Implicit alcohol-relaxation associations in frequently drinking adolescents with high levels of neuroticism

Salemink, E.; van Lier, P.A.C.; Meeus, W.; Raaijmakers, S.F.; Wiers, R.W.

DOI
10.1016/j.addbeh.2015.01.002

Publication date
2015

Document Version
Final published version

Published in
Addictive Behaviors

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Implicit alcohol–relaxation associations in frequently drinking adolescents with high levels of neuroticism

E. Salemink,⁎ P.A.C. van Lier, W. Meeus, S.F. Raaijmakers, R.W. Wiers

Addiction, Development and Psychopathology (ADAPT) Lab, Research Priority Areas Amsterdam Brain and Cognition, and Yield, University of Amsterdam, The Netherlands

Department of Developmental Psychology, VU University, Amsterdam, The Netherlands

Research Centre of Adolescent Development, University of Utrecht, The Netherlands

Department of Developmental Psychology, Tilburg University, The Netherlands

HIGHLIGHTS

• Implicit processes play, especially in adolescence, an important role in drinking.
• Knowledge of antecedents of implicit alcohol associations is limited.
• The current study examined personality-related antecedents in adolescents.
• Strongest alcohol-relaxation associations for neuroticism with frequent drinking.
• Precursors of implicit processes allow identification of risk groups.

Abstract

Introductio

Available online 14 January 2015

Keywords:

Implicit alcohol associations
Alcohol use
Adolescents
Neuroticism
Extraversion

Introduction: Most individuals start drinking during adolescence, a period in which automatically activated or implicit cognitive processes play an important role in drinking behavior. The aim of this study was to examine personality-related antecedents of implicit associations between alcohol and positive or negative reinforcement motives in adolescents. It was hypothesized that frequent alcohol consumption in combination with specific personality traits (neuroticism for negative reinforcement and extraversion for positive reinforcement) could predict specific implicit alcohol–relaxation and arousal associations.

Methods: Participants completed a brief Big Five Questionnaire and alcohol use questions at T1. Approximately eight months later (T2), two Brief Implicit Association Tests were completed to assess alcohol–relaxation (negative reinforcement, n = 222) and alcohol–arousal (positive reinforcement, n = 248) associations.

Results: Results indicated that frequently drinking adolescents who scored high on neuroticism had the strongest alcohol–relaxation associations eight months later. No significant predictors were observed for alcohol–arousal associations.

Conclusions: The current study identified precursors of strong implicit alcohol–relaxation associations (i.e., high levels of neuroticism in combination with frequent alcohol consumption) which can inform future prevention and intervention studies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Implicit alcohol associations play an important role in alcohol use, and especially in adolescence (Rooke & Hine, 2011; Rooke, Hine, & Thorsteinsson, 2008). Both for theoretical and prevention reasons, it is important to identify precursors of these implicit alcohol associations in adolescents. However, at the moment we know little about such precursors. Therefore, the aim of the current prospective study was to examine personality-related antecedents of implicit alcohol associations regarding both positive and negative reinforcement motives in adolescents.

Alcohol misuse is associated with a range of negative consequences such as damage to the self (e.g., personal injuries, unintended and unprotected sexual activities, suicide), to others (e.g., physical and sexual violence), and institutional costs (Perkins, 2002). Most individuals initiate alcohol consumption and binge drinking during adolescence (Tucker, Orland, & Ellickson, 2003). In such an early stage, alcohol consumption is considered occasional with positive reinforcement processes often driving consumption. The subsequent development of alcohol addiction
(a chronically relapsing disorder) in a subgroup has been associated with a transition from impulsivity to compulsivity and more negative reinforcement and automaticity driving the consumption (Koob & Volkow, 2010).

Cognitive factors have been put forward in different models as playing an important role in the development of addictive behaviors. In traditional psychological models of addiction, explicit, rational decision making processes have been described, such as cost–benefit analysis to decide whether or not to use alcohol. In more recent cognitive models, the additional role of automatically activated processes in addictive behaviors is emphasized (Bechara, 2005; Wiers et al., 2007).

An important example concerns automatically activated or implicit alcohol memory associations. It has been shown, for example, that implicit alcohol associations predicted alcohol use prospectively, when controlling for previous alcohol use and explicit processes (Stacy, 1997). Consistent with this, a meta-analysis, including 89 effect sizes, concluded that such implicit cognitions were reliably associated with alcohol use, in both adolescents and adults (Rooke et al., 2008). Furthermore, it has been suggested that this association between implicit cognitions and alcohol use might be particularly strong in adolescents as, for example, impulse control processes are not fully developed, while more emotional and reward-seeking processes (i.e., related to automatic processes) are most active in this period (e.g., Krank & Goldstein, 2006; Wiers et al., 2007). Indeed, the relationship between implicit drinking associations and binge drinking was stronger in adolescents than in adults (Rooke & Hine, 2011). Thus, there are strong indications that implicit alcohol associations are an important factor in the prediction of alcohol use and problems, especially in adolescence.

Two types of reinforcement processes have been identified in alcohol use: positive reinforcement (alcohol use will result in a more positive affect; enhancement motive) and negative reinforcement (alcohol use will result in alleviation of negative affect; coping motive) (Cox & Klinger, 1988). It has consistently been shown that explicit assessment of these outcomes is associated with different aspects of drinking behavior; enhancement motives with heavy drinking and coping motives particularly with alcohol-related problems (Kuntsche, Knibbe, Gmel, & Engels, 2005). Importantly, while this distinction between positive and negative reinforcing outcomes has mainly been studied in explicit cognitions, it can also be differentiated in more implicit associations (cf. Salemink & Wiers, 2014). For example, it has been shown that both implicit alcohol–positive arousal and alcohol–relaxation associations were associated with drinking outcomes respectively (Henderson, Lindgren, Liang, & Hutchison, 2012; Thush et al., 2008). Thus, both at explicit and implicit levels, positive and negative reinforcement processes can be distinguished, with the latter being most often associated with drinking problems.

Thus, it is currently known that adolescence is a crucial starting point for drinking behavior and that within this period, implicit alcohol associations play an important role. From a prevention perspective, it would be useful to know who develops such associations as this allows the identification of specific risk groups. Up to now however, studies examining antecedents of implicit alcohol associations are limited and the aim of the current study is to examine personality factors that influence those associations in adolescents. In the field of explicit cognitions, specific associations between personality types and drinking motives have been shown (Kuntsche, Knibbe, Gmel, & Engels, 2006); neuroticism is associated with drinking to cope and extraversion with enhancement drinking (Cooper, Frone, Russell, & Mudar, 1995; Kuntsche et al., 2006). We hypothesized that the personality constructs of neuroticism and extraversion, in combination with frequent alcohol consumption, could also predict specific implicit alcohol associations. That is, frequent alcohol use in adolescents scoring high on neuroticism (T1) could result in strong alcohol–relaxation associations (T2, eight months later) and that such use in adolescents scoring high on extraversion (T1) could result in strong alcohol–arousal associations (T2). To test these hypotheses, personality characteristics and frequency of alcohol consumption were assessed in adolescents at T1 and eight months later implicit alcohol associations were assessed (T2). This study is unique in evaluating the role of personality characteristics as antecedents of implicit alcohol associations in the crucial period of adolescence.

2. Method

2.1. Participants and procedure

Participants are a subsample from a larger longitudinal project for Research on Adolescent Development and Relationships, younger cohort (RADAR-Y; Van Lier et al., submitted for publication), which was approved by the Medical–Ethical Committee of University Medical Centre Utrecht. The adolescents were recruited from various Dutch elementary schools. A description of the study was sent to the home address, and parents and adolescents provided informed consent to participate. In the current study, data from the fifth wave was used; both the annual assessment data (March 2010, T1) and the internet assessment eight months later (November 2010, T2). Adolescents filled out the personality and drinking questionnaire during the annual assessment conducted at home, and supervised by trained research assistants. Eight months later, the alcohol–relaxation and alcohol–arousal associations were assessed on separate days during the online internet assessment. Participants received €100 for participation in the (full family) annual assessment and an additional €10 for participation in the internet assessment.

For the current sample, adolescents were selected who indicated having drunk alcohol, at least once, in the past and who completed at least one implicit alcohol association task. As the alcohol associations task were completed on separate days, sample sizes differ slightly between the tasks due to differences in attendance rate, technical problems, etc. After identifying unique participants, applying the improved scoring algorithm for the implicit association test (Greenwald, Nosek, & Banaji, 2003), removing multivariate outliers (n = 2 relaxation associations, n = 3 for arousal associations), the final sample for the alcohol–relaxation associations was n = 219 (M age = 17.0, SD = 0.6; 111 males) and for alcohol–arousal associations n = 245 (M age = 17.0, SD = 0.5; 132 males). There are 97 participants overlapping in the two groups.

2.2. Materials

2.2.1. Brief Implicit Association Test (BIAT)

Adolescents completed two Brief Implicit Association Tests (BIATs, Sriram & Greenwald, 2009) to assess the strength of implicit alcohol–relaxation and alcohol–arousal associations. The BIAT uses a briefer format than the Implicit Association Test (IAT, Greenwald, McGhee, & Schwartz, 1998) and does not make the contrast category explicit. Participants were instructed to focus on a category or two categories, and these were presented at the top of the screen. In the middle of the

<table>
<thead>
<tr>
<th>Blocks</th>
<th>No. of trials</th>
<th>Function</th>
<th>Focal category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Relaxation BIAT</td>
<td>Arousal BIAT</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Practice</td>
<td>Relaxed</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>Practice</td>
<td>Alcohol</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Combination 1</td>
<td>Relaxed + alcohol</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>Combination 1</td>
<td>Relaxed + alcohol</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>Practice</td>
<td>Soda</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>Combination 2</td>
<td>Relaxed + soda</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>Combination 2</td>
<td>Relaxed + soda</td>
</tr>
</tbody>
</table>

Note: For half of the participants, the positions of Blocks 2, 3, and 4 are switched with those of Blocks 5, 6, and 7, respectively.
screen, word stimuli were presented and participants had to rapidly categorize whether they belonged to the designated category/categories or not (press "i" key for ‘in’, press “e” key for ‘out’ respectively). If participants made a mistake or pressed an invalid key, a red cross appeared and participants had to press the correct key to proceed to the next trial.

The BIATs consisted of a seven block design (Lindgren et al., 2013). In the relaxation BIAT, Relaxed was always the focal category (items: quiet, tranquil, calm; items from the unlabeled category were firm, big, huge). It was paired with Alcohol (items: beer, wine, breezer) or with Soda (items: cola, fanta, ice-tea). In the arousal BIAT, Alcohol was always the focal category and it was paired with Active (items: cheerful, energetic, enthusiastic) or with Miserable (items: sick, lousy, nauseous) (Houben, Nosek, & Wiers, 2010; Rather & Goldman, 1994). An overview of the relaxation and arousal BIAT can be found in Table 1.

The order of the relaxation and arousal BIAT was counterbalanced across participants. A BIAT-index was calculated using the D1 improved scoring algorithm (Greenwald et al., 2003) with a build-in error penalty. Internal consistencies were examined by calculating the correlation between two D scores (from the first, 3, and 6, and second, 4 and 7, combination blocks) (Greenwald et al., 2003). After correcting for test length using the Spearman–Brown prophecy formula, the internal consistency for the alcohol–relaxation BIAT was .64 and for the alcohol–arousal BIAT .70. These consistencies are marginal at best, though falling within the range observed for most IATs (Greenwald et al., 2003).

2.2.2. Big Five Personality Questionnaire

Adolescents’ personality was assessed using a shortened Dutch version of Goldberg’s Big Five Questionnaire, which has adequate reliability and validity (Branje, van Lieshout, & Gerris, 2007; Goldberg, 1992). Using 30 Big Five personality markers, five personality dimensions (each with six items) were assessed: Extraversion (e.g., talkative), agreeableness, conscientiousness, neuroticism (e.g., worried, reverse-scored), and Openness to experience. The adolescents rated the adjectives on a 7-point Likert scale, ranging from 1 (very untrue) to 7 (very true). The Extraversion and Neuroticism subscales are the means of the item responses.

2.2.3. Alcohol use questions

During T1 assessment, the adolescents completed three questions about alcohol use. First, it was asked whether they had ever drunk any alcohol (yes or no). Second, it was asked how often they had drunk alcohol in the past four weeks. The adolescents responded on a 4-point Likert scale, with no alcohol (0), 1–3 days in 4 weeks (1), 1–2 days per week (2), 3–4 days per week (3), 5–6 days per week (4), or every day (5). Finally, it was asked how often they had drunk more than six glasses of alcohol in the past four weeks using the same 6-point Likert scale (adapted version Engels, Knibbe, & Drop, 1999). The T2 assessment only contained the question about frequency of alcohol use in the past four weeks.

2.3. Analytic plan

We employed multiple moderated regression analyses to examine whether alcohol use (T1) in combination with neuroticism or extraversion predicted the strength of implicit alcohol–relaxation or arousal associations (T2). The BIAT data was normally distributed. All variables were z-standardized before inclusion in the regression analyses and interaction terms were created using these standardized variables (Aiken & West, 1991). To examine whether the order of the relaxation and arousal BIATs influenced the results, we repeated the analyses with the variable Order added. No significant effects were observed for this variable, and for ease of interpretation it is therefore left out of the analyses.

3.3. Predicting alcohol–relaxation associations

Frequency of alcohol use (T1), neuroticism, and the interaction between alcohol use and neuroticism were entered as predictors in the moderated regression analysis with implicit alcohol–relaxation associations (T2) as the dependent variable to examine the antecedents of alcohol associations.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. T1 frequency alcohol use</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2. T1 neuroticism</td>
<td>–1.8*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3. T2 frequency alcohol use*</td>
<td>.57**</td>
<td>.18*</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4. T2 alcohol–relaxation associations</td>
<td>.11†</td>
<td>.04</td>
<td>.14†</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gender</td>
<td>.36**</td>
<td>.25**</td>
<td>.28**</td>
<td>.06*</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>1.4</td>
<td>3.7</td>
<td>2.4</td>
<td>.01</td>
<td>–</td>
</tr>
<tr>
<td>SD</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>0.4</td>
<td>–</td>
</tr>
<tr>
<td>Range</td>
<td>0–4</td>
<td>1–5.5</td>
<td>1–5</td>
<td>1–1.4–1.0</td>
<td>108/111 m</td>
</tr>
</tbody>
</table>

Note. T2 assessment is eight months after T1 assessment.

* p < .05.
** p < .001.
† Sample size n = 219.

3. Results

3.1. Analytic plan

We employed multiple moderated regression analyses to examine whether alcohol use (T1) in combination with neuroticism or extraversion predicted the strength of implicit alcohol–relaxation or arousal associations (T2). The BIAT data was normally distributed. All variables were z-standardized before inclusion in the regression analyses and interaction terms were created using these standardized variables (Aiken & West, 1991). To examine whether the order of the relaxation and arousal BIATs influenced the results, we repeated the analyses with the variable Order added. No significant effects were observed for this variable, and for ease of interpretation it is therefore left out of the analyses.

3.2. Correlations between main variables

Zero-order correlations were computed between frequency of alcohol use, neuroticism, alcohol–relaxation associations, and gender (see Table 2). Frequency of alcohol use at T1 and T2 were significantly positively correlated. Neuroticism was significantly negatively correlated with frequency of alcohol use at T1 and T2, indicating that adolescents who scored high on neuroticism drank alcohol less often. There was a non-significant trend for a correlation between alcohol–relaxation associations and frequency of alcohol use (both T1 and T2): more frequent alcohol use tended to be associated with stronger alcohol–relaxation associations. Male gender was associated with more frequent alcohol consumption and less neuroticism. Those correlations were also calculated for alcohol use, extraversion, alcohol–arousal associations, and gender (see Table 3). Extraversion was significantly positively correlated with frequency of use (both T1 and T2); thus more extravert adolescents drank alcohol more often. Alcohol–arousal associations were not significantly correlated with alcohol-use, nor with extraversion.

3.3. Predicting alcohol–relaxation associations

Frequency of alcohol use (T1), neuroticism, and the interaction between alcohol use and neuroticism were entered as predictors in the moderated regression analysis with implicit alcohol–relaxation associations (T2) as the dependent variable to examine the antecedents of alcohol associations.
of these implicit alcohol–relaxation associations. The regression model was significant, \(R^2 = .036 \) (adjusted \(R^2 = .023 \)), \(F(3, 215) = 2.7, p = .046 \). The analysis yielded a significant main effect of alcohol use, \(\beta = 0.14, p = .042 \), and consistent with predictions, a significant alcohol use × neuroticism interaction effect, \(\beta = 0.15, p = .036 \). This indicated that the impact of alcohol use on alcohol–relaxation associations was moderated by level of neuroticism. This interaction effect is depicted in Fig. 1 by plotting the prediction of alcohol–relaxation associations for individuals whose frequency of alcohol consumption is low (−1 SD) and high (+1 SD) depending on low (−1 SD) and high (+1 SD) levels of neuroticism. Simple slope tests (Aiken & West, 1991) revealed that, as expected, alcohol use predicted the strength of implicit alcohol–relaxation associations in adolescents scoring high on neuroticism, \(\beta = .29, p = .006 \), whereas it did not predict in adolescents scoring low on neuroticism, \(\beta = −.01, p = .92 \). In other words, the adolescents who reported frequent drinking and scored high on neuroticism had the strongest alcohol–relaxation associations eight months later.

3.4. Predicting alcohol–arousal associations

Frequency of alcohol use (T1), extraversion, and the interaction between alcohol use and extraversion were entered as predictors in the moderated regression analysis with implicit alcohol–arousal associations as the dependent variable to examine antecedents of alcohol–arousal associations. This model was not significant (\(R^2 = .012 \), adjusted \(R^2 = −.001 \), \(F(3, 241) = 0.942, p = .421 \)), and none of the predictors were significant (including the alcohol use × extraversion interaction effect, \(\beta = −.04, p = .543 \)). These results revealed that neither the frequency of drinking, extraversion, nor the combination of both predict the strength of alcohol–arousal associations eight months later.

4. Discussion

Implicit alcohol associations play an important role in alcohol-related behavior, especially in adolescence (Rook & Hine, 2011; Rook et al., 2008). The aim of this study was to examine personality-related precursors of alcohol–relaxation and alcohol–arousal associations in adolescents. The results revealed that frequent alcohol consumption in combination with higher levels of neuroticism were associated with the strongest alcohol–relaxation associations eight months later. No significant predictors were observed for alcohol–arousal associations.

The current findings on neuroticism and implicit alcohol–relaxation associations point in the same direction as previous findings concerning explicit coping motives for drinking (Cooper et al., 1995; Kuntsche et al., 2006); higher levels of neuroticism (in combination with frequent alcohol consumption) are associated with both higher levels of explicit and implicit alcohol coping motives. This is consistent with the findings in adults that higher levels of neuroticism or anxiety are associated with heavy and problematic alcohol use and that anxiety disorders are highly comorbid with alcohol use disorders (Stewart & Conrod, 2008). Thus, higher levels of neuroticism or anxiety seem a vulnerability factor. However, note that we observed a significant negative correlation between neuroticism and alcohol use, indicating that adolescents scoring high on neuroticism drank alcohol less frequently. This negative association between anxiety and alcohol use in adolescence has been observed previously (Castellanos-Ryan, O’Leary-Barrett, Sully, & Conrod, 2013; Krank et al., 2011). This might suggest that higher levels of anxiety or neuroticism are initially a protective factor that postpones the initiation of alcohol use and reduces the frequency of alcohol consumption in early to middle adolescence. However, once alcohol use has initiated, these adolescents will likely experience dampening of their anxious feelings, and have explicit and implicit coping associations (current findings) and this might then, in turn, increase the risk for future alcohol-related problems. These findings highlight the relevance of studying developmental patterns in adolescence; an initially protective personality (higher levels of neuroticism or anxiety) could later turn into a risk personality when combined with (heavy) alcohol consumption.

Perhaps surprisingly, no significant predictors were observed for alcohol–arousal associations. As extraversion has been associated with explicit enhancement motives (Kuntsche et al., 2006) and with alcohol use (Hittner & Swickert, 2006), we expected this personality characteristic to be associated with implicit arousal associations. These expected results were not found. It is possible that the personality trait extraversion is too general and that more specific personality constructs directly related to alcohol use should be assessed (cf. Woicik, Stewart, Pihl, & Conrod, 2009). Indeed, a brief personality scale has been designed to measure four dimensions of personality that have particular relevance to substance use vulnerability (Substance Use Risk Profile Scale, Woicik et al., 2009). In the context of alcohol–arousal associations, two of those dimensions might be relevant: sensation seeking and impulsivity. Sensation seeking has been linked to explicit enhancement motives for adolescent alcohol use (Comeau, Stewart, & Loba, 2001; Cooper et al., 1995; Magid, MacLean, & Colder, 2007) and more alcohol intake in adolescence (Castellanos-Ryan et al., 2013; Krank et al., 2011; Woicik et al., 2009). While it has been shown that sensation seeking is positively, but moderately correlated with the general trait of extraversion (Aluja, García, & García, 2003), it might be that particularly sensation seeking (and its increase in adolescence, Steinberg et al., 2008) is relevant for implicit alcohol–arousal associations and alcohol use. Impulsivity might be the other relevant personality dimension. It is also associated with alcohol-related behaviors (Castellanos-Ryan et al., 2013; Krank et al., 2011; Woicik et al., 2009) and distinct from sensation seeking, both regarding the developmental pattern in adolescence (Steinberg et al., 2008) and its relationship with drinking motives and alcohol (mis-) use (Magid et al., 2007). Future research might include sensation seeking and impulsivity as personality-related antecedents of implicit alcohol–arousal associations.

Some study limitations should be acknowledged. Because we added the implicit measure to an ongoing longitudinal study not specifically focused on the development of cognitive processes in alcohol use, some measures were missing such as a more complete quantity and frequency index of alcohol use; anxiety sensitivity; sensation seeking, and impulsivity characteristics (Woicik et al., 2009); and explicit drinking motives (Cooper et al., 1995). This might be related to the limited explained percentage of variance in implicit associations. Another
limitation is the use of the Brief Big Five Questionnaire, and the conser-
vative influence of parental consent. Furthermore, a BIAT was used to
assess implicit alcohol associations (Sriram & Greenwald, 2009). This
decision was driven by the wish to have a task that was not too difficult
for adolescents (i.e., focus on two instead of four categories) and circum-
vcnt difficulties of natural contrast categories (i.e., contrast category is
explicitly labeled in a BIAT, cf. Lindgren et al., 2013). And promising, inter-
 nal consistencies of the current two BIATs fall within the .5 to .7 range
found for adolescents (i.e., focus on two instead of four categories) and circum-
 nal consistencies of the current two BIATs fall within the .5 to .7 range
found for adolescents (i.e., focus on two instead of four categories) and circum-
Houben, K., Nosek, B. A., & Wiers, R. W. (2010). Seeing the forest through the trees: A compar-
differential, and behavioral problems: 18

to the Consortium Individual Development (CID) (024.001.003).
be achieved in implicit cognition: The implicit association test.

date, description of sample, and validation of cohort assign-
Houben, K., Nosek, B. A., & Wiers, R. W. (2010). Seeing the forest through the trees: A compar-