Implicit alcohol-relaxation associations in frequently drinking adolescents with high levels of neuroticism

Salemink, E.; van Lier, P.A.C.; Meeus, W.; Raaijmakers, S.F.; Wiers, R.W.

DOI
10.1016/j.addbeh.2015.01.002

Publication date
2015

Document Version
Final published version

Published in
Addictive Behaviors

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
Implicit alcohol–relaxation associations in frequently drinking adolescents with high levels of neuroticism

E. Salemink,⁎ P.A.C. van Lier, W. Meeus, S.F. Raaijmakers, R.W. Wiers

*Addiction, Development and Psychopathology (ADAPT) Lab, Research Priority Areas Amsterdam Brain and Cognition, and Yield, University of Amsterdam, The Netherlands

Department of Developmental Psychology, VU University, Amsterdam, The Netherlands

Research Centre of Adolescent Development, University of Utrecht, The Netherlands

Department of Developmental Psychology, Tilburg University, The Netherlands

Abstract

Introduction: Most individuals start drinking during adolescence, a period in which automatically activated or implicit cognitive processes play an important role in drinking behavior. The aim of this study was to examine personality-related antecedents of implicit associations between alcohol and positive or negative reinforcement motives in adolescents. It was hypothesized that frequent alcohol consumption in combination with specific personality traits (neuroticism for negative reinforcement and extraversion for positive reinforcement) could predict specific implicit alcohol–relaxation and arousal associations.

Methods: Participants completed a brief Big Five Questionnaire and alcohol use questions at T1. Approximately eight months later (T2), two Brief Implicit Association Tests were completed to assess alcohol–relaxation (negative reinforcement, n = 222) and alcohol–arousal (positive reinforcement, n = 248) associations.

Results: Results indicated that frequently drinking adolescents who scored high on neuroticism had the strongest alcohol–relaxation associations eight months later. No significant predictors were observed for alcohol–arousal associations.

Conclusions: The current study identified precursors of strong implicit alcohol–relaxation associations (i.e., high levels of neuroticism in combination with frequent alcohol consumption) which can inform future prevention and intervention studies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Implicit alcohol associations play an important role in alcohol use, and especially in adolescence (Rooke & Hine, 2011; Rooke, Hine, & Thorsteinsson, 2008). Both for theoretical and prevention reasons, it is important to identify precursors of these implicit alcohol associations in adolescents. However, at the moment we know little about such precursors. Therefore, the aim of the current prospective study was to examine personality-related antecedents of implicit alcohol associations regarding both positive and negative reinforcement motives in adolescents.

Alcohol misuse is associated with a range of negative consequences such as damage to the self (e.g., personal injuries, unintended and unprotected sexual activities, suicide), to others (e.g., physical and sexual violence), and institutional costs (Perkins, 2002). Most individuals initiate alcohol consumption and binge drinking during adolescence (Tucker, Orlando, & Ellickson, 2003). In such an early stage, alcohol consumption is considered occasional with positive reinforcement processes often driving consumption. The subsequent development of alcohol addiction

http://dx.doi.org/10.1016/j.addbeh.2015.01.002
0306-4603/© 2015 Elsevier Ltd. All rights reserved.
(a chronically relapsing disorder) in a subgroup has been associated with a transition from impulsivity to compulsivity and more negative reinforcement and automaticity driving the consumption (Koob & Volkow, 2010).

Cognitive factors have been put forward in different models as playing an important role in the development of addictive behaviors. In traditional psychological models of addiction, explicit, rational decision making processes have been described, such as cost–benefit analysis to decide whether or not to use alcohol. In more recent cognitive models, the additional role of automatically activated processes in addictive behaviors is emphasized (Bechara, 2005; Wiers et al., 2007). An important example concerns automatically activated or implicit alcohol memory associations. It has been shown, for example, that implicit alcohol associations predicted alcohol use prospectively, when controlling for previous alcohol use and explicit processes (Stacy, 1997). Consistent with this, a meta-analysis, including 89 effect sizes, concluded that such implicit cognitions were reliably associated with alcohol use, in both adolescents and adults (Rooke et al., 2008). Furthermore, it has been suggested that this association between implicit cognitions and alcohol use might be particularly strong in adolescents as, for example, impulse control processes are not fully developed, while more emotional and reward-seeking processes (i.e., related to automatic processes) are most active in this period (e.g., Krank & Goldstein, 2006; Wiers et al., 2007). Indeed, the relationship between implicit drinking associations and binge drinking was stronger in adolescents than in adults (Rooke & Hine, 2011). Thus, there are strong indications that implicit alcohol associations are an important factor in the prediction of alcohol use and problems, especially in adolescence.

Two types of reinforcement processes have been identified in alcohol use: positive reinforcement (alcohol use will result in a more positive affect; enhancement motive) and negative reinforcement (alcohol use will result in alleviation of negative affect; coping motive) (Cox & Klinger, 1988). It has consistently been shown that explicit assessment of these outcomes is associated with different aspects of drinking behavior; enhancement motives with heavy drinking and coping motives particularly with alcohol-related problems (Kuntsche, Knibbe, Gmel, & Engels, 2005). Importantly, while this distinction between positive and negative reinforcing outcomes has mainly been studied in explicit cognitions, it can also be differentiated in more implicit associations (cf. Salemink & Wiers, 2014). For example, it has been shown that both implicit alcohol–positive arousal and alcohol–relaxation associations were associated with drinking outcomes respectively (Hendershot, Lindgren, Liang, & Hutchison, 2012; Thush et al., 2008). Thus, both at explicit and implicit levels, positive and negative reinforcement processes can be distinguished, with the latter being most often associated with drinking problems.

Thus, it is currently known that adolescence is a crucial starting point for drinking behavior and that within this period, implicit alcohol associations play an important role. From a prevention perspective, it would be useful to know who develops such associations as this allows the identification of specific risk groups. Up to now however, studies examining antecedents of implicit alcohol associations are limited and the aim of the current study is to examine personality factors that influence those associations in adolescents. In the field of explicit cognitions, specific associations between personality types and drinking motives have been shown (Kuntsche, Knibbe, Gmel, & Engels, 2006; neuroticism is associated with drinking to cope and extraversion with enhancement (Cooper, Frone, Russell, & Muder, 1995; Kuntsche et al., 2006). We hypothesized that the personality constructs of neuroticism and extraversion, in combination with frequent alcohol consumption, could also predict specific implicit alcohol associations. That is, frequent alcohol use in adolescents scoring high on neuroticism (T1) could result in strong alcohol–relaxation associations (T2, eight months later) and that such use in adolescents scoring high on extraversion (T1) could result in strong alcohol–arousal associations (T2). To test these hypotheses, personality characteristics and frequency of alcohol consumption were assessed in adolescents at T1 and eight months later implicit alcohol associations were assessed (T2). This study is unique in evaluating the role of personality characteristics as antecedents of implicit alcohol associations in the crucial period of adolescence.

2. Method

2.1. Participants and procedure

Participants are a subsample from a larger longitudinal project for Research on Adolescent Development and Relationships, younger cohort (RADAR-Y; Van Lier et al., submitted for publication), which was approved by the Medical–Ethical Committee of University Medical Centre Utrecht. The adolescents were recruited from various Dutch elementary schools. A description of the study was sent to the home address, and parents and adolescents provided informed consent to participate. In the current study, data from the fifth wave was used; both the annual assessment data (March 2010, T1) and the internet assessment eight months later (November 2010, T2). Adolescents filled out the personality and drinking questionnaire during the annual assessment conducted at home, and supervised by trained research assistants. Eight months later, the alcohol–relaxation and alcohol–arousal associations were assessed on separate days during the online internet assessment. Participants received €100 for participation in the (full family) annual assessment and an additional €10 for participation in the internet assessment.

For the current sample, adolescents were selected who indicated having drank alcohol, at least once, in the past and who completed at least one implicit alcohol association task. As the alcohol associations task were completed on separate days, sample sizes differ slightly between the tasks due to differences in attendance rate, technical problems, etc. After identifying unique participants, applying the improved scoring algorithm for the implicit association test (Greenwald, Nosek, & Banaji, 2003), removing multivariate outliers (n = 2 relaxation associations, n = 3 for arousal associations), the final sample for the alcohol–relaxation associations was n = 219 (M age = 17.0, SD = 0.6; 111 males) and for alcohol–arousal associations n = 245 (M age = 17.0, SD = 0.5; 132 males). There are 97 participants overlapping in the two groups.

2.2. Materials

2.2.1. Brief Implicit Association Test (BIAT)

Adolescents completed two Brief Implicit Association Tests (BIATs, Sriman & Greenwald, 2009) to assess the strength of implicit alcohol–relaxation and alcohol–arousal associations. The BIAT uses a briefer format than the Implicit Association Test (IAT, Greenwald, McGhee, & Schwartz, 1998) and does not make the contrast category explicit. Participants were instructed to focus on a category or two categories, and these were presented at the top of the screen. In the middle of the
screen, word stimuli were presented and participants had to rapidly categorize whether they belonged to the designated category/categor
gories or not (press "i" key for ‘in’, press "e" key for ‘out’ respectively).
If participants made a mistake or pressed an invalid key, a red
cross appeared and participants had to press the correct key to pro-
cceed to the next trial.

The BIATs consisted of a seven block design (Lindgren et al., 2013).
In the relaxation BIAT, Relaxed was always the focal category (items: quiet, tranquil, calm; items from the unlabeled category were firm, big, huge).
It was paired with Alcohol (items: beer, wine, breezer) or with Soda (items: cola, fanta, ice-tea). In the arousal BIAT, Alcohol was always the focal category and it was paired with Active (items: cheerful, energetic, enthusiastic) or with Miserable (items: sick, lousy, nauseous) (Houben, Nosek, & Wiers, 2010; Rather & Goldman, 1994). An overview of the relaxation and arousal BIAT can be found in Table 1.

The order of the relaxation and arousal BIAT was counterbalanced
across participants. A BIAT-index was calculated using the D1 improved
scoring algorithm (Greenwald et al., 2003) with a build-in error penalty.
Internal consistencies were examined by calculating the correlation
between two D scores (from the first, 3 and 6, and second, 4 and 7, combi-
nation blocks) (Greenwald et al., 2003). After correcting for test length
using the Spearman–Brown prophecy formula, the internal consistency
for the alcohol–relaxation BIAT was .64 and for the alcohol–arousal BIAT .70. These consistencies are marginal at best, though falling within the range observed for most IATs (Greenwald et al., 2003).

2.2.2. Big Five Personality Questionnaire
Adolescents’ personality was assessed using a shortened Dutch version
of Goldberg’s Big Five Questionnaire, which has adequate reliability and va-

dility (Branje, van Lieshout, & Gerris, 2007; Goldberg, 1992). Using 30 Big
Five personality markers, five personality dimensions (each with six
items) were assessed: Extraversion (e.g., talkative), agreeableness, consci-
ousness, neuroticism (e.g., worried, reverse-scored), and Openness to
experience. The adolescents rated the adjectives on a 7-point Likert scale,
ranging from 1 (very untrue) to 7 (very true). The Extraversion and Neurot-
icism subscales are the means of the item responses.

2.2.3. Alcohol use questions
During T1 assessment, the adolescents completed three questions
about alcohol use. First, it was asked whether they had ever drunk any
alcohol (yes or no). Second, it was asked how often they had drunk alco-
hol in the past four weeks. The adolescents responded on a 6-point
Likert scale, with 10 (almost every day) to 1 (very untrue) (adapted version Engels, Knibbe, & Drop, 1999). The T2 assessment
only contained the question about frequency of alcohol use in the past
four weeks.

Table 2
Correlations between alcohol use, neuroticism, and alcohol–relaxation
associations (n = 219).

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. T1 frequency alcohol use</td>
<td>−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. T1 neuroticism</td>
<td>−0.18</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. T2 frequency alcohol use</td>
<td>0.57</td>
<td>−0.18</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>4. T2 alcohol–relaxation</td>
<td>0.11</td>
<td>0.04</td>
<td>0.14</td>
<td>−</td>
</tr>
<tr>
<td>associations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Gender</td>
<td>0.36</td>
<td>−0.25</td>
<td>0.28</td>
<td>0.06</td>
</tr>
<tr>
<td>M</td>
<td>1.4</td>
<td>3.7</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>SD</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Range</td>
<td>0–4</td>
<td>1–6.5</td>
<td>1–5</td>
<td>1–4–1.0</td>
</tr>
</tbody>
</table>

Note. T2 assessment is eight months after T1 assessment.

3. Results

3.1. Analytic plan

We employed multiple moderated regression analyses to examine whether alcohol use (T1) in combination with neuroticism or extraversion
predicted the strength of implicit alcohol–relaxation or arousal associations (T2). The BIAT data was normally distributed. All variables were z-
standardized before inclusion in the regression analyses and interaction
terms were created using these standardized variables (Aiken & West,
1991). To examine whether the order of the relaxation and arousal BIATs
influenced the results, we repeated the analyses with the variable Order
added. No significant effects were observed for this variable, and for ease
of interpretation it is therefore left out of the analyses.

3.2. Correlations between main variables

Zero-order correlations were computed between frequency of
alcohol use, neuroticism, alcohol–relaxation associations, and gender
(see Table 2). Frequency of alcohol use at T1 and T2 were signifi-
cantly positively correlated. Neuroticism was significantly negatively correlat-
ed with frequency of alcohol use at T1 and T2, indicating that adoles-
cents who scored high on neuroticism drank alcohol less often. There
was a non-significant trend for a correlation between alcohol–relaxation
associations and frequency of alcohol use (both T1 and T2); more
frequent alcohol use tended to be associated with stronger alcohol–relaxation associations. Male gender was associated with more frequent
alcohol consumption and less neuroticism. Those correlations
were also calculated for alcohol use, extraversion, alcohol–arousal
associations, and gender (see Table 3). Extraversion was significantly
positively correlated with frequency of use (both T1 and T2); thus
more extraver&ensil; adolescents drank alcohol more often. Alcohol–arousal
associations were not significantly correlated with alcohol-use, nor
with extraversion.

3.3. Predicting alcohol–relaxation associations

Frequency of alcohol use (T1), neuroticism, and the interaction
between alcohol use and neuroticism were entered as predictors in the
moderated regression analysis with implicit alcohol–relaxation
associations (T2) as the dependent variable to examine the antecedents

2 The analysis was repeated with the Gender included as an additional predictor and in
interaction with other variables (moderator). The regression model was not significant.

3 The analysis was repeated with frequency of binge drinking at T1. The model was not
significant (R² = .025, adjusted R² = .012, f(3, 216) = 1.86, p = .14). There was a non-
significant trend for the binge drinking × neuroticism interaction effect, β = 0.13, p = .076, with frequency of binge drinking significantly predicting the strength of implicit
alcohol–relaxation associations in adolescents scoring high on neuroticism, β = −.24, p = .026, whereas it did not predict in adolescents scoring low on neuroticism, β = −.03, p = .79.
of these implicit alcohol–relaxation associations. The regression model was significant, $R^2 = .036$ (adjusted $R^2 = .023$), $F(3, 215) = 2.7, p = .046$. The analysis yielded a significant main effect of alcohol use, $\beta = 0.14, p = .042$, and consistent with predictions, a significant alcohol use × neuroticism interaction effect, $\beta = 0.15, p = .036$. This indicated that the impact of alcohol use on alcohol–relaxation associations was moderated by level of neuroticism. This interaction effect is depicted in Fig. 1 by plotting the prediction of alcohol–relaxation associations for individuals whose frequency of alcohol consumption is low (-1 SD) and high ($+1$ SD) depending on low (-1 SD) and high ($+1$ SD) levels of neuroticism. Simple slope tests (Aiken & West, 1991) revealed that, as expected, alcohol use predicted the strength of implicit alcohol–relaxation associations in adolescents scoring high on neuroticism, $\beta = .29, p = .006$, whereas it did not predict in adolescents scoring low on neuroticism, $\beta = -.01, p = .92$. In other words, the adolescents who reported frequent drinking and scored high on neuroticism had the strongest alcohol–relaxation associations eight months later.

3.4. Predicting alcohol–arousal associations

Frequency of alcohol use (T1), extraversion, and the interaction between alcohol use and extraversion were entered as predictors in the moderated regression analysis with implicit alcohol–arousal associations as the dependent variable to examine antecedents of alcohol–arousal associations. This model was not significant ($R^2 = .012$, adjusted $R^2 = -.001$, $F(3, 241) = 0.942$, $p = .421$), and none of the predictors were significant (including the alcohol use × extraversion interaction effect, $\beta = -0.04, p = .543$). These results revealed that neither the frequency of drinking, extraversion, nor the combination of both predict the strength of alcohol–arousal associations eight months later.

4. Discussion

Implicit alcohol associations play an important role in alcohol-related behavior, especially in adolescence (Rooke & Hine, 2011; Rooke et al., 2008). The aim of this study was to examine personality-related precursors of alcohol–relaxation and alcohol–arousal associations in adolescents. The results revealed that frequent alcohol consumption in combination with higher levels of neuroticism were associated with the strongest alcohol–relaxation associations eight months later. No significant predictors were observed for alcohol–arousal associations.

The current findings on neuroticism and implicit alcohol–relaxation associations point in the same direction as previous findings concerning explicit coping motives for drinking (Cooper et al., 1995; Kuntsche et al., 2006); higher levels of neuroticism (in combination with frequent alcohol consumption) are associated with both higher levels of explicit and implicit alcohol coping motives. This is consistent with the findings in adults that higher levels of neuroticism or anxiety are associated with heavy and problematic alcohol use and that anxiety disorders are highly comorbid with alcohol use disorders (Stewart & Conrod, 2008). Thus, higher levels of neuroticism or anxiety seem a vulnerability factor. However, note that we observed a significant negative correlation between neuroticism and alcohol use, indicating that adolescents scoring high on neuroticism drank alcohol less frequently. This negative association between anxiety and alcohol use in adolescence has been observed previously (Castellanos-Ryan, O’Leary-Barrett, Sully, & Conrod, 2013; Krank et al., 2011). This might suggest that higher levels of anxiety or neuroticism are initially a protective factor that postpones the initiation of alcohol use and reduces the frequency of alcohol consumption in early to middle adolescence. However, once alcohol use has initiated, these adolescents will likely experience dampening of their anxious feelings, and have explicit and implicit coping associations (current findings) and this might then, in turn, increase the risk for future alcohol-related problems. These findings highlight the relevance of studying developmental patterns in adolescence; an initially protective personality (higher levels of neuroticism or anxiety) could later turn into a risk personality when combined with (heavy) alcohol consumption.

Perhaps surprisingly, no significant predictors were observed for alcohol–arousal associations. As extraversion has been associated with explicit enhancement motives (Kuntsche et al., 2006) and with alcohol use (Hittner & Swickert, 2006), we expected this personality characteristic to be associated with implicit arousal associations. These expected results were not found. It is possible that the personality trait extraversion is too general and that more specific personality constructs directly related to alcohol use should be assessed (cf. Woicik, Stewart, Pihl, & Conrod, 2009). Indeed, a brief personality scale has been designed to measure four dimensions of personality that have particular relevance to substance use vulnerability (Substance Use Risk Profile Scale, Woicik et al., 2009). In the context of alcohol–arousal associations, two of those dimensions might be relevant: sensation seeking and impulsivity. Sensation seeking has been linked to explicit enhancement motives for adolescent alcohol use (Comeau, Stewart, & Loba, 2001; Cooper et al., 1995; Magid, MacLean, & Colder, 2007) and more alcohol intake in adolescence (Castellanos-Ryan et al., 2013; Krank et al., 2011; Woicik et al., 2009). While it has been shown that sensation seeking is positively, but moderately related with the general trait of extraversion (Aluja, García, & García, 2003), it might be that particularly sensation seeking (and its increase in adolescence, Steinberg et al., 2008) is relevant for implicit alcohol–arousal associations and alcohol use. Impulsivity might be the other relevant personality dimension. It is also associated with alcohol-related behaviors (Castellanos-Ryan et al., 2013; Krank et al., 2011; Woicik et al., 2009) and distinct from sensation seeking, both regarding the developmental pattern in adolescence (Steinberg et al., 2008) and its relationship with drinking motives and alcohol (mis-) use (Magid et al., 2007). Future research might include sensation seeking and impulsivity as personality-related antecedents of implicit alcohol–arousal associations.

Some study limitations should be acknowledged. Because we added the implicit measure to an ongoing longitudinal study not specifically focused on the development of cognitive processes in alcohol use, some measures were missing such as a more complete quantity and frequency index of alcohol use; anxiety sensitivity; sensation seeking, and impulsivity characteristics (Woicik et al., 2009); and explicit drinking motives (Cooper et al., 1995). This might be related to the limited explained percentage of variance in implicit associations. Another
limitation is the use of the Brief Big Five Questionnaire, and the conser-
vative influence of parental consent. Furthermore, a BIAT was used to
assess implicit alcohol associations (Sriram & Greenwald, 2009). This
decision was driven by the wish to have a task that was not too difficult
for adolescents (i.e., focus on two instead of four categories) and circum-
vent difficulties of natural contrast categories (i.e., contrast category is
not explicitly labeled in a BIAT, cf. Lindgren et al., 2013). And promising,
internal consistencies of the current two BIATs fall within the .5 to .7
range observed for most IATs (Greenwald et al., 2003). However, it is a
relatively new task that has been subject to some debate (e.g., Fries &
Fiedler, 2010; Rothermund & Wentura, 2010) and, just as the standard IAT,
the BIAT is a relative measure, thus the current findings should be inter-
preted in the light of the contrast categories. Finally, the measures of implicit
associations were obtained only once, thus limiting the design and
conclusions.

Our study revealed that high levels of neuroticism in combination
with heavy alcohol consumption were associated with the strongest alco-
hol–relaxation associations eight months later. No significant predictors
were observed for alcohol–arousal associations. As implicit associations
play an important role in (escalation of) drinking, the identiﬁcation of
personality-based precursors of implicit alcohol–relaxation associations
allows prevention programs to select speciﬁc risk groups. Indeed, recent
selective prevention programs focus on adolescents with risk personality
proﬁles and provide personality-matched interventions (e.g., Conrad,
Castellanos, & Mackie, 2008).

Role of funding sources

Funding for this study was provided by the Dutch National Science
Foundation, N.W.O. (respectively VENI 451-10-029 and VICI 453-08-001). Data of the RADAR study were
used. RADAR has been ﬁnancially supported by main grants from the Netherlands
Organisation for Scientiﬁc Research (GB-MAGW 489-05-005, GB-MAGW 489-08-006),
Stichting Achea Slachtoffers en Samenleving (SASS, March 2004 and July 2008) to
RADAR PI’s, and a Granting grant from the Netherlands Organisation for Scientiﬁc
Research to the Consortium Individual Development (CID) (024.001.003).

These agencies had no role in the study design, collection, analysis or interpretation of
the data, writing the manuscript, or the decision to submit the paper for publication.

Contributors

All authors contributed to the manuscript. ES, RW, and Pev designed the study. ES and
SR conducted the data analysis and ES wrote the ﬁrst draft of the manuscript. All authors
have approved the ﬁnal manuscript.

Conflict of interest

All authors declare that they have no conﬂicts of interest.