{\text{data}}}{C_X C} \text{ with } C_X = \frac{N_{\text{MC}}}{N_{\text{ fid}}^{\text{MC}}},
\]

where

- \(N_{\text{data}} \) is the number of data events observed in the fiducial region,
- \(N_{\text{MC}} \) is the number of simulated events in the fiducial region,
- \(N_{\text{ fid}}^{\text{MC}} \) is the number of simulated events excluding the fiducial region.

FIG. 2 (color online). Background-only fits to the data (black dots) as functions of the diphoton invariant mass \(m_{\gamma\gamma} \) for the three conversion categories in the low-mass range. The solid lines show the sum of the Drell–Yan and the continuum background components. The dashed lines show the continuum background component only.

FIG. 3 (color online). Background-only fits to the data (black dots) as functions of the diphoton invariant mass \(m_{\gamma\gamma} \) for the inclusive high-mass analysis. The solid line shows the sum of the Higgs boson and the continuum background components. The dashed line shows the continuum background component only.
where \(N_{\text{data}} \) is the number of fitted signal events in data, \(N_{\text{reco}} \) the number of simulated signal events passing the selection criteria and \(N_{\text{fid}} \) the number of simulated signal events generated within the fiducial volume. The fiducial volume, defined from geometrical and kinematical constraints at the generated particle level, is optimized to reduce the model dependence of \(C_X \) using fully simulated samples of the five \(X \) production modes to cover a large variety of topologies. The photon selection at generation level is similar to the selection applied to the data: two photons with \(E_T > 22 \text{ GeV} \) and \(|\eta| < 2 \) are required; for \(m_X \) greater than 110 GeV, the relative cuts \(E_T(1)/m_{\gamma\gamma} > 0.4 \) and \(E_T(2)/m_{\gamma\gamma} > 0.3 \) are imposed. The particle isolation, defined as the scalar sum of \(p_T \) of all the stable particles (except neutrinos) found within a \(\Delta R = 0.4 \) cone around the photon direction, is required to be less than 12 GeV. The \(C_X \) factor is parametrized from the ggF(\(X \)) samples and ranges from 0.56 to 0.71 as a function of \(m_X \). Systematic uncertainties include the maximum difference between the \(C_X \) of the five production modes, the effect of the underlying event (U.E.) and pileup.

The statistical analysis of the data uses unbinned maximum likelihood fits. The DY and \(H \) shapes and normalizations are allowed to float within the uncertainties. In the low-mass analysis, a simultaneous fit to the three conversion categories is performed. Only two excesses with 2.1 \(\sigma \) and 2.2 \(\sigma \) local significances above the background are observed over the full mass range 65–600 GeV, for \(m_X = 201 \text{ GeV} \) and \(m_X = 530 \text{ GeV} \), respectively. This corresponds to a deviation of less than 0.5 \(\sigma \) from the background-only hypothesis. Consequently, a 95\% limit on \(\sigma_{\text{fid}}BR(X \to \gamma\gamma) \) is computed using the procedure of Ref. [1]. The systematic uncertainties listed in Table II are accounted for by nuisance parameters in the likelihood function. In the low-mass analysis, the dominant uncertainties are the DY normalization and the residual topology dependence of \(C_X \). In the high-mass analysis, the largest uncertainties arise from the energy resolution and the

TABLE II. Summary of the systematic uncertainties.

<table>
<thead>
<tr>
<th>Signal and Higgs boson yield</th>
<th>Z component of Drell–Yan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>Normalization(^b)</td>
</tr>
<tr>
<td>Trigger</td>
<td>Peak position(^b)</td>
</tr>
<tr>
<td>(\gamma) identification(^a)</td>
<td>Template shape(^b)</td>
</tr>
<tr>
<td>(\gamma) isolation(^a)</td>
<td>Higgs boson background</td>
</tr>
<tr>
<td>Energy resolution(^ab)</td>
<td>Cross section(^c)</td>
</tr>
<tr>
<td>Signal and Higgs boson peak position</td>
<td>Branching ratio</td>
</tr>
<tr>
<td>Energy scale</td>
<td>(C_X) factor</td>
</tr>
<tr>
<td>Continuum (\gamma\gamma, \gamma j, jj, DY)</td>
<td>Topology(^a)</td>
</tr>
<tr>
<td>Signal bias(^a)</td>
<td>Pileup and U.E.(^a)</td>
</tr>
</tbody>
</table>

\(^a\)Mass dependent.
\(^b\)Category dependent.
\(^c\)Factorization scale plus parton density function uncertainties [34].

\[\text{where } N_{\text{data}} \text{ is the number of fitted signal events in data, } N_{\text{reco}} \text{ the number of simulated signal events passing the selection criteria and } N_{\text{fid}} \text{ the number of simulated signal events generated within the fiducial volume. The fiducial volume, defined from geometrical and kinematical constraints at the generated particle level, is optimized to reduce the model dependence of } C_X \text{ using fully simulated samples of the five } X \text{ production modes to cover a large variety of topologies. The photon selection at generation level is similar to the selection applied to the data: two photons with } E_T > 22 \text{ GeV and } |\eta| < 2.37 \text{ are required; for } m_X \text{ greater than 110 GeV, the relative cuts } E_T(1)/m_{\gamma\gamma} > 0.4 \text{ and } E_T(2)/m_{\gamma\gamma} > 0.3 \text{ are imposed. The particle isolation, defined as the scalar sum of } p_T \text{ of all the stable particles (except neutrinos) found within a } \Delta R = 0.4 \text{ cone around the photon direction, is required to be less than 12 GeV. The } C_X \text{ factor is parametrized from the ggF(} X \text{) samples and ranges from 0.56 to 0.71 as a function of } m_X \text{. Systematic uncertainties include the maximum difference between the } C_X \text{ of the five production modes, the effect of the underlying event (U.E.) and pileup.} \]

The statistical analysis of the data uses unbinned maximum likelihood fits. The DY and \(H \) shapes and normalizations are allowed to float within the uncertainties. In the low-mass analysis, a simultaneous fit to the three conversion categories is performed. Only two excesses with 2.1 \(\sigma \) and 2.2 \(\sigma \) local significances above the background are observed over the full mass range 65–600 GeV, for \(m_X = 201 \text{ GeV} \) and \(m_X = 530 \text{ GeV} \), respectively. This corresponds to a deviation of less than 0.5 \(\sigma \) from the background-only hypothesis. Consequently, a 95\% limit on \(\sigma_{\text{fid}}BR(X \to \gamma\gamma) \) is computed using the procedure of Ref. [1]. The systematic uncertainties listed in Table II are accounted for by nuisance parameters in the likelihood function. In the low-mass analysis, the dominant uncertainties are the DY normalization and the residual topology dependence of \(C_X \). In the high-mass analysis, the largest uncertainties arise from the energy resolution and the
Theoretical uncertainty on the production rate of the standard model Higgs boson around 126 GeV.

The observed and expected limits, shown in Fig. 4, are in good agreement, consistent with the absence of a signal. The limits on $\sigma_{\text{ter}} BR(X \rightarrow \gamma \gamma)$ for an additional scalar resonance range from 90 fb for $m_X = 65$ GeV to 1 fb for $m_X = 600$ GeV. These results extend over a considerably wider mass range than the previous searches by the ATLAS and CMS collaborations [1,35], are complementary to spin-2 particles searches [36,37], and are the first such limits independent of the event topology.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CPNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MEXT and JSPS, Japan; NRF, Korea; MES of Russia and ROSATOM, Russian Federation; RIICTEA, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom) and BNL (U.S.), and in the Tier-2 facilities worldwide.

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector, and the z axis along the beam line. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, with ϕ being the azimuthal angle around the beam line. Observables labeled transverse are projected into the x-y plane. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$.

[21] A double-sided Crystal Ball function is composed of a Gaussian distribution at the core, connected with two power-law distributions describing the lower and upper tails [24].
[36] Differences between this choice of reference mass and the new mass measurements [32,33] are covered by the energy scale uncertainties listed in Table II.
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Italy
Department of Physics, Hampton University, Hampton, Virginia, USA
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington, Indiana, USA
Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

INFN Sezione di Napoli, Italy

Dipartimento di Fisica, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York, New York, USA

Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFN Sezione di Pavia, Italy

Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Petersburg Nuclear Physics Institute, Gatchina, Russia

INFN Sezione di Pisa, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratorio de Instrumentação e Física Experimental de Partículas—LIP, Lisboa, Portugal

Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Facundo de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Department of Física, Universidade do Minho, Braga, Portugal

Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain), Portugal

Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina, Saskatchewan, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma, Italy

Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Italy

Dipartimento di Matematica e Física, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies—Université Hassan II, Casablanca, Morocco

Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco

Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
Department of Physics, University of Washington, Seattle, Washington, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
SLAC National Accelerator Laboratory, Stanford, California, USA
Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town, South Africa
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University, Sweden
The Oskar Klein Centre, Stockholm, Sweden
Department of Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy, Stony Brook University, Stony Brook, New York, USA
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, Ontario, Canada
TRIUMF, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, Illinois, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
dAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
eAlso at TRIUMF, Vancouver BC, Canada.
fAlso at Department of Physics, California State University, Fresno CA, USA.
gAlso at Tomsk State University, Tomsk, Russia.
hAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
iAlso at Università di Napoli Parthenope, Napoli, Italy.
jAlso at Institute of Particle Physics (IPP), Canada.