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a b s t r a c t

In arbitrage-free but incomplete markets, the equivalent martingale measure Q for pricing
traded assets is not uniquely determined. A possible approach when it comes to choosing a
particular pricing measure is to consider the one that is ‘closest’ to the physical probability
measure P, where closeness is measured in terms of relative entropy.

In this paper,we determine theminimal entropymartingalemeasure in amarketwhere
securities are traded with payoffs depending on two types of risks, which we will call fi-
nancial and actuarial risks, respectively. In case only purely financial and purely actuarial
securities are traded, we prove that financial and actuarial risks are independent under
the physical measure if and only if these risks are independent under the entropy mea-
sure. Moreover, in such a market the entropy measure of the combined financial–actuarial
world is the product measure of the entropy measures of the financial and the actuarial
subworlds, respectively.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Despite the never-ending stream of innovations concerning traded assets with payoffs contingent on financial and/or
actuarial quantities, most corresponding markets remain incomplete. An obvious question that arises in an arbitrage-free
but incomplete market is which pricing measure can be considered as the ‘most natural’ choice. A possible approach to
answer this question consists of searching for the element in the set of all feasible martingale measures that is ‘closest’ to
the physical or real-world probability measure P, where closeness is expressed in terms of relative entropy, see [1,2]. The
corresponding pricing measure is usually called the Minimal Entropy Martingale Measure (hereafter often referred to as
the entropy measure). It is well-known that in a one-period setting, an entropy measure can be interpreted in terms of an
Esscher transform of P. These transforms, which were introduced in [3], have along history in actuarial pricing. They have
also been used by several authors to define pricing measures in incomplete markets, see e.g. [4,5].

TheMinimal EntropyMartingaleMeasure is also related to the Esscher–Girsanov transform introduced by Goovaerts and
Laeven [6]. In a one-period setting, the (two-parameter) Esscher–Girsanov transform may agree with the (one-parameter)
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so-called Wang transform (distortion), which has gained some popularity among actuarial practitioners [7]. However, the
two transforms are not equivalent, a fact that becomes most apparent in a dynamic setting, in which the two parame-
ters of the Esscher–Girsanov transform start to play a distinct role: while the two-parameter Esscher–Girsanov transform
can generate arbitrage-free prices for financial derivatives driven by general diffusion processes, as shown by Goovaerts
and Laeven [6] and emphasized by Badescu et al. [8], this is not true for the one-parameter Wang transform; see also [9].
Goovaerts and Laeven [6] also show that independence under the real-world probability measure P naturally translates
into comonotonicity of the Esscher transformwith random parameter, thanks to the independent additivity property of the
Esscher transform.

Determining the Minimal Entropy Martingale Measure boils down to a relative entropy minimization under linear
constraints. Such a minimization problem arises in various disciplines, see e.g. [10]. In [11], relative entropy is interpreted
in terms of the expected amount of information given by a set of observations for distinguishing between two potential
probability distributions, known as the Kullback–Leibler divergencemeasure. In the insurance literature, this interpretation
is considered e.g. in [12]. In a financial context, there exists a duality relationship between maximization of expected
exponential utility and minimization of entropy, see [2].

The assumption of independence between financial and actuarial risks under the real-world measure P may be quite
reasonable in many situations. The conditions under which it is possible (or not) to transfer the independence assumption
from P to Q, have been investigated in [13]. In the current paper, we go one step further by exploring whether a P-world
(in-)dependence between financial and actuarial risks is maintained or not under the entropy measure. As far as we are
aware, in the literature no attention has been given to this problem.

Hereafter, we will confine ourselves to a one-period, finite state market model. From a technical point of view, such an
approach is simple and hence, allows us to concentrate on the keymessage, without being distracted by analytical details. In
order to make this paper sufficiently self-contained, we will repeat some known results on relative entropy.

2. The combined financial–actuarial world and its subworlds

In this section, we introduce a single periodworld, which is home to amarket of traded assets. The payoffs of these assets
can be described in terms of random variables (r.v.’s), defined on a probability space (Ω, Σ, P). Here, the universe Ω is
given by

Ω = {(i, j) | i = 1, . . . , I and j = 1, . . . , J} ,

where any (i, j) corresponds to a possible state of the combined financial–actuarial world at the end of the observation
period [0, 1]. The financial substate is given by i ∈ {1, . . . , I} and indicates a possible scenario concerning the evolution of
the financial subworld over the time interval under consideration. As an example, each i could represent a set of possible
outcomes of the prices at time 1 of a given number of stocks. The actuarial substate is characterized by j ∈ {1, . . . , J},
where j describes a possible scenario of the actuarial subworld. Each j could identify e.g. a possible number of survivors at
time 1 from a given closed population observed at time 0. The σ -algebra Σ is the set of all subsets of Ω and represents all
events that may or may not occur in the coming year. Probabilities for these events follow from the real-world probability
measure P, which is characterized by

P [(i, j)] = pij ≥ 0, for i = 1, . . . , I and j = 1, . . . , J.
Remark that we allow some probabilities pij to be equal to 0, in order to be able to include e.g. the combined scenario (i, j)
with strictly positive probability pij > 0, whereas the combined scenario


i, j′

with j′ ≠ j has related probability pij′ = 0.

We assume that the combined financial–actuarial world (Ω, Σ, P) is home to a market ofM + 1 traded assets, denoted
by 0, 1, . . . ,M . The price (or the payoff) at time 1 of each traded asset is given by a r.v. defined on (Ω, Σ). We will consider
assets of which the payoff at time 1 depends on both the financial and the actuarial scenario that will unfold. The current
price of asset m ∈ {0, 1, 2, . . . ,M} is denoted by s(m)(0) > 0, whereas its payoff at time 1 is denoted by S(m)(1). The pos-
sible outcomes of S(m)(1) are denoted by s(m)

ij ≥ 0, for i = 1, . . . , I; j = 1, . . . , J , where s(m)
ij is the outcome in case (i, j) is

the financial–actuarial scenario that unfolds. Notice that we allow different scenarios to lead to the same value of S(m)(1) at
time 1,which implies thatP


S(m) (1) = s(m)

ij


≥ pij. Each assetm is characterized by the stochastic process


s(m)(0), S(m) (1)


defined on (Ω, Σ).

Throughout the paper, we will assume that the market of traded assets is perfectly liquid and frictionless (no transaction
costs, no trading constraints). We will also assume that theM + 1 assets are non-redundant, which means that there exists
no vector


a(0), a(1), . . . , a(M)


of real numbers such that

P


M

m=0

a(m)S(m) (1) = 0


= 1.

Equivalently, the non-redundancy assumption can be stated as follows: there exists no vector

a(0), a(1), . . . , a(M)


such that

M
m=0

a(m)s(m)
ij = 0, for all (i, j) with pij > 0.
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The combinedworld is assumed to be home to a single bank account with (continuously compounded) deterministic and
constant interest rate r ≥ 0. By convention, asset 0 is the corresponding risk-free zero coupon bond with s(0) (0) = 1 and
S(0) (1) = er .

A particular assetm ∈ {0, 1, 2, . . . ,M}, is called a financial asset in case the following condition holds:

s(m)
ij = s(m)

ij′ for all j and j′ in {1, . . . , J} .

This means that the payoff at time 1 of a financial asset does not depend on the actuarial scenario that unfolds. Hereafter,
the possible outcomes of the payoff of financial assetm will be denoted by s(m)

i· , for i = 1, . . . , I .
Similarly, an assetm ∈ {0, 1, 2, . . . ,M}, is said to be an actuarial asset in case

s(m)
ij = s(m)

i′j for all i and i′ in {1, . . . , I} ,

which means that its payoff does not depend on the financial scenario that will unfold. The possible outcomes of the payoff
of actuarial assetm are denoted by s(m)

·j , for j = 1, . . . , J .
Remark that the risk-free bond (asset 0) is the only asset that can be considered as a financial asset as well as an actuarial

asset.
Starting from the combined financial–actuarial world (Ω, Σ, P), we define the financial subworld (F (Ω) , F (Σ) ,

F (P)). The financial universe F (Ω) is given by

F (Ω) = {i | i = 1, . . . , I} ,

where each i indicates a possible scenario concerning the evolution of the financial world over the coming year. The
σ -algebra F (Σ), which is defined as the set of all subsets of F (Ω), represents all financial events that may or may not
occur in the coming year. Probabilities for these financial events follow from the real-world probability measure F (P),
which is the projection of the combined real-world probability measure P to the financial subworld:

F (P) [i] =

J
j=1

pij = pi· ≥ 0, for i = 1, . . . , I. (1)

Similar to the financial subworld, we describe the actuarial subworld by the probability space (A (Ω) , A (Σ) , A (P)).
The actuarial universe A (Ω) is given by

A (Ω) = {j | j = 1, . . . , J} ,

and the probability measure A (P), which is the projection of P to the actuarial subworld, attaches a real-world probability
to each event in the actuarial subworld:

A (P) [j] =

I
i=1

pij = p·j ≥ 0, for j = 1, . . . , J. (2)

Until here, we described the price processes of the M + 1 traded assets via stochastic processes in the combined world
(Ω, Σ, P). The price process of a financial asset m ∈ {0, . . . ,M} can as well be described by the stochastic process
s(m)(0), S(m) (1)


defined on the financial subworld (F (Ω) , F (Σ)). Here, S(m) (1) is a random variable on (F (Ω) ,

F (Σ) , F (P)) with an outcome given by s(m)
i· ≥ 0 in case i ∈ {1, . . . , I} is the financial scenario that unfolds. Observe

that different financial scenarios may eventually lead to the same outcome S(m)(1) of the financial asset, implying that

F (P)

S(m)(1) = s(m)

i·


≥ pi·.

Similarly, the price process of an actuarial asset m ∈ {0, . . . ,M} can be described by the stochastic process

s(m)(0),

S(m) (1)

which is defined on the actuarial subworld (A (Ω) , A (Σ)).

Hereafter, we will often (but not always) assume that financial and actuarial risks are independent under the real-world
probability measure P, in the sense that

P ≡ F (P) × A (P) . (3)

This assumption can also be expressed as

pij = pi· × p·j, for all i = 1, . . . , I and j = 1, . . . , J,

where the marginal probabilities pi· and p·j are the financial and actuarial real-world probabilities introduced in (1) and (2),
respectively.
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3. Pricing traded assets

Consider the combinedworld (Ω, Σ, P)which is home to amarket ofM+1 traded assets as defined above. A probability
measure Q defined on (Ω, Σ) is said to be an equivalent martingale measure (or a risk-neutral measure) for this market if it
fulfills the following conditions:

(1) Q and P are equivalent probability measures.
(2) The future payoff of any traded asset in the combined world, discounted at the risk-free interest rate, is a martingale

with respect to Q.

The equivalence condition means that P and Q agree on zero-probability events or, equivalently, they agree on the
elements (i, j) of Ω with a strictly positive probability. The Q-martingale condition states that the current price of any
traded asset in the combined market is equal to the expected value of the discounted payoff of this asset at time 1, where
discounting is performed at the risk-free interest rate r and expectations are taken with respect to the measure Q.

A probability measure Q defined on (Ω, Σ) is said to be P-absolutely continuous in case pij = 0 implies qij = 0, for all
(i, j) of Ω . A P-absolutely continuous martingale measure is defined as a measure satisfying the conditions (1′) and (2), with

(1′) Q is P-absolutely continuous.

It is well-known that in our discrete setting, the no-arbitrage condition is equivalent to the existence of a (not necessarily
unique) equivalent martingale measure, whereas completeness of the arbitrage-free market is equivalent to the existence
of a unique equivalent martingale measure, see e.g. [14]. Hereafter, we will always assume that the market of traded assets
in the combined world (Ω, Σ) is arbitrage-free, implying that there exists at least one equivalent martingale measure.

For a given equivalent martingale measure Q in the combined world, we introduce the following notation:

Q [(i, j)] = qij ≥ 0, for i = 1, . . . , I and j = 1, . . . , J.

Notice that qij = 0 if and only if pij = 0. The equivalent martingale measure Q gives rise to the following probability
measures for the financial and the actuarial subworld, respectively:

F (Q) [i] =

J
j=1

qij = qi· ≥ 0, for i = 1, . . . , I,

and

A (Q) [j] =

I
i=1

qij = q·j ≥ 0, for j = 1, . . . , J.

ThemeasuresF (Q) andA (Q) are called the projections ofQ to the financial and the actuarial subworld, respectively. Based
on these projections, we introduce the probability measure F (Q) × A (Q) on the combined measurable space (Ω, Σ). In
terms of the notations introduced above, it is defined by

(F (Q) × A (Q)) [(i, j)] = qi· × q·j, for i = 1, . . . , I and j = 1, . . . , J.

Financial and actuarial risks are said to be independent under the measure Q if the following condition holds:

Q ≡ F (Q) × A (Q) , (4)

or equivalently,

qij = qi· × q·j, for all i = 1, . . . , I and j = 1, . . . , J.

Until here, we considered equivalent martingale measures in the combined world (Ω, Σ, P), which is home to a market
of assets with financial and/or actuarial payoffs. We can as well restrict to the financial subworld (F (Ω) , F (Σ) , F (P))
and the corresponding submarket of financial assets, and define equivalentmartingalemeasures in this subworld. Similarly,
the notion of equivalent martingale measure can be defined in the actuarial subworld (A (Ω) , A (Σ) , A (P)) and the
corresponding actuarial submarket of actuarial assets.

Consider a combinedworld (Ω, Σ, P)with a correspondingmarket of traded assets and letQ be an equivalentmartingale
measure in this world. The projection F (Q) of Q is an equivalent martingale measure in the financial subworld with the
corresponding submarket of traded financial assets. A similar remark holds for the projection A (Q) of Q in the actuarial
subworld. This means that our assumption about an arbitrage-free pricing framework in the combined market implies that
also the financial and actuarial submarkets are arbitrage-free. In general, P and F (Q) × A (Q) do not necessarily agree on
sure events andmoreover,F (Q)×A (Q) is not necessarily amartingalemeasure in the combinedworld. In the special case
that P fulfills the independence assumption (3), we have that P and F (Q) × A (Q) are equivalent measures, but the latter
measure is still not necessarily a martingale measure in the combined world. For details and examples, we refer to [13].
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4. The minimal entropy martingale measures of the combined market and its submarkets

Due to the presence of unhedgeable actuarial and financial risks, themarket of traded contingent claims in the combined
financial–actuarial world is in general incomplete, implying the existence of more than one equivalent martingale measure
for pricing purposes. The non-uniqueness of the pricingmeasure means that there is no unique arbitrage-free price for non-
replicable contingent claims. Hereafter, we investigate the problem of finding the martingale measure that is ‘closest’ to the
real-world probability measure P, where the distance between probability measures is defined in terms of their relative
entropy, also called the Kullback–Leibler information. In the remainder of this section, we first determine the Minimal
Entropy Martingale Measure Q of the combined market. Next, we determine the Minimal Entropy Martingale MeasuresQf andQa corresponding to the financial and the actuarial submarket, respectively. Finally, we investigate the relationship
that exists between these measures.

4.1. The entropy measure of the combined market

Consider the combined world (Ω, Σ, P) with the market of M + 1 traded assets as described above. In this section, we
determine the Minimal Entropy Martingale Measure Q in the most general case, which means that we consider a market
where financial, actuarial as well as combined assets may be traded. First, we define the relative entropy of an absolutely
continuous probability measure Q with respect to P.

Definition 1. Let P and Q be two probability measures defined on the combined financial–actuarial world (Ω, Σ). Further-
more, Q is P-absolutely continuous. The relative entropy E (Q, P) of Q with respect to P is then defined by

E (Q, P) =


i,j

qij ln

qij
pij


,

where the sum is taken over all (i, j) ∈ Ω with pij > 0, and where 0 ln 0 = 0, by convention.

Loosely speaking, the value of E (Q, P) increases if Q and P ‘diverge’. Therefore, E (Q, P) measures the ‘similarity’
or ‘closeness’ of the respective probability measures and hence, it can be thought of as a kind of ‘distance’. Notice however
that the relative entropy is not symmetric, i.e. E (Q, P) ≠ E (P, Q), implying that it is not a distance in the usualmathematical
sense. Relative entropy has many relevant features. It is always non-negative and it equals zero if and only if the two
measures are identical, see e.g. [2].

Based on the notion of relative entropy, we now introduce the notion of Minimal Entropy Martingale Measure in the
combined financial–actuarial world, as the particular element in the class of equivalent martingale measures for which the
relative entropy is minimized.

Definition 2. Consider the combined financial–actuarial world (Ω, Σ, P) which is home to the market of traded assets
{0, 1, . . . ,M}. Let M be the class of all equivalent martingale measures in the combined market. ThenQ ∈ M is a Minimal
Entropy Martingale Measure of the combined market if it satisfies

E
Q, P


= min

Q∈M
E (Q, P) = min

Q∈M


i,j

qij ln

qij
pij


. (5)

Any Q ∈ M can be characterized by an I × J-matrix with non-negative components qij, with qij = 0 if and only if pij = 0,
and which satisfy the following conditions:

e−rEQ S(m)(1)


= s(m) (0) , for m = 0, 1, . . . ,M,

or, equivalently,

e−r

i,j

qijs
(m)
ij = s(m)(0), form = 0, 1, . . . ,M, (6)

where as before, the sum is taken over all (i, j) ∈ Ω with pij > 0. Obviously, the condition for m = 0 corresponds to the
condition that the probabilities qij sum up to 1.

Notice that restricting the set of available assets to an appropriate subset of non-redundant assets does not change the
class M of all equivalent martingale measures, implying that also the set of solutions of (5) remains unchanged by this
operation.

In the next theorem, we prove that the minimal entropy martingale measure always exists and is unique. Hereafter, we
will often call this measure the combined market entropy measure. The proof is based on Theorem 2.2 of [2].

Theorem 3. The arbitrage-free combined market is home to a unique minimal entropy martingale measure.
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Proof. Let M ⊇ M be the class of allP-absolutely continuousmartingalemeasures and consider the followingminimization
problem:

min
Q∈ M


i,j

qij ln

qij
pij


. (7)

The no-arbitrage assumption implies that the setM, and thus also M, is not empty. Furthermore, M is a closed and bounded
set in RI×J , while


i,j qij ln


qij
pij


is continuous on M. Hence, the objective function in (7) reaches a minimum in the set M.

The uniqueness of this minimum follows from the fact that x → x ln


x
pij


is strictly convex on [0, 1] for any pij > 0. Let us

denote this minimum byQ.
It remains to prove that Q ∈ M. Hence, we have to prove that pij > 0 impliesqij > 0, for any i and j. The no-arbitrage

condition implies that M contains at least one element Qe. Consider the convex combination

Qx
= xQe

+ (1 − x)Q
with x ∈ [0, 1]. Obviously, any Qx

∈ M. The probabilities of Qx are given by

qxij = xqeij + (1 − x)qij =qij + x

qeij −qij .

For x > 0, the derivative of the relative entropy E (Qx, P) with respect to x is given by

d
dx

E

Qx, P


=


i,j


qeij −qij lnqxij

pij


.

This leads to

d
dx

E

Qx, P


x=0

=


i,j


qeij −qij lnqijpij


=


i,j

qeij ln
qij
pij


− E

Q, P

.

As Q0
≡ Q, which is the unique minimum of optimization problem (7), we must have that

d
dx

E

Qx, P


x=0

≥ 0,

or equivalently,

E
Q, P


≤


i,j

qeij ln
qij
pij


. (8)

Suppose now that Q is not equivalent to P. In that case, there exists a scenario (i, j) such that pij > 0, whileqij = 0. This
implies that the right hand side of (8) reaches −∞, which is impossible as relative entropy is always non-negative. Hence,Q ∈ M. We conclude that the minimal entropy martingale measureQ exists and is unique. �

Hereafter, we will always denote the unique minimal entropy martingale measure byQ. Since for any element of the set
M, the qij sum up to 1, we can replace the minimization problem (5) by

min
Q∈M


i,j

qij


ln

qij
pij


− 1


,

which leads to the same entropy measureQ for the combined market.
We solve the adapted optimization problem under linear constraints by themethod of Lagrangemultipliers. Remark that

we can apply this method on the class of equivalent martingale measures M, which is an open set, provided the minimum
exists. The existence of theminimal entropymartingalemeasurewas proven in Theorem3. The Lagrangian L for this problem
is now given by

L =


i,j

qij


ln

qij
pij


− 1


−

M
m=0

λ(m)


i,j

qijs
(m)
ij − er s(m) (0)


.
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Determining the partial derivatives with respect to the variables qij and λ(m), and setting them equal to zero, leads to the
following system of equations:

ln

qij
pij


=

M
m=0

λ(m)s(m)
ij , for all (i, j) ∈ Ω with pij > 0,

i,j

qijs
(m)
ij = er s(m) (0) , for allm = 0, 1, . . . ,M.

(9)

Let us denote the probabilities related to the unique entropy measureQ by
qij; (i, j) ∈ Ω


. Taking into account the first

series of equations in (9), as well as the fact thatQ and P are equivalent, we find that the probabilitiesqij can be expressed asqij = pijeij, for any (i, j) ∈ Ω, (10)

with the coefficients eij given by

eij = exp


M

m=0

λ(m)s(m)
ij


, for any (i, j) ∈ Ω, (11)

where

λ(0), λ(1), . . . , λ(M)


satisfies (9). As the condition for m = 0 corresponds to the condition that the probabilitiesqij

sum up to 1, we can conclude from (10) and (11) that 0 ≤qij ≤ 1 holds for any (i, j) ∈ Ω . The projections of the entropy
measureQ to the financial and the actuarial subworld are characterized as follows

qi· =

J
j=1

pijeij, for i = 1, 2, . . . , I, (12)

and

q·j =

I
i=1

pijeij, for j = 1, 2, . . . , J, (13)

respectively.
In order to determine the Lagrange multipliers λ(m), we combine the martingale conditions in (9) with the expressions

(10). We find that the λ(m) follow from
i,j

pijeijs
(m)
ij = er s(m) (0) , for allm = 0, 1, . . . ,M. (14)

Our assumption about the non-redundancy of the set of assets implies that thesemartingale equations lead to a unique vector
of Lagrange multipliers. Indeed, suppose that (14) admits two different solutions


λ

(m)
k | m = 0, 1 . . . ,M


, for k = 1, 2.

Taking into account (10) and (11), and the fact that theqij are uniquely determined, we find that

exp


M

m=0

λ
(m)
1 s(m)

ij


= exp


M

m=0

λ
(m)
2 s(m)

ij


, for any (i, j)with pij > 0,

and thus
M

m=0


λ

(m)
1 − λ

(m)
2


s(m)
ij = 0, for any (i, j) with pij > 0.

Obviously, this contradicts the non-redundancy assumption, so that we can conclude that the martingale equations lead to
a unique vector of Lagrange multipliers, which we will hereafter denote by


λ(m)

| m = 0, 1 . . . ,M

.

From Eq. (14) form = 0, it follows that

exp

λ(0)er


× EP


exp


M

m=1

λ(m)S(m) (1)


= 1.

The expressions (11) for the eij can then be rewritten as

eij =

exp


M
m=1

λ(m)s(m)
ij


EP


exp


M

m=1
λ(m)S(m) (1)

 , for any (i, j) ∈ Ω. (15)
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As stated previously, we observe from (10) and (15) that the entropy measureQ is an equivalent martingale measure in the
combined financial–actuarial market, which can be interpreted as an Esscher-like transform of P.

Solving (10) for pij, replacing eij by (15) and summing over all i and j leads to the following expression:

EQ

exp


−

M
m=1

λ(m)S(m) (1)


× EP


exp


M

m=1

λ(m)S(m) (1)


= 1. (16)

So we find that

e−1
ij =

exp


−

M
m=1

λ(m)s(m)
ij


EQ

exp


−

M
m=1

λ(m)S(m) (1)
 , for any (i, j) ∈ Ω. (17)

These expressions will be used hereafter.

4.2. The entropy measure of the financial submarket

In Definition 2, we considered the Minimal Entropy Martingale MeasureQ for the market of M + 1 traded assets in the
combined financial–actuarial world. Similarly, we can define theMinimal EntropyMartingaleMeasureQf for the submarket
of financial assets.

Consider the F (P)-absolutely continuous probability measure Q ≡ (q1, q2, . . . , qI) on (F (Ω) , F (Σ)). The relative
entropy E (Q, F (P)) of Q with respect to F (P) is defined as follows:

E (Q, F (P)) =


i

qi ln


qi
pi·


,

with summation over all i with pi· > 0, and where 0 ln 0 = 0, by convention.
We denote the subset of {0, 1, . . . ,M} composed of all financial assets by N f . The set of all financial assets with excep-

tion of the risk-free bond is called the set of purely financial assets and will be denoted by N
f
0 . Let Mf be the class of all

equivalent martingale measures Q in the financial submarket. Any Q ∈ Mf can be characterized by a vector (q1, q2, . . . , qI)
with non-negative components and qi = 0 if and only if pi· = 0, satisfying the following conditions:

e−r


i

qis
(m)
i· = s(m)(0), for allm ∈ N f . (18)

The no-arbitrage assumption for the combined world implies that also the financial subworld is arbitrage-free and hence,
Mf is non-empty.

The measureQf
∈ Mf is the Minimal Entropy Martingale Measure of this financial submarket if it satisfies

E
Qf , F (P)


= min

Q∈Mf
E (Q, F (P)) = min

Q∈Mf


i

qi ln


qi
pi·


. (19)

Based on similar arguments as used for the combined market, we have that in the financial submarket, the minimization
problem (19) always leads to a unique solution. Hereafter, wewill often call this uniquemeasure the financial market entropy
measure.

Since


i qi = 1 for all measures of the set Mf , we can replace the minimization problem (19) by the equivalent mini-
mization problem

min
Q∈Mf


i

qi


ln


qi
pi·


− 1


.

Proceeding in a similar way as in the combined market case, we solve the adapted optimization problem under linear
constraints by the method of Lagrange multipliers. The Lagrangian L for this problem is given by

L =


i

qi


ln


qi
pi·


− 1


−


m∈N f

λ
(m)
f


i

qis
(m)
i· − er s(m) (0)


.

Determining the partial derivatives with respect to the variables qi and λ
(m)
f and setting them equal to zero leads to the

following system of equations:
ln


qi
pi·


=


m∈N f

λ
(m)
f s(m)

i· , for all i with pi· > 0,
i

qis
(m)
i· = er s(m) (0) , for allm ∈ N f .

(20)
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Let us denote the probabilities related to the financial market entropy measure Qf by
qf1,qf2, . . . ,qfI . Taking into

account the first series of equations in (20), as well as the fact thatQf and P are equivalent, we find that the probabilitiesqfi
can be expressed as

qfi = pi·e
f
i , for i = 1, 2, . . . , I, (21)

with

efi = exp


m∈N f

λ
(m)
f s(m)

i·


, for i = 1, 2, . . . , I, (22)

where the Lagrange coefficients λ
(m)
f follow from (20). Notice that 0 ≤qfi ≤ 1 holds for every i.

Combining the martingale conditions in (20) with the expression (21), we find that the λ
(m)
f follow from the following

system ofmartingale equations:
i

pi·e
f
i s

(m)
i· = er s(m) (0) , for allm ∈ N f . (23)

Because the financial submarket is non-redundant as well, a similar argument as in the combined market can be used to
prove that these equations admit a unique solution.

From the martingale equation (23) form = 0, we find that

exp

λ

(0)
f er


× EF (P)

exp


m∈N

f
0

λ
(m)
f S(m)(1)


 = 1. (24)

Taking into account this relation, we can rewrite the expressions (22) for the factors efi as follows:

efi =

exp

 
m∈N

f
0

λ
(m)
f s(m)

i·


EF (P)

exp

 
m∈N

f
0

λ
(m)
f S(m)(1)

 , for i = 1, 2, . . . , I. (25)

Again, we observe that the unique entropymeasureQf , which is an equivalent martingalemeasure in the financial subworld,
can be interpreted as an Esscher-like transform of F (P).

4.3. The entropy measure of the actuarial submarket

Similar as in the financial submarket, we can define theMinimal EntropyMartingaleMeasure of the actuarial submarket.
Consider the A (P)-absolutely continuous probability measure Q ≡


q1, q2, . . . , qJ


on (A (Ω) , A (Σ)). The relative

entropy E (Q, A (P)) of Q with respect to A (P) ≡

p·1, p·2, . . . , p·J


is defined by

E (Q, A (P)) =


j

qj ln


qj
p·j


,

where the sum is taken over all j with p·j > 0, and where 0 ln 0 = 0, by convention.
We introduce the notation N a for the set of all actuarial assets, while N a

0 = N a r {0} is the set of all purely actuarial
assets. Furthermore, Ma is the non-empty class of all equivalent martingale measures Q in the actuarial submarket. Any
Q ∈ Ma can be characterized by a vector


q1, q2, . . . , qJ


with non-negative components and qj = 0 if and only if p·j = 0,

satisfying the following conditions:

e−r


j

qjs
(m)
·j = s(m)(0), for allm ∈ N a. (26)

The Minimal Entropy Martingale MeasureQa is the unique element of Ma which satisfies

E
Qa, A (P)


= min

Q∈Ma
E (Q, A (P)) = min

Q∈Ma


j

qj ln


qj
p·j


. (27)
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Hereafter, we will often call this measure the actuarial market entropy measure.
Denoting the probabilities related to the actuarial market entropy measure Qa by

qa1,qa2, . . . ,qaJ , we find that the
probabilitiesqaj can be expressed as

qaj = p·jeaj , for j = 1, 2, . . . , J, (28)

with

eaj = exp


m∈N a

λ(m)
a s(m)

·j


, for j = 1, 2, . . . , J. (29)

The Lagrange multipliers λ
(m)
a are derived from the system ofmartingale equations:

j

p·jeaj s
(m)
·j = er s(m) (0) , for allm ∈ N a, (30)

where the uniqueness of this set of multipliers follows from the non-redundancy assumption of the actuarial submarket.
The expressions (29) can be rewritten as follows:

eaj =

exp

 
m∈N a

0

λ
(m)
a s(m)

·j



EA(P)


exp

 
m∈N a

0

λ
(m)
a S(m)(1)

 , for j = 1, 2, . . . , J. (31)

We observe that the unique entropy measureQa, which is an equivalent martingale measure in the actuarial subworld, can
be interpreted as an Esscher-like transform of A (P).

4.4. Some examples

In this subsection, we illustrate the technique of determining the minimal entropy martingale measure by considering
two examples of a combined world with a risk-free zero coupon bond, a financial asset, an actuarial asset and a combined
financial–actuarial asset traded in the market. For each example, we derive the combined market entropy measure Q, as
well as the entropy measuresQf andQa of the financial and the actuarial submarket, respectively.

Example 1. Consider a combined financial–actuarial world with three possible scenarios in each subworld, i.e.

Ω = {(i, j) | i, j = 1, 2, 3} .

Suppose that the real-world probabilities pij are given by

P =

pij

i,j =


1
6

1
6

1
6

1
6

1
6

0

1
6

0 0

 .

The projections F (P) and A (P) of the real-world probability measure P on the financial and actuarial subworlds are then
given by

F (P) =

p1·
p2·
p3·


=


3
6
2
6
1
6

 and A (P) =

p·1
p·2
p·3


=


3
6
2
6
1
6

 ,

respectively. Notice that p11 ≠ p1· × p·1, from which we conclude that financial and actuarial risks are not independent
under the physical measure P.
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We assume that the risk-free interest rate r is 0 and that the current price of the risk-free zero coupon bond is 1. In the
combinedmarket, a pure financial asset and a pure actuarial asset are traded. Their initial price is s(m) (0) =

1
2 , form = 1, 2,

while the possible outcomes of their payoffs S(m) (1) at time 1 are given bys(1)1·

s(1)2·

s(1)3·

 =

0
1
2


and

s(2)
·1

s(2)
·2

s(2)
·3

 =

0
1
2


,

respectively. In this market, also a combined asset is traded, with initial price s(3) (0) and possible outcomes for its payoff
S(3) (1) at time 1 given by

s(3)ij =


1 if i = j = 1
0 otherwise.

The martingale equations (14) for the combined market of this example read as follows:
e11 + e12 + e13 + e21 + e22 + e31 = 6
e21 + e22 + 2e31 = 3
e12 + 2e13 + e22 = 3
e11 = 6s(3) (0)

with the eij, according to (11), given by

e11 = exp

λ(0)

+ λ(3)
e12 = exp


λ(0)

+ λ(2)
e13 = exp


λ(0)

+ 2λ(2)
e21 = exp


λ(0)

+ λ(1)
e22 = exp


λ(0)

+ λ(1)
+ λ(2)

e31 = exp

λ(0)

+ 2λ(1) .
The Lagrange multipliers λ(m), form = 0, 1, 2, 3, then follow from

λ(0)
= ln


3 − 6s(3) (0)

2
2s(3) (0)



λ(1)
= ln


2s(3) (0)

3 − 6s(3) (0)


λ(2)

= ln


2s(3) (0)
3 − 6s(3) (0)


λ(3)

= ln


12

s(3) (0)

2
3 − 6s(3) (0)

2


.

The probabilitiesqij, which determine the combined market entropy measureQ, are calculated by Eq. (10):

Q =
qiji,j =


s(3) (0)

1
2

− s(3) (0)
s(3) (0)

3
1
2

− s(3) (0)
s(3) (0)

3
0

s(3) (0)
3

0 0

 . (32)

From thismatrix, we see that s(3) (0) ∈

0, 1

2


is required in order to guarantee thatQ is a proper equivalentmartingalemea-

sure in the combinedmarket. This condition on the initial price of the combined asset is a necessary and sufficient condition
for the combined market to be arbitrage-free. Therefore, in the remainder of this example we assume that s(3) (0) ∈


0, 1

2


.
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The projections F
Q and A

Q ofQ on the financial and the actuarial subworld can easily be determined from (32):

F
Q =

q1·q2·q3·
 =



1
2

+
s(3) (0)

3
1
2

−
2s(3) (0)

3
s(3) (0)

3

 and A
Q =

q·1q·2q·3

 =



1
2

+
s(3) (0)

3
1
2

−
2s(3) (0)

3
s(3) (0)

3

 . (33)

The set of all financial assets is given by N f
= {0, 1}. In order to obtain the financial market entropy measureQf , we first

determine the financial market martingale equations (23):
3ef1 + 2ef2 + ef3 = 6

2ef2 + 2ef3 = 3

where, according to (22), the efi are given by
ef1 = exp


λ

(0)
f


ef2 = exp


λ

(0)
f + λ

(1)
f


ef3 = exp


λ

(0)
f + 2λ(1)

f


.

This leads us to the following values for the Lagrange multipliers:

λ
(0)
f = ln


8 −

√
10

4


and

λ
(1)
f = ln


−1 +

√
10

3


.

From (21), we find that the financial market entropy measureQf is given by

Qf
=

q
f
1qf2qf3
 =



8 −
√
10

8
−2 +

√
10

4
4 −

√
10

8

 . (34)

The set of all actuarial assets is given by N a
= {0, 2}. As A (P) = F (P) and moreover, the initial prices as well as the

P-world distributions of the payoffs of the purely actuarial asset and the purely financial asset are identical, we immedi-
ately find that the entropy measures in both submarkets are equal. Hence,

Qa
=

qa1qa2qa3
 =



8 −
√
10

8
−2 +

√
10

4
4 −

√
10

8

 . (35)

Comparing (33) with (34) and (35) leads to the conclusion that s(3) (0) =
12−3

√
10

8 is a necessary and sufficient condition for
the projections F

Q and A
Q of the combined market entropy measure Q to be equal to the entropy measures of the

financial and the actuarial submarket, respectively:

F
Q = Qf and A

Q = Qa
⇔ s(3) (0) =

12 − 3
√
10

8
.
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We can conclude that when s(3) (0) ≠
12−3

√
10

8 , prices of financial assets under the combined market entropy measure Q
differ from the corresponding prices under the financialmarket entropymeasureQf . The same conclusion holds for actuarial
assets. △

In the following example, we consider a combined market where financial and actuarial risks are independent under
the real-world probability measure P. It will be shown that in this example the P-independence will only translate inQ-independence, when the combined financial–actuarial asset has a specific price.

Example 2. Consider a combined financial–actuarial world with three possible scenarios in the financial subworld and two
possible scenarios in the actuarial subworld. The combined financial–actuarial universe Ω is given by

Ω = {(i, j) | i = 1, 2, 3 and j = 1, 2} .

Assume that the real-world probability measure P is characterized by

P =

pij

i,j =


1
10

3
10

1
10

3
10

1
20

3
20

 .

Then the projections F (P) and A (P) are given by

F (P) =

p1·
p2·
p3·


=


2
5
2
5
1
5

 and A (P) =


p·1
p·2


=


1
4
3
4

 ,

respectively. Furthermore, one can easily verify that P = F (P) × A (P).
The risk-free interest rate r is assumed to be equal to 0. Apart from the risk-free bond with initial price s(0)(0) = 1, there

are 3 assets traded in the combinedmarket: a financial asset, labeled 1, with current price s(1) (0) = 50 and possible payoffs
at time 1 given bys(1)1·

s(1)2·

s(1)3·

 =

100
0
0


,

an actuarial asset, labeled 2, with current price s(2) (0) = 70 and possible payoffs at time 1 given by
s(2)
·1

s(2)
·2


=


0

100


,

and also a combined asset, labeled 3, with current price s(3) (0) and possible payoffs at time 1 given by

s(3)ij =


100 if i = j = 1
0 otherwise.

The combined market martingale equations (14), form = 0, 1, 2, 3, are equal to
2e11 + 6e12 + 2e21 + 6e22 + e31 + 3e32 = 20
e11 + 3e12 = 5
6e12 + 6e22 + 3e32 = 14
10e11 = s(3) (0)

with the eij, according to (11), given by

e11 = exp

λ(0)

+ 100λ(1)
+ 100λ(3)

e12 = exp

λ(0)

+ 100λ(1)
+ 100λ(2)

e21 = exp

λ(0)

e22 = exp

λ(0)

+ 100λ(2)
e31 = exp


λ(0)

e32 = exp

λ(0)

+ 100λ(2) .
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From these systems of equations, we obtain the following values for the parameters eij:

e11 =
s(3) (0)
10

e12 =
50 − s(3) (0)

30

e21 = e31 =
30 − s(3) (0)

15

e22 = e32 =
20 + s(3) (0)

45
.

The probabilitiesqij of the combined market entropy measure are now determined by Eq. (10):

Q =
qiji,j =



s(3) (0)
100

50 − s(3) (0)
100

30 − s(3) (0)
150

20 + s(3) (0)
150

30 − s(3) (0)
300

20 + s(3) (0)
300

 . (36)

This entropy measureQ gives rise to the following projections:

F
Q =

q1·q2·q3·


=


1
2
1
3
1
6

 and A
Q =

q·1q·2


=


3
10
7
10

 ,

which are independent of the current price s(3) (0). The product measure F
Q× A

Q can now easily be determined:

F
Q× A

Q =


3
20

7
20

1
10

7
30

1
20

7
60

 . (37)

Comparing (36) and (37), it is easy to prove thatQ = F
Q× A

Q ⇔ s(3) (0) = 15.

Next, we determine the entropy measures of the financial and actuarial submarkets. The set of all financial assets is given
by N f

= {0, 1}. From (23), it follows that the martingale equations of the financial market are given by
2ef1 + 2ef2 + ef3 = 5

4ef1 = 5,

where, according to (22), the efi are determined by
ef1 = exp


λ

(0)
f + 100λ(1)

f


ef2 = exp


λ

(0)
f


ef3 = exp


λ

(0)
f


.

This leads us to the following values for the parameters efi :
ef1 =

5
4

ef2 = ef3 =
5
6
.
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The financial market entropy measureQf then follows from Eq. (21):

Qf
=

q
f
1qf2qf3
 =


1
2
1
3
1
6

 .

The set of all actuarial assets is given by N a
= {0, 2}. In this case, the actuarial market martingale equations in (30) read as

ea1 + 3ea2 = 4
15ea2 = 14, (38)

where the eaj , according to (29), are given by
ea1 = exp


λ(0)
a


ea2 = exp


λ(0)
a + 100λ(2)

a


.

Solving the system of Eqs. (38), we obtain
ea1 =

6
5

ea2 =
14
15

.

From Eq. (28), it follows that the actuarial market entropy measureQa is given by

Qa
=

qa1qa2


=


3
10
7
10

 .

Contrary to Example 1, the projections F
Q and A

Q of the combined market entropy measureQ in this example equal
the entropy measures of the financial and the actuarial submarkets, respectively, regardless of the current price s(3) (0) of
the combined asset. Nevertheless, s(3) (0) influences the dependence structure between financial and actuarial risks underQ. The independence assumption under P will only translate inQ-independence, provided s(3) (0) = 15. △

The traded assets in previous example have simple payoffs such that the obtained martingale equations can be solved
easily. Notice however that the conclusions from this example remain to hold in a more general setting containing a pure
financial, a pure actuarial and a combined asset:P-independencewill only translate inQ-independence in case the combined
financial–actuarial asset has a specific initial price.

5. The minimal entropy martingale measure in a combined world where only financial assets are traded

Consider the combined world (Ω, Σ, P) with a market of M + 1 traded assets as described above. In this section, we
assume that only financial assets are traded. In this special case, we have that

N f
= {0, 1, . . . ,M} and N a

= {0} .

For any asset m, the vector of payoffs is given by

s(m)
1· , s(m)

2· , . . . , s(m)
I·


, where S(m)(1) = s(m)

i· ≥ 0 if the financial scenario
that unfolds is given by i.

In the following subsections, we first determine the entropy measuresQf andQa corresponding to the financial and the
actuarial submarket, respectively. Then, we determine the entropy measureQ of the combined market. Finally, we investi-
gate the relationship between these three entropy measures.

5.1. The entropy measures of the submarkets

Consider the financial subworld (F (Ω) , F (Σ) , F (P)) and the market of M + 1 traded financial assets. The entropy
measureQf of this submarket follows from the results in Section 4.2, with N f

= {0, 1, . . . ,M}. In particular, we find that

qfi = pi·e
f
i , for i = 1, 2, . . . , I, (39)
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with

efi = exp


M

m=0

λ
(m)
f s(m)

i·


, for i = 1, 2, . . . , I. (40)

The Lagrange multipliers λ
(m)
f can be derived from the following martingale equations:

i

pi·e
f
i s

(m)
i· = er s(m) (0) , for allm ∈ {0, 1, . . . ,M} . (41)

Next, we consider the actuarial subworld (A (Ω) , A (Σ) , A (P)) and the actuarial submarket where only the risk-free
bond is traded. The actuarialmarket entropymeasureQa follows from the results in Section 4.3,withN a

= {0}.Wehave thatqaj = p·jeaj , for j = 1, 2, . . . , J,

with

eaj = exp

λ(0)
a er


, for j = 1, 2, . . . , J.

The unique Lagrange multiplier λ
(0)
a follows from the martingale equation (30) form = 0, i.e.

j

p·jeaj = 1.

Taking into account that eaj does not depend on j, we find that

eaj = 1, for j = 1, 2, . . . , J.

Hence,qaj = p·j, for j = 1, 2, . . . , J, (42)

or, equivalently,Qa
= A (P) . (43)

This means that in a market where only financial risks are traded, the actuarial market entropy measureQa is identical to
the projection A (P) of the physical probability measure on the actuarial subworld. This result was to be expected as there
are no actuarial risks traded, which implies that the pricing measureQa that is closest to A (P) is A (P) itself.

5.2. The entropy measure of the combined market

The combined market entropy measureQ follows from the results in Section 4.1. In particular, we find thatqij = pijeij, for any (i, j) ∈ Ω, (44)

where the coefficients eij are defined by

eij = exp


M

m=0

λ(m)s(m)
i·


, for any (i, j) ∈ Ω. (45)

Obviously, the eij do not depend on j. Therefore, we will denote them by ei· in this section. The martingale equations (14)
can be written as

i

pi·ei·s
(m)
i· = er s(m) (0) , for allm ∈ {0, . . . ,M} . (46)

Comparing the martingale equations (41) and (46), while taking into account that the ei· and the efi are uniquely deter-
mined and of the form (40) and (45), respectively, we find that

ei· = efi for i = 1, 2, . . . , I (47)

and alsoqij = pije
f
i , for any (i, j) ∈ Ω. (48)

Taking into account (39), these expressions for theqij result in
qi· = pi·e

f
i =qfi , for i = 1, 2, . . . , I, (49)
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which means that the financial market entropy measure Qf is identical to the projection F
Q of the combined market

entropy measureQ, i.e.

Qf
= F

Q . (50)

In the following theorem, the relation between the entropy measures of the combined market and the corresponding
submarkets is further explored.

Theorem 4. Consider the combined financial–actuarial world (Ω, Σ, P) where only financial assets are traded. Let Q be the
combined market entropy measure. The financial and actuarial market entropy measuresQf andQa are then characterized by

Qf
= F

Q and Qa
= A (P) . (51)

Moreover, financial and actuarial risks are independent under the P-measure if and only if they are independent under theQ-measure:

P = F (P) × A (P) ⇔ Q = F
Q× A

Q . (52)

In case of P-independence between financial and actuarial risks, one has that

Qa
= A

Q . (53)

Proof. The relations (51) have been proven above.
In order to prove the equivalence relation (52), let us first assume that financial and actuarial risks are P-independent.

Taking into account (48) and (49), we find that

qij =qi· × p·j, for all (i, j) ∈ Ω.

Summing over all i leads to

q·j = p·j, for j = 1, 2, . . . , J. (54)

Hence,

qij =qi· ×q·j, for all (i, j) ∈ Ω,

which means that financial and actuarial risks areQ-independent.
Next, we assume that financial and actuarial risks areQ-independent. In this case, the relations (48) and (49) lead to

pij = pi· ×q·j, for all (i, j) ∈ Ω.

Summing over all i, we find that

p·j =q·j, for j = 1, 2, . . . , J,

and hence,

pij = pi· × p·j, for all (i, j) ∈ Ω,

which means that financial and actuarial risks are P-independent.
Finally, in case of independence, the relations (42) and (54) lead to

q·j =qaj , for j = 1, 2, . . . , J,

which means that (53) holds. �

Theorem 4 states that in a market where only financial assets are traded, a P-world independence between financial
and actuarial risks implies that also under the combined market entropy measure Q, financial and actuarial risks are
independent. Important to notice is that this implication does not state that P-independence translates into independence
under any pricing measure Q. Some simple examples of (in-)complete markets with P-world independence but where no
equivalent martingale measure exists under which financial and actuarial risks are independent, can be found in [13].
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5.3. Illustration

From Theorem 4, we know that in a market where only financial assets are traded, Qf
= F

Q holds for any possible
dependence structure between financial and actuarial risks under the physical measure P. Moreover, we found that Qa

=

A
Q holds, provided financial and actuarial risks are independent under P. In the following example, we explore whether

this P-independence is an essential requirement or not for this last statement to hold.

Example 3. Consider the combined financial–actuarialworldwith three possible scenarios in each subworld andwith phys-
ical measure P, as described in Example 1. In the corresponding market, we assume now that only 2 financial assets are
traded, namely the risk-free zero coupon bond with r = 0, and the financial asset with initial price s(1) (0) =

1
2 and possible

payoffs at time 1 given bys(1)1·

s(1)2·

s(1)3·

 =

0
1
2


.

In order to determine the combined market entropy measureQ, we consider the martingale equations (46), which can be
expressed as

3e1· + 2e2· + e3· = 6
2e2· + 2e3· = 3,

with the ei·, according to (45), given by
e1· = exp


λ(0)

e2· = exp

λ(0)

+ λ(1)
e3· = exp


λ(0)

+ 2λ(1) .
These systems of equations lead to the following numerical values for the Lagrange multipliers:

λ(0)
= ln


8 −

√
10

4


(55)

and

λ(1)
= ln


−1 +

√
10

3


. (56)

According to Eqs. (44) and (45), the probabilitiesqij are then given by

Q =



8 −
√
10

24
8 −

√
10

24
8 −

√
10

24
−2 +

√
10

8
−2 +

√
10

8
0

4 −
√
10

8
0 0

 .

The projections F
Q and A

Q of the combined market entropy measureQ on the financial and the actuarial subworld,
respectively, can easily be determined:

F
Q =

q1·q2·q3·
 =



8 −
√
10

8
−2 +

√
10

4
4 −

√
10

8

 and A
Q =

q·1q·2q·3

 =



14 −
√
10

24
1 +

√
10

12
8 −

√
10

24

 .

Let us now determine the entropy measure of the financial submarket. Taking into account that the martingale equations
for the combined market and the financial submarket are identical, we find that λ

(0)
f and λ

(1)
f are given by (55) and (56),
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respectively. From (39) and (40), it follows then that the financial market entropy measure is given by

Qf
=

q
f
1qf2qf3
 =



8 −
√
10

8
−2 +

√
10

4
4 −

√
10

8

 .

We observe that the measureQf is identical to the financial projection F
Q of the combined market entropy measureQ,

which confirms our earlier derived general result (51). According to (43), the actuarial market entropy measure is given by

Qa
= A (P) =


3
6
2
6
1
6

 .

We can conclude that the actuarial market entropy measureQa is different from the actuarial projection A
Q of the com-

bined market entropy measureQ. △

From the preceding example, we conclude that in a combined world where only financial assets are traded, and where
financial and actuarial risks are not independent under P, it may happen that the actuarial market entropy measure Qa is
different from the actuarial projection of the combined market entropy measure.

6. The minimal entropy martingale measure in a combined world without traded combined assets

In this section, we investigate a second special case of the general combined financial–actuarial world described in
Section 4.We suppose now that no combined assets are available in themarket. Hence, apart from the risk-free zero coupon
bond, only purely financial and purely actuarial assets are traded. In terms of the earlier introduced notations N f and N a

for the sets of financial and actuarial assets, respectively, this means that

N f
∪ N a

= {0, 1, . . . ,M} . (57)
Hereafter, we determine the entropymeasures of the financial and the actuarial submarkets, as well as the entropymeasure
of the combined market. Furthermore, we investigate the relationship between these measures.

6.1. The entropy measures of the submarkets and the combined market

The entropy measure Qf corresponding to the market N f of traded financial assets in the financial subworld (F (Ω) ,

F (Σ) , F (P)) follows from the results in Section 4.2. In particular, we have thatqfi , efi and the martingale equations are
given by (21)–(23), respectively.

Similarly, the entropymeasureQa of the market N a of traded actuarial assets in the actuarial subworld (A (Ω) , A (Σ) ,
A (P)) follows from Section 4.3. In particular, we have thatqaj , eaj and the corresponding martingale equations are given by
(28)–(30), respectively.

Let us now determine the entropy measureQ of the combined market. From (10) and (11) in Section 4.1, we find thatqij = pijeij, for any (i, j) ∈ Ω, (58)
where the coefficients eij are defined by

eij = exp

λ(0)er +


m∈N

f
0

λ(m)s(m)
i· +


m∈N a

0

λ(m)s(m)
·j

 , for any (i, j) ∈ Ω. (59)

From (14), it follows that the martingale equations of the combined market are given by
i,j

pijeijs
(m)
i· = er s(m) (0) , for allm ∈ N f (60)

and 
i,j

pijeijs
(m)
·j = er s(m) (0) , for allm ∈ N a. (61)

In the following theorem, we explore the relationship between P- andQ-independence of financial and actuarial risks.
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Theorem 5. Consider the combined financial–actuarial world (Ω, Σ, P)where, apart from the risk-free asset, only purely finan-
cial and purely actuarial assets are traded. In this case, financial and actuarial risks are independent under the P-measure if and
only they are independent under theQ-measure:

P = F (P) × A (P) ⇔ Q = F
Q× A

Q . (62)

Moreover, in case of P-independence between financial and actuarial risks, one has that

Qf
= F

Q and Qa
= A

Q . (63)

Proof. Let us first prove the ⇒ implication in (62). Therefore, suppose that financial and actuarial risks are P-independent.
Taking into account (15) and (57), we can express the coefficients eij as follows:

eij =

exp

 
m∈N

f
0

λ(m)s(m)
i·


EP

exp

 
m∈N

f
0

λ(m)S(m) (1)

 ×

exp

 
m∈N a

0

λ(m)s(m)
·j



EP


exp

 
m∈N a

0

λ(m)S(m) (1)

 , (64)

which holds for any (i, j) ∈ Ω . From (58) and (64), we find that

qi· = pi· ×
J

j=1

p·jeij = pi· ×

exp

 
m∈N

f
0

λ(m)s(m)
i·


EP

exp

 
m∈N

f
0

λ(m)S(m) (1)

 , for i = 1, 2, . . . , I. (65)

A similar expression holds for the actuarial subworld. Hence, we can conclude thatqij =

pi· × p·j


eij =qi· ×q·j, for any (i, j) ∈ Ω,

which means that financial and actuarial risks areQ-independent.
Next, we prove the ⇐ implication in (62). Suppose that financial and actuarial risks are Q-independent. Taking into

account (17) and (57), we can express the coefficients e−1
ij as follows:

e−1
ij =

exp

−


m∈N
f
0

λ(m)s(m)
i·


EQ
exp

−


m∈N
f
0

λ(m)S(m) (1)

 ×

exp


−


m∈N a

0

λ(m)s(m)
·j



EQ

exp


−


m∈N a

0

λ(m)S(m) (1)

 , (66)

which holds for any (i, j) ∈ Ω . From (58) and (66), we find that

pi· =qi· × J
j=1

q·je−1
ij =qi· ×

exp

−


m∈N
f
0

λ(m)s(m)
i·


EQ
exp

−


m∈N
f
0

λ(m)S(m) (1)

 , for i = 1, 2, . . . , I.

A similar expression holds for the actuarial subworld. Hence, we can conclude that

pij =
qi· ×q·j


e−1
ij = pi· × p·j, for any (i, j) ∈ Ω,

which means that financial and actuarial risks are P-independent.
It remains to prove that (63) holds in case of P-independence (or equivalently,Q-independence) between financial and

actuarial risks. Hereafter, we only give the proof for the financial submarket. The actuarial submarket case is proven in a
similar way.
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By using the expressions (64) for the coefficients eij, we can simplify the martingale equations (60) for the combined
market as follows:


i

pi·

exp

 
m∈N

f
0

λ(m)s(m)
i·


EP

exp

 
m∈N

f
0

λ(m)S(m) (1)

 s(m)
i· = er s(m) (0) , for allm ∈ N f .

Comparing these martingale equations for the combined market with the martingale equations (23) for the financial sub-
market, while taking into account the expression (25), we find that λ(m)

= λ
(m)
f for m ∈ N

f
0 . Similarly, we can prove that

λ(m)
= λ

(m)
a form ∈ N a

0 .
From (25), (31) and (64), it follows then that

eij = efi × eaj

holds for any (i, j) ∈ Ω . Hence, from the P-independence assumption we find that

qij = pijeij =


pi·e

f
i


×

p·jeaj


=qfi ×qaj , for all (i, j) ∈ Ω.

The latter expression immediately leads us to

qi· =qfi , for i = 1, 2, . . . , I,

and q·j =qaj , for j = 1, 2, . . . , J,

which means that (63) holds, when financial and actuarial risks are independent. �

6.2. Illustration

In the following example, we show that in amarketwhere only purely financial and purely actuarial assets are traded, the
equality (63) between the projections of the combined market entropy measure and the corresponding entropy measures
of the submarkets may no longer hold in case financial and actuarial risks are not independent under P.

Example 4. Consider again the combined financial–actuarial worldwith three possible scenarios in each subworld andwith
physical measure P, as described in Example 1. Suppose now that, apart from the risk-free zero coupon bond, one purely
financial asset (labeled 1) and one purely actuarial asset (labeled 2) are traded. Both assets have an initial price s(m) (0) =

1
2 ,

while their possible payoffs at time 1 are given bys(1)1·

s(1)2·

s(1)3·

 =

s(2)
·1

s(2)
·2

s(2)
·3

 =

0
1
2


.

In order to determine the combined market entropy measure Q, we first write down the martingale equations from (60)
and (61) form = 0, 1, 2:e11 + e12 + e13 + e21 + e22 + e31 = 6

e21 + e22 + 2e31 = 3
e12 + 2e13 + e22 = 3

where according to (59), the eij are given by

e11 = exp

λ(0)

e12 = exp

λ(0)

+ λ(2)
e13 = exp


λ(0)

+ 2λ(2)
e21 = exp


λ(0)

+ λ(1)
e22 = exp


λ(0)

+ λ(1)
+ λ(2)

e31 = exp

λ(0)

+ 2λ(1) .
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These systems of equations result in the following values for the Lagrange parameters:
λ(0)

= ln


9 − 3

√
3

2



λ(1)
= λ(2)

= ln


1
3


.

Taking into account previous calculations, we find that the combined market entropy measureQ is given by

Q =



3 −
√
3

4
−1 +

√
3

4
3 −

√
3

12
−1 +

√
3

4
3 −

√
3

12
0

3 −
√
3

12
0 0

 .

The projections ofQ on the financial and the actuarial subworld can easily be determined:

F
Q =

q1·q2·q3·
 =



9 −
√
3

12
√
3
6

3 −
√
3

12

 and A
Q =

q·1q·2q·3

 =



9 −
√
3

12
√
3
6

3 −
√
3

12

 .

The submarkets in this example are identical to the submarkets considered in Example 1. As a consequence, the submarket
entropy measures in the current example are identical to the corresponding entropy measures derived in Example 1. In
particular, we find that

Qf
=

q
f
1qf2qf3
 =



8 −
√
10

8
−2 +

√
10

4
4 −

√
10

8

 and Qa
=

qa1qa2qa3
 =



8 −
√
10

8
−2 +

√
10

4
4 −

√
10

8

 .

We can conclude that F
Q ≠ Qf and A

Q ≠ Qa, which means that the financial and the actuarial projection of
the combined market entropy measure differ from the entropy measures of the financial and the actuarial subworld,
respectively. △

Theprevious example shows thatwehave to clearly specify themodeling environmentwhenwewant to price financial or
actuarial assets under the minimal entropy martingale measure. For a purely financial asset, the price under the combined
market entropy measure Q (or, equivalently, under the projection F (Q)) will in general differ from the price under the
financial market entropy measure Qf . Notice however that from Theorem 5, it follows that these prices are equal in
case financial and actuarial risks are independent under the physical measure P. Similar conclusions can be formulated
concerning prices of actuarial assets.

7. Conclusion

In arbitrage-free but incomplete markets, the equivalent martingale measure for pricing traded assets is not uniquely
determined. A possible approach when choosing a particular pricing measure is to look for the one that is ‘closest’ to the
physical probability measure P, where closeness is measured in terms of relative entropy.

In this paper, we considered the problem of determining the minimal entropy martingale measure in a market where
securities are traded with payoffs depending on financial as well as actuarial risks. Therefore, we modeled a combined
financial–actuarial world with a universe consisting of combined financial–actuarial scenarios. We determined the entropy
measure of the combined market consisting of financial, actuarial and combined financial–actuarial assets, as well as the
entropy measures corresponding to the financial and the actuarial submarket.

We proved that in a market where only financial assets are traded, independence of financial and actuarial risks under
the real-world probability measure is equivalent to independence under the combinedmarket entropy measure. Moreover,
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pricing financial assets under the financial market entropy measure is identical to pricing these financial assets under the
combined market entropy measure. In such a market, the actuarial market entropy measure coincides with the projection
of the real-world probability measure on the actuarial subworld.

In amarket where purely financial as well as purely actuarial securities are traded, we proved that financial and actuarial
risks are independent under the real-world probability measure if and only if these risks are independent under the com-
binedmarket entropymeasure.Moreover, in case of independence, the entropymeasure of the combined financial–actuarial
market is the product measure of the entropy measures of the financial and the actuarial submarkets. The latter property
does not always hold when financial and actuarial risks are not independent under the real-world probability measure. In
this case, the price of a financial asset under the combined market entropy measure will in general differ from the price un-
der the financial market entropy measure. This difference is due to the fact that the available information in the combined
world is larger than in the financial subworld which leads to a different set of martingale measures from which we choose
the ‘closest’ one. A similar reasoning holds for actuarial assets.

In the general case, i.e. in a market where apart from financial and actuarial assets, also combined financial–actuarial
assets are traded, no general conclusions can be made. In particular, independence of financial and actuarial risks under
the physical measure does not always translate into independence under the combined market entropy measure, and vice
versa. Moreover, there is no link between the projections of the combined market entropy measure at the one hand and the
entropy measures of the submarkets at the other hand, even in case of P-independence.

In this paper, we considered a one-period, finite state market model. The results in this paper can be extended to a
multiple period setting. Similar results can also be derived in a continuous-time market model.
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