
https://doi.org/10.1145/3077136.3080832
https://dare.uva.nl/personal/pure/en/publications/neural-ranking-models-with-weak-supervision(242d869b-9c7c-4af3-b793-e0a0517fd557).html
https://doi.org/10.1145/3077136.3080832


Neural RankingModels withWeak Supervision
Mostafa Dehghani∗

University of Amsterdam
dehghani@uva.nl

Hamed Zamani
University of Massachuse�s Amherst

zamani@cs.umass.edu

Aliaksei Severyn
Google Research

severyn@google.com

Jaap Kamps
University of Amsterdam

kamps@uva.nl

W. Bruce Cro�
University of Massachuse�s Amherst

cro�@cs.umass.edu

ABSTRACT
Despite the impressive improvements achieved by unsupervised
deep neural networks in computer vision and NLP tasks, such im-
provements have not yet been observed in ranking for information
retrieval. �e reason may be the complexity of the ranking problem,
as it is not obvious how to learn from queries and documents when
no supervised signal is available. Hence, in this paper, we propose
to train a neural ranking model using weak supervision, where labels
are obtained automatically without human annotators or any exter-
nal resources (e.g., click data). To this aim, we use the output of an
unsupervised ranking model, such as BM25, as a weak supervision
signal. We further train a set of simple yet e�ective ranking models
based on feed-forward neural networks. We study their e�ectiveness
under various learning scenarios (point-wise and pair-wise models)
and using di�erent input representations (i.e., from encoding query-
document pairs into dense/sparse vectors to using word embedding
representation). We train our networks using tens of millions of
training instances and evaluate it on two standard collections: a ho-
mogeneousnewscollection (Robust) andaheterogeneous large-scale
web collection (ClueWeb). Our experiments indicate that employing
proper objective functions and le�ing the networks to learn the input
representation based on weakly supervised data leads to impressive
performance, with over 13% and 35% MAP improvements over the
BM25 model on the Robust and the ClueWeb collections. Our �nd-
ings also suggest that supervised neural ranking models can greatly
bene�t from pre-training on large amounts of weakly labeled data
that can be easily obtained from unsupervised IR models.
KEYWORDS Ranking model; weak supervision; deep neural net-
work; deep learning; ad-hoc retrieval

1 INTRODUCTION
Learning state-of-the-art deep neural network models requires a
large amounts of labeled data, which is not always readily available
and can be expensive to obtain. To circumvent the lack of human-
labeled training examples, unsupervised learning methods aim to
model the underlying data distribution, thus learning powerful fea-
ture representations of the input data, which can be helpful for

∗Work done while interning at Google Research.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Copyright held by the owner/author(s). 978-1-4503-5022-8/17/08.
DOI: 10.1145/3077136.3080832

building more accurate discriminative models especially when li�le
or even no supervised data is available.

A large group of unsupervised neural models seeks to exploit the
implicit internal structure of the input data, which in turn requires
customized formulation of the training objective (loss function), tar-
geted network architectures and o�en non-trivial training setups.
For example in NLP, various methods for learning distributed word
representations, e.g., word2vec [27], GloVe [31], and sentence repre-
sentations, e.g., paragraph vectors [23] and skip-thought [22] have
been shown very useful to pre-train word embeddings that are then
used for other tasks such as sentence classi�cation, sentiment anal-
ysis, etc. Other generative approaches such as language modeling
in NLP, and, more recently, various �avors of auto-encoders [2] and
generative adversarial networks [13] in computer vision have shown
a promise in building more accurate models.

Despite the advances in computer vision, speech recognition, and
NLP tasks using unsupervised deep neural networks, such advances
have not been observed in core information retrieval (IR) problems,
such as ranking. A plausible explanation is the complexity of the
ranking problem in IR, in the sense that it is not obvious how to
learn a ranking model from queries and documents when no super-
vision in form of the relevance information is available. To overcome
this issue, in this paper, we propose to leverage large amounts of
unsupervised data to infer “noisy” or “weak” labels and use that
signal for learning supervised models as if we had the ground truth
labels. In particular, we use classic unsupervised IR models as a weak
supervision signal for training deep neural ranking models. Weak
supervision here refers to a learning approach that creates its own
training data by heuristically retrieving documents for a large query
set. �is training data is created automatically, and thus it is possi-
ble to generate billions of training instances with almost no cost.1
As training deep neural networks is an exceptionally data hungry
process, the idea of pre-training on massive amount of weakly su-
pervised data and then �ne-tuning the model using a small amount
of supervised data could improve the performance [11].

�e main aim of this paper is to study the impact of weak su-
pervision on neural ranking models, which we break down into the
following concrete research questions:

RQ1 Can labels from an unsupervised IR model such as BM25 be
used as weak supervision signal to train an e�ective neural
ranker?

RQ2 What input representationand learningobjective ismost suit-
able for learning in such a se�ing?

1Although weak supervision may refer to using noisy data, in this paper, we assume
that no external information, e.g., click-through data, is available.

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

65

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


RQ3 Can a supervised learning model bene�t from a weak super-
vision step, especially in cases when labeled data is limited?

We examine various neural ranking models with di�erent ranking
architectures and objectives, i.e., point-wise and pair-wise, as well
as di�erent input representations, from encoding query-document
pairs into dense/sparse vectors to learning query/document embed-
ding representations. �e models are trained on billions of training
examples that are annotated by BM25, as the weak supervision signal.
Interestingly, we observe that using just training data that are anno-
tated by BM25 as the weak annotator, we can outperform BM25 itself
on the test data. Based on our analysis, the achieved performance is
generally indebted to three main factors: First, de�ning an objective
function that aims to learn the ranking instead of calibrated scoring
to relax the network from ��ing to the imperfections in the weakly
supervised training data. Second, le�ing the neural networks learn
optimal query/document representations instead of feeding them
with a representation based on prede�ned features. �is is a key
requirement to maximize the bene�ts from deep learning models
with weak supervision as it enables them to generalize be�er. �ird
and last, the weak supervision se�ing makes it possible to train the
network on a massive amount of training data.

We further thoroughly analyse the behavior of models to un-
derstand what they learn, what is the relationship among di�erent
models, and how much training data is needed to go beyond the
weak supervision signal. We also study if employing deep neural
networks may help in di�erent situations. Finally, we examine the
scenario of using the network trained on a weak supervision signal
as a pre-training step. We demonstrate that, in the ranking prob-
lem, the performance of deep neural networks trained on a limited
amount of supervised data signi�cantly improves when they are
initialized from a model pre-trained on weakly labeled data.

Our results have broad impact as the proposal to use unsuper-
vised traditional methods as weak supervision signals is applicable
to variety of IR tasks, such as �ltering or classi�cation, without the
need for supervised data. More generally, our approach uni�es the
classic IR models with currently emerging data-driven approaches
in an elegant way.

2 RELATED WORK
Deep neural networks have shown impressive performance in many
computer vision, natural language processing, and speech recogni-
tion tasks [24]. Recently, several a�empts have been made to study
deep neural networks in IR applications, which can be generally
partitioned into two categories [29, 46]. �e �rst category includes
approaches that use the results of trained (deep) neural networks
in order to improve the performance in IR applications. Among
these, distributed word representations or embeddings [27, 31] have
a�racted a lot of a�ention. Word embedding vectors have been
applied to term re-weighting in IR models [32, 47], query expan-
sion [10, 33, 43], query classi�cation [25, 44], etc. �e main short-
coming of most of the approaches in this category is that the objective
of the trained neural network di�ers from the objective of these tasks.
For instance, the word embedding vectors proposed in [27, 31] are
trained based on term proximity in a large corpus, which is di�erent
from the objective in most IR tasks. To overcome this issue, some ap-
proaches try to learn representations in an end-to-end neural model
for learning a speci�c task like entity ranking for expert �nding [39]
or product search [38]. Zamani and Cro� [45] recently proposed

relevance-based word embedding models for learning word repre-
sentations based on the objectives that ma�er for IR applications.

�e second category, which this paper belongs to, consists of
the approaches that design and train a (deep) neural network for
a speci�c task, e.g., question answering [6, 41], click models [4],
context-aware ranking [42], etc. A number of the approaches in this
category have been proposed for ranking documents in response to
a given query. �ese approaches can be generally divided into two
groups: late combination models and early combination models (or
representation-focused and interaction-focused models according
to [14]). �e late combination models, following the idea of Siamese
networks [5], independently learn a representation for each query
and candidate document and then calculate the similarity between
the two estimated representations via a similarity function. For ex-
ample, Huang et al. [18] proposed DSSM, which is a feed forward
neural network with a word hashing phase as the �rst layer to predict
the click probability given a query string and a document title. �e
DSSM model was further improved by incorporating convolutional
neural networks [35].

On the other hand, the early combination models are designed
based on the interactions between the query and the candidate doc-
ument as the input of network. For instance, DeepMatch [26] maps
each text to a sequence of terms and trains a feed-forward network
for computing the matching score. �e deep relevance matching
model for ad-hoc retrieval [14] is another example of an early combi-
nation model that feeds a neural network with the histogram-based
features representing interactions between the query and document.
Early combining enables the model to have an opportunity to capture
various interactions between query and document(s), while with late
combination approach, the model has only the chance of isolated
observation of input elements. Recently, Mitra et al. [28] proposed to
simultaneously learn local and distributional representations, which
are early and late combination models respectively, to capture both
exact term matching and semantic term matching.

Until now, all the proposed neural models for ranking are trained
on either explicit relevance judgements or clickthrough logs. How-
ever, a massive amount of such training data is not always available.

In this paper, we propose to train neural ranking models using
weak supervision, which is the most natural way to reuse the existing
supervised learning models where the imperfect labels are treated
as the ground truth. �e basic assumption is that we can cheaply
obtain labels (that are of lower quality than human-provided labels)
by expressing the prior knowledge we have about the task at hand by
specifying a set of heuristics, adapting existing ground truth data for
a di�erent but related task (this is o�en referred to distant supervi-
sion2), extracting supervision signal from external knowledge-bases
or ontologies, crowd-sourcing partial annotations that are cheaper to
get, etc. Weak supervision is a natural way to bene�t from unsuper-
vised data and it has been applied in NLP for various tasks including
relation extraction [3, 15], knowledge-base completion [17], sen-
timent analysis [34], etc. �ere are also similar a�empts in IR for
automatically constructing test collections [1] and learning to rank
using labeled features, i.e. features that an expert believes they are
correlated with relevance [9]. In this paper, we make use of tradi-
tional IR models as the weak supervision signal to generate a large

2We do not distinguish between weak and distant supervision as the di�erence is subtle
and both terms are o�en used interchangeably in the literature.

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

66



(a) Score model (b) Rank model (c) RankProb model

Figure 1: Di�erent Ranking Architectures

amount of training data and train e�ective neural ranking models
that outperform the baseline methods by a signi�cant margin.

3 WEAK SUPERVISION FOR RANKING
Deep learning techniques have taken o� in many �elds, as they
automate the onerous task of input representation and feature en-
gineering. On the other hand, the more the neural networks become
deep and complex, the more it is crucial for them to be trained on
massive amounts of training data. In many applications, rich anno-
tations are costly to obtain and task-speci�c training data is now a
critical bo�leneck. Hence, unsupervised learning is considered as
a long standing goal for several applications. However, in a number
of information retrieval tasks, such as ranking, it is not obvious how
to train a model with large numbers of queries and documents with
no relevance signal. To address this problem in an unsupervised
fashion, we use the idea of “Pseudo-Labeling” by taking advantage
of existing unsupervised methods for creating a weakly annotated
set of training data and we propose to train a neural retrieval model
with weak supervision signals we have generated. In general, weak
supervision refers to learning from training data in which the labels
are imprecise. In this paper, we refer to weak supervision as a learn-
ing approach that automatically creates its own training data using
an existing unsupervised approach, which di�ers from imprecise
data coming from external observations (e.g., click-through data) or
noisy human-labeled data.

We focus on query-dependent ranking as a core IR task. To
this aim, we take a well-performing existing unsupervised retrieval
model, such as BM25. �is model plays the role of “pseudo-labeler”
in our learning scenario. In more detail, given a target collection
and a large set of training queries (without relevance judgments),
we make use of the pseudo-labeler to rank/score the documents for
each query in the training query set. Note that we can generate as
much as training data as we need with almost no cost. �e goal is
to train a ranking model given the scores/ranking generated by the
pseudo-labeler as a weak supervision signal.

In the following section, we formally present a set of neural
network-based ranking models that can leverage the given weak
supervision signal in order to learn accurate representations and
ranking for the ad-hoc retrieval task.

4 NEURAL RANKING MODELS
In this section, we �rst introduce our ranking models. �en, we
describe the architecture of the base neural network model shared
by di�erent ranking models. Finally, we discuss the three input layer
architectures used in our neural rankers to encode (query, candidate
document) pairs.

4.1 Ranking Architectures
We de�ne three di�erent ranking models: one point-wise and two
pair-wise models. We introduce the architecture of these models
and explain how we train them using weak supervision signals.

Score model : �is architecture models a point-wise ranking model
that learns to predict retrieval scores for query-document pairs. More
formally, the goal in this architecture is to learn a scoring function
S (q;d ;� ) that determines the retrieval score of document d for query
q, given a set of model parameters � . In the training stage, we are
given a training set comprising of training instances each a triple � =
(q;d;sq;d ), where q is a query from training query set Q , d represents
a retrieved document for the query q, and sq;d is the relevance score
(calculated by a weak supervisor), which is acquired using a retrieval
scoring function in our setup. We consider the mean squared error
as the loss function for a given batch of training instances:

L (b;� ) =
1
jb j

jb jX

i=1
(S (fq;d gi ;� )�s fq;d gi )2 (1)

where fq;d gi denotes the query and the corresponding retrieved
document in the ith training instance, i.e. �i in the batch b. �e
conceptual architecture of the model is illustrated in Figure 1a.

Rank model : In this model, similar to the previous one, the goal is
to learn a scoring functionS (q;d ;� ) for a given pair of query q and
documentd with the set of model parameters � . However, unlike the
previous model, we do not aim to learn a calibrated scoring function.
In this model, as it is depicted in Figure 1b, we use a pair-wise scenario
during training in which we have two point-wise networks that share
parameters and we update their parameters to minimize a pair-wise
loss. In this model, each training instance has �ve elements: � =
(q;d1;d2;sq;d1 ;sq;d2 ). During the inference, wetreat the trainedmodel
as a point-wise scoring function to score query-document pairs.

We have tried di�erent pair-wise loss functions and empirically
found that the model learned based on the hinge loss (max-margin
loss function) performs be�er than the others. Hinge loss is a linear
loss that penalizes examples that violate the margin constraint. It is
widely used in various learning to rank algorithms, such as Ranking
SVM [16]. �e hinge loss function for a batch of training instances
is de�ned as follows:

L (b;� ) =
1
jb j

jb jX

i=1
max

(
0;"�sign(s fq;d1 gi �s fq;d2 gi )

(S (fq;d1gi ;� )�S (fq;d2gi ;� ))
)
;

(2)

where " is the parameter determining the margin of hinge loss. We
found that as we compress the outputs to the range of [�1;1], "=1
works well as the margin for the hinge loss function.

RankProb model : �e third architecture is based on a pair-wise
scenario during both training and inference (Figure 1c). �is model
learns a ranking function R (q;d1;d2;� ) which predicts the proba-
bility of document d1 to be ranked higher than d2 given q. Sim-
ilar to the rank model, each training instance has �ve elements:
� = (q;d1;d2;sq;d1 ;sq;d1 ). For a given batch of training instances, we

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

67



de�ne our loss function based on cross-entropy as follows:

L (b;� ) =�
1
jb j

jb jX

i=1
P fq;d1;d2 gi log(R (fq;d1;d2gi ;� )) (3)

+ (1�P fq;d1;d2 gi )log(1�R (fq;d1;d2gi ;� ))

where P fq;d1;d2 gi is the probability of document d1 being ranked
higher thand2, based on the scores obtained from training instance�i :

P fq;d1;d2 gi =
s fq;d1 gi

s fq;d1 gi +s fq;d2 gi
(4)

It is notable that at inference time, we need a scalar score for
each document. �erefore, we need to turn the model’s pair-wise
predictions into a score per document. To do so, for each document,
we calculate the average of predictions against all other candidate
documents, which has O (n2) time complexity and is not practical
in real-world applications. �ere are some approximations could be
applicable to decrease the time complexity at inference time [40].

4.2 Neural Network Architecture
As shown in Figure 1, all the described ranking architectures share a
neural network module. We opted for a simple feed-forward neural
network which is composed of: input layer z0, l�1 hidden layers,
and the output layer zl . �e input layer z0 provides a mapping
 to encode the input query and document(s) into a �xed-length
vector. �e exact speci�cation of the input representation feature
function is given in the next subsection. Each hidden layer zi is a
fully-connected layer that computes the following transformation:

zi =� (Wi :zi�1+bi ); 1 < i < l�1; (5)
whereWi and bi respectively denote the weight matrix and the bias
term corresponding to the ith hidden layer, and� (:) is the activation
function. We use the recti�er linear unit ReLU(x ) =max(0;x ) as the
activation function, which is a common choice in the deep learning
literature [24]. �e output layer zl is a fully-connected layer with
a single continuous output. �e activation function for the output
layer depends on the ranking architecture that we use. For the score
model architecture, we empirically found that a linear activation
function works best, while tanh and the sigmoid functions are used
for the rank model and rankprob model respectively.

Furthermore, toprevent featureco-adaptation, weusedropout [36]
as the regularization technique in all the models. Dropout sets a
portion of hidden units to zero during the forward phase when
computing the activations which prevents over��ing.

4.3 Input Representations
We explore three de�nitions of the input layer representation z0
captured by a feature function that maps the input into a �xed-
size vector which is further fed into the fully connected layers: (i)
a conventional dense feature vector representation that contains
various statistics describing the input query-document pair, (ii) a
sparse vector containing bag-of-words representation, and (iii) bag-
of-embeddings averaged with learned weights. �ese input rep-
resentations de�ne how much capacity is given to the network to
extract discriminative signal from the training data and thus result in
di�erent generalization behavior of the networks. It is noteworthy
that input representation of the networks in the score model and
rank model is de�ned for a pair of the query and the document, while

the network in the rankprob model needs to be fed by a triple of the
query, the �rst document, and the second document.

Dense vector representation (Dense) : In this se�ing, we build
a dense feature vector composed of features used by traditional IR
methods, e.g., BM25. �e goal here is to let the network �t the func-
tion described by the BM25 formula when it receives exactly the
same inputs. In more detail, our input vector is a concatenation
(j j) of the following inputs: total number of documents in the col-
lection (i.e., N ), average length of documents in the collection (i.e.,
avg(ld )D ), document length (i.e., ld ), frequency of each query term
ti in the document (i.e., t f (ti ;d )), and document frequency of each
query term (i.e., d f (ti )). �erefore, for the point-wise se�ing, we
have the following input vector:

 (q;d ) = [N j javg(ld )D j jld j jfd f (ti ) j jt f (ti ;d )g1�i�k ]; (6)
where k is set to a �xed value (5 in our experiments). We truncate
longer queries and do zero padding for shorter queries. For the net-
works in the rankprob model, we consider a similar function with
additional elements: the length of the second document and the
frequency of query terms in the second document.

Sparse vector representation (Sparse) : Next, we move away
from a fully featurized representation that contains only aggregated
statistics and let the network performs feature extraction for us. In
particular, we build a bag-of-words representation by extracting
term frequency vectors of query (t f vq ), document (t f vd ), and the
collection (t f vc ) and feed the network with concatenation of these
three vectors. For the point-wise se�ing, we have the following
input vector:

 (q;d ) = [t f vc j jt f vq j jt f vd ] (7)
For the network in rankprob model, we have a similar input vector
with both t f vd1 and t f vd2 . Hence, the size of the input layer is
3�vocab size in the point-wise se�ing, and 4�vocab size in the
pair-wise se�ing.

Embedding vector representation (Embed) : �e major weak-
ness of the previous input representation is that words are treated
as discrete units, hence prohibiting the network from performing
so� matching between semantically similar words in queries and
documents. In this input representation paradigm, we rely on word
embeddings to obtain more powerful representation of queries and
documents that could bridge the lexical chasm. �e representation
function consists of three components: an embedding function
E : V ! Rm (where V denotes the vocabulary set and m is the
embedding dimension), a weighting functionW :V ! R, and a
compositionality function � : (Rm ;R)n!Rm . More formally, the
function for the point-wise se�ing is de�ned as:

 (q;d ) = [� jq ji=1 (E (tq
i );W (tq

i )) j j � jd ji=1 (E (td
i );W (td

i ))]; (8)

where tq
i and td

i denote the ith term in query q and document d ,
respectively. For the network of the rankprob model, another similar
term is concatenated with the above vector for the second docu-
ment. �e embedding function E transforms each term to a dense
m-dimensional �oat vector as its representation, which is learned
during the training phase. �e weighting functionW assigns a
weight to each term in the vocabulary set, which is supposed to learn
term global importance for the retrieval task. �e compositionality
function � projects a set of n embedding and weighting pairs to an

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

68



m-dimensional representation, independent from the value of n. �e
compositionality function is given by:

�n
i=1 (E (ti );W (ti )) =

nX

i=1

LW (ti ) �E (ti ); (9)

which is the weighted element-wise sum of the terms’ embedding
vectors. LW is the normalized weight that is learned for each term,
given as follows:

LW (ti ) =
exp(W (ti ))

Pn
j=1exp(W (tj ))

(10)

All combinations of di�erent ranking architectures and di�erent
input representations presented in this section can be considered
for developing ranking models.

5 EXPERIMENTAL DESIGN
In this section, we describe the train and evaluation data, metrics we
report, and detailed experimental setup. �en we discuss the results.

5.1 Data
Collections. In our experiments, we used two standard TREC collec-
tions: �e �rst collection (called Robust04) consists of over 500k news
articles from di�erent news agencies, that is available in TREC Disks
4 and 5 (excluding Congressional Records). �is collection, which
was used in TREC Robust Track 2004, is considered as a homoge-
neous collection, because of the nature and the quality of documents.
�e second collection (called ClueWeb) that we used is ClueWeb09
Category B, a large-scale web collection with over 50 million English
documents, which is considered as a heterogeneous collection. �is
collection has been used in TREC Web Track, for several years. In our
experiments with this collection, we �ltered out the spam documents
using the Waterloo spam scorer3 [7] with the default threshold 70%.
�e statistics of these collections are reported in Table 1.
Training query set. To train our neural ranking models, we used
the unique queries (only the query string) appearing in the AOL
query logs [30]. �is query set contains web queries initiated by
real users in the AOL search engine that were sampled from a three-
month period from March 1, 2006 to May 31, 2006. We �ltered out
a large volume of navigational queries containing URL substrings
(“h�p”, “www.”, “.com”, “.net”, “.org”, “.edu”). We also removed all
non-alphanumeric characters from the queries. We made sure that
no queries from the training set appear in our evaluation sets. For
each dataset, we took queries that have at least ten hits in the tar-
get corpus using the pseudo-labeler method. Applying all these
processes, we ended up with 6.15 million queries for the Robust04
dataset and 6.87 million queries for the ClueWeb dataset. In our
experiments, we randomly selected 80% of the training queries as
training set and the remaining 20% of the queries were chosen as
validation set for hyper-parameter tuning. As the “pseudo-labeler”
in our training data, we have used BM25 to score/rank documents
in the collections given the queries in the training query set.
Evaluation query sets. We use the following query sets for eval-
uation that contain human-labeled judgements: a set of 250 queries
(TREC topics 301–450 and 601–700) for the Robust04 collection that
were previously used in TREC Robust Track 2004. A set of 200 queries
3h�p://plg.uwaterloo.ca/�gvcormac/clueweb09spam/

Table 1: Collections statistics.

Collection Genre �eries # docs length

Robust04 news 301-450,601-700 528k 254
ClueWeb webpages 1-200 50m 1,506

(topics 1-200) were used for the experiments on the ClueWeb collec-
tion. �ese queries were used in TREC Web Track 2009–2012. We
only used the title of topics as queries.

5.2 Evaluation Metrics.
To evaluate retrieval e�ectiveness, we report three standard evalua-
tion metrics: mean average precision (MAP) of the top-ranked 1000
documents, precision of the top 20 retrieved documents (P@20), and
normalized discounted cumulative gain (nDCG) [19] calculated for
the top 20 retrieved documents (nDCG@20). Statistically signi�cant
di�erences of MAP, P@20, and nDCG@20 values are determined us-
ing the two-tailed paired t-test with p value < 0:05, with Bonferroni
correction.

5.3 Experimental Setup
All models described in Section 4 are implemented using Tensor-
Flow [12, 37]. In all experiments, the parameters of the network are
optimized employing the Adam optimizer [21] and using the com-
puted gradient of the loss to perform the back-propagation algorithm.
All model hyper-parameters were tuned on the respective validation
set (see Section 5.1 for more detail) using batched GP bandits with an
expected improvement acquisition function [8]. For each model, the
size of hidden layers and the number of hidden layers were selected
from [16;32;64;128;256;512;1024] and [1;2;3;4], respectively. �e
initial learning rate and the dropout parameter were selected from
[1E�3;5E�4;1E�4;5E�5;1E�5] and [0:0;0:1;0:2;0:5], respectively.
For models with embedding vector representation, we considered
embedding sizes of [100;300;500;1000]. As the training data, we
take the top 1000 retrieved documents for each query from training
query set Q , to prepare the training data. In total, we have jQ j�1000
(�6E10 examples in our data) point-wise example and � jQ j�10002

(�6E13 examples in our data) pair-wise examples. �e batch size in
our experiments was selected from [128;256;512]. At inference time,
for each query, we take the top 2000 retrieved documents using BM25
as candidate documents and re-rank them by the trained models. In
our experiments, we use the Indri4 implementation of BM25 with
the default parameters (i.e., k1 =1:2, b =0:75, and k3 =1000).
6 RESULTS AND DISCUSSION
In the following, we evaluate our neural rankers trained with di�er-
ent learning approaches (Section 4) and di�erent input representa-
tions (Section 4.3). We a�empt to break down our research questions
to several subquestions, and provide empirical answers along with
the intuition and analysis behind each question:
How do the neural models with di�erent training objectives
and input representations compare? Table 2 presents the perfor-
mance of all model combinations. Interestingly, combinations of the
rank model and the rankprob model with embedding vector represen-
tation outperform BM25 by signi�cant margins in both collections.
For instance, the rankprob model with embedding vector represen-
tation that shows the best performance among the other methods,
4h�ps://www.lemurproject.org/indri.php

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

69

http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
https://www.lemurproject.org/indri.php


Table 2: Performance of the di�erent models on di�erent datasets. �or �indicates that the improvements or degradations with
respect to BM25 are statistically signi�cant, at the 0.05 level using the paired two-tailed t-test.

Method Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

BM25 0.2503 0.3569 0.4102 0.1021 0.2418 0.2070
Score + Dense 0.1961� 0.2787� 0.3260� 0.0689� 0.1518� 0.1430�

Score + Sparse 0.2141� 0.3180� 0.3604� 0.0701� 0.1889� 0.1495�

Score + Embed 0.2423� 0.3501 0.3999 0.1002 0.2513 0.2130
Rank + Dense 0.1940� 0.2830� 0.3317� 0.0622� 0.1516� 0.1383�

Rank + Sparse 0.2213� 0.3216� 0.3628� 0.0776� 0.1989� 0.1816�

Rank + Embed 0.2811� 0.3773� 0.4302� 0.1306� 0.2839� 0.2216�

RankProb + Dense 0.2192� 0.2966� 0.3278� 0.0702� 0.1711� 0.1506�

RankProb + Sparse 0.2246� 0.3250� 0.3763� 0.0894� 0.2109� 0.1916
RankProb + Embed 0.2837� 0.3802� 0.4389� 0.1387� 0.2967� 0.2330�

surprisingly, improves BM25 by over 13% and 35% in Robust04 and
ClueWeb collections respectively, in terms of MAP. Similar improve-
ments can be observed for the other evaluation metrics.

Regarding the modeling architecture, in the rank model and the
rankprob model, compared to the score model, we de�ne objective
functions that target to learn ranking instead of scoring. �is is partic-
ularly important in weak supervision, as the scores are imperfect val-
ues—using the ranking objective alleviates this issue by forcing the
model to learn a preference function rather than reproduce absolute
scores. Inotherwords, using therankingobjective insteadof learning
to predict calibrated scores allows the rank model and the rankprob
model to learn to distinguish between examples whose scores are
close. �is way, some small amount of noise, which is a common prob-
lem in weak supervision, would not perturb the ranking as easily.

Regarding the input representations, embedding vector represen-
tation leads to be�er performance compared to the other ones in all
models. Using embedding vector representation not only provides
the network with more information, but also lets the network to learn
proper representation capturing the needed elements for the next
layers with be�er understanding of the interactions between query
and documents. Providing the network with already engineered
features would block it from going beyond the weak supervision
signal and limit the ability of the models to learn latent features that
are una�ainable through feature engineering.

Note that although the rankprob model is more precise in terms of
MAP, the rank model is much faster in the inference time (O (n) com-
pared toO (n2)), which is a desirable property in real-life applications.

Why do dense vector representation and sparse vector repre-
sentationfail to replicate theperformanceofBM25? Although
neural networks are capable of approximating arbitrarily complex
non-linear functions, we observe that the models with dense vector
representation fail to replicate the BM25 performance, while they
are given the same feature inputs as the BM25 components (e.g.,
TF, IDF, average document length, etc). To ensure that the train-
ing converges and there is no over��ing, we have looked into the
training and validation loss values of di�erent models during the
training time. Figure 2 illustrates the loss curves for the training and
validation sets (see Section 5.1) per training step for di�erent models.
As shown, in models with dense vector representation, the training

losses drop quickly to values close to zero while this is not the case for
the validation losses, which is an indicator of over-��ing on the train-
ing data. Although we have tried di�erent regularization techniques,
like l2-regularization and dropout with various parameters, there
is less chance for generalization when the networks are fed with the
fully featurized input. Note that over-��ing would lead to poor per-
formance, especially in weak supervision scenarios as the network
learns to model imperfections from weak annotations. �is phenom-
enon is also the case for models with the sparse vector representation,
but with less impact. However, in the models with the embedding
vector representation, the networks do not over�t, which helps it
to go beyond the weak supervision signals in the training data.

How are the models related? To be�er understand the relation-
ship of di�erent neural models described above, we compare their
performance across the query dimension following the approach
in [28]. We assume that similar models should perform similarly for
the same queries. Hence, we represent each model by a vector, called
the performance vector, whose elements correspond to per query
performance of the model, in terms of nDCG@20. �e closer the
performance vectors are, the more similar the models are in terms
of query by query performance. For the sake of visualization, we re-
duce the vectors dimension by projecting them to a two-dimensional
space, using t-Distributed Stochastic Neighbor Embedding (t-SNE)5.

Figure 3 illustrates the proximity of di�erent models in the Ro-
bust04 collection. Based on this plot, models with similar input repre-
sentations (same color) have quite close performance vectors, which
means that they perform similarly for same queries. �is is not neces-
sarily the case for models with similar architecture (same shape). �is
suggests that the amount and the way that we provide information
to the networks are the key factors in the ranking performance.

We also observe that the score model with dense vector representa-
tion is the closest to BM25 which is expected. It is also interesting that
models with embedding vector representation are placed far away
from other models which shows they perform di�erently compared
to the other input representations.

Howmeaningfulare thecompositionalityweights learned in
the embedding vector representation? In this experiment, we

5h�ps://lvdmaaten.github.io/tsne/

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

70

https://lvdmaaten.github.io/tsne/


(a) Score-Dense (b) Score-Sparse (c) Score-Embed

(d) Rank-Dense (e) Rank-Sparse (f) Rank-Embed

(g) RankProb-Dense (h) RankProb-Sparse (i) RankProb-Embed

Figure 2: Training and validation loss curves for all combinations of di�erent ranking architectures and feeding paradigms.

BM25Score + Dense

Score + Sparse

Score + Embed

Rank + Dense

Rank + Sparse

Rank + Embed

RankProb + Dense
RankProb + Sparse

RankProb + Embed

Figure 3: Proximity of di�erent models in terms of query-
by-query performance.

focus on the best performing combination, i.e., the rankprob model
with embedding vector representation. To analyze what the network
learns, we look into the weightsW (see Section 4.3) learned by the
network. Note that the weighting functionW learns a global weight
for each vocabulary term. We notice that in both collections there
is a strong linear correlation between the learned weights and the
inverse document frequency of terms. Figure 4 illustrates the sca�er
plots of the learned weight for each vocabulary term and its IDF,
in both collections. �is is an interesting observation as we do not
provide any global corpus information to the network in training

(a) Robust04
(Pearson Correlation: 0.8243)

(b) ClueWeb
(Pearson Correlation: 0.7014)

Figure 4: Strong linear correlation between weight learned
by the compositionality function in the embedding vector
representation and inverse document frequency.

and the network is able to infer such a global information by only
observing individual training instances.

Howwelldootheralternativesfortheembeddingandweight-
ing functions in the embedding vector representation per-
form?
Considering embedding vector representation as the input represen-
tation, we have examined di�erent alternatives for the embedding

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

71



Table 3: Performance of the rankprob model with variants of the embedding vector representation on di�erent datasets.
�indicates that the improvements over all other models are statistically signi�cant, at the 0.05 level using the paired two-tailed
t-test, with Bonferroni correction.

Embedding type Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

Pretrained (external) + Uniform weighting 0.1656 0.2543 0.3017 0.0612 0.1300 0.1401
Pretrained (external) + IDF weighting 0.1711 0.2755 0.3104 0.0712 0.1346 0.1469
Pretrained (external) + Weight learning 0.1880 0.2890 0.3413 0.0756 0.1344 0.1583
Pretrained (target) + Uniform weighting 0.1217 0.2009 0.2791 0.0679 0.1331 0.1587
Pretrained (target) + IDF weighting 0.1402 0.2230 0.2876 0.0779 0.1674 0.1540
Pretrained (target) + Weight learning 0.1477 0.2266 0.2804 0.0816 0.1729 0.1608
Learned + Uniform weighting 0.2612 0.3602 0.4180 0.0912 0.2216 0.1841
Learned + IDF weighting 0.2676 0.3619 0.4200 0.1032 0.2419 0.1922
Learned + Weight learning 0.2837� 0.3802� 0.4389� 0.1387� 0.2967� 0.2330�

function E: (1) employing pre-trained word embeddings learned
from an external corpus (we used Google News), (2) employing pre-
trained word embeddings learned from the target corpus (using
the skip-gram model [27]), and (3) learning embeddings during the
network training as it is explained in Section 4.3. Furthermore, for
the compositionality function �, we tried di�erent alternatives: (1)
uniform weighting (simple averaging which is a common approach
in compositionality function), (2) using IDF as �xed weights instead
of learning the weighting functionW , and (3) learning weights
during the training as described in Section 4.3.

Table 3 presents the performance of all these combinations on
both collections. We note that learning both embedding and weight-
ing functions leads to the highest performance in both collections.
�ese improvements are statistically signi�cant. According to the
results, regardless of the weighting approach, learning embeddings
during training outperforms the models with �xed pre-trained em-
beddings. �is supports the hypothesis that with the embedding
vector representation the neural networks learn an embedding that
is based on the interactions of query and documents that tends to be
tuned be�er to the corresponding ranking task. Also, regardless of
the embedding method, learning weights helps models to get be�er
performance compared to the �xed weightings, with either IDF or
uniform weights. Although weight learning can signi�cantly a�ect
the performance, it has less impact than learning embeddings.

Note that in the models with pre-trained word embeddings, em-
ploying word embeddings trained on the target collection outper-
forms those trained on the external corpus in the ClueWeb collection;
while this is not the case for the Robust04 collection. �e reason could
be related to the collection size, since the ClueWeb is approximately
100 times larger than the Robust04.

In addition to the aforementioned experiments, we have also
tried initializing the embedding matrix with a pre-trained word
embedding trained on the Google News corpus, instead of random
initialization. Figure 5 presents the learning curve of the models.
According to this �gure, the model initialized by a pre-trained em-
bedding performs be�er than random initialization when a limited
amount of training data is available. When enough training data
is fed to the network, initializing with pre-trained embedding and
random values converge to the same performance. An interesting
observation here is that in both collections, these two initializations
converge when the models exceed the performance of the weak

(a) Robust04 (b) ClueWeb
Figure 5: Performance of the rankprob model with learned
embedding, pre-trained embedding, and learned embedding
with pre-trained embedding as initialization, with respect to
di�erent amount of training data.

supervision source, which is BM25 in our experiments. �is sug-
gests that the convergence occurs when accurate representations
are learned by the networks, regardless of the initialization.
Are deep neural networks a good choice for learning to rank
with weak supervision? To see if there is a real bene�t from us-
ing a non-linear neural network in di�erent se�ings, we examined
RankSVM [20] as a strong-performing pair-wise learning to rank
method with linear kernel that is fed with di�erent inputs: dense
vector representation, sparse vector representation, and embedding
vector representation. Considering that o�-the-shelf RankSVM is
not able to learn embedding representations during training, for
embedding vector representation, instead of learning embeddings
we use a pre-trained embedding matrix trained on Google News and
�xed IDF weights.

�e results are reported in Table 4. As BM25 is not a linear function,
RankSVM with linear kernel is not able to completely approximate
it. However, surprisingly, for both dense vector representation and
sparse vector representation, RankSVM works as well as neural net-
works (see Table 2). Also, compared to the corresponding experiment
in Table 3, the performance of the neural network with an external
pre-trained embedding and IDF weighting is not considerably be�er
than RankSVM. �is shows that having non-linearity in neural net-
works does not help that much when we do not have representation
learning as part of the model. Note that all of these results are still
lower than BM25, which shows that they are not good at learning
from weak supervision signals for ranking.

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

72



Table 4: Performance of the linear RankSVM with di�erent features.

Method Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

RankSVM + Dense 0.1983 0.2841 0.3375 0.0761 0.1840 0.1637
RankSVM + Sparse 0.2307 0.3260 0.3794 0.0862 0.2170 0.1939
RankSVM + (Pretrained (external) + IDF weighting) 0.1539 0.2121 0.1852 0.0633 0.1572 0.1494
Score (one layer with no nonlinearity) + Embed 0.2103 0.3986 0.3160 0.0645 0.1421 0.1322

Table 5: Performance of the rankprob model with embedding vector representation in fully supervised setting, weak supervised
setting, and weak supervised plus supervision as �ne tuning. �indicates that the improvements over all other models are
statistically signi�cant, at the 0.05 level using the paired two-tailed t-test, with Bonferroni correction.

Method Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

Weakly supervised 0.2837 0.3802 0.4389 0.1387 0.2967 0.2330
Fully supervised 0.1790 0.2863 0.3402 0.0680 0.1425 0.1652
Weakly supervised + Fully supervised 0.2912� 0.4126� 0.4509� 0.1520� 0.3077� 0.2461�

We have also examined the score model with a network with a
single linear hidden layer, with the embedding vector representation,
which is equivalent to a linear regression model with the ability of
representation learning. Comparing the results of this experiment
with Score-Embed in Table 2, we can see that with a single-linear
network we are not able to achieve a performance that is as good as
a deep neural network with non-linearity. �is shows that the most
important superiority of deep neural networks over other machine
learning methods is their ability to learn an e�ective representation
and take all the interactions between query and document(s) into
consideration for approximating an e�ective ranking/scoring func-
tion. �is can be achieved when we have a deep enough network
with non-linear activations.

How useful is learning with weak supervision for supervised
ranking? In this set of experiments, we investigate whether em-
ploying weak supervision as a pre-training step helps to improve the
performance of supervised ranking, when a small amount of training
data is available. Table 5 shows the performance of the rankprob
model with the embedding vector representation in three situations:
(1) when it is only trained on weakly supervised data (similar to the
previous experiments), (2) when it is only trained on supervised data,
i.e., relevance judgments, and (3) when the parameters of the net-
work is pre-trained using the weakly supervised data and then �ne
tuned using relevance judgments. In all the supervised scenarios, we
performed 5-fold cross-validation over the queries of each collection
and in each step, we used the TREC relevance judgements of the
training set as supervised signal. For each query with m relevant
documents, we also randomly sampled m non-relevant documents
as negative instances. Binary labels are used in the experiments: 1
for relevant documents and 0 for non-relevant ones.

�e results in Table 5 suggest that pre-training the network with
a weak supervision signal, signi�cantly improves the performance
of supervised ranking. �e reason for the poor performance of the
supervised model compared to the conventional learning to rank
models is that the number of parameters are much larger, hence it
needs much more data for training.

In situations when li�le supervised data is available, it is especially
helpful to use unsupervised pre-training which acts as a network

pre-conditioning that puts the parameter values in the appropri-
ate range that renders the optimization process more e�ective for
further supervised training [11].

With this experiment, we indicate that the idea of learning from
weak supervision signals for neural ranking models, which is pre-
sented in this paper, not only enables us to learn neural ranking
models when no supervised signal is available, but also has substan-
tial positive e�ects on the supervised ranking models with limited
amount of training data.

7 CONCLUSIONS
In this paper, we proposed to use traditional IR models such as BM25
as a weak supervision signal in order to generate large amounts of
training data to train e�ective neural ranking models. We examine
various neural ranking models with di�erent ranking architectures
and objectives, and di�erent input representations.

We used over six million queries to train our models and evalu-
ated them on Robust04 and ClueWeb 09-Category B collections, in
an ad-hoc retrieval se�ing. �e experiments showed that our best
performing model signi�cantly outperforms the BM25 model (our
weak supervision signal) by over 13% and 35% MAP improvements in
the Robust04 and ClueWeb collections, respectively. We also demon-
strated that in the case of having a small amount of training data, we
can improve the performance of supervised learning by pre-training
the network on weakly supervised data.

Based on our results, there are three key ingredients in neural
ranking models that lead to good performance with weak super-
vision: �e �rst is the proper input representation. Providing the
network with raw data and le�ing the network to learn the features
that ma�er, gives the network a chance of learning how to ignore im-
perfection in the training data. �e second ingredient is to target the
right goal and de�ne a proper objective function. In the case of hav-
ing weakly annotated training data, by targeting some explicit labels
from the data, we may end up with a model that learned to express the
data very well, but is incapable of going beyond it. �is is especially
the case with deep neural networks where there are many parameters
and it is easy to learn a model that over�ts the data. �e third ingredi-
ent is providing the network with a considerable amount of training
examples. As an example, during the experiments we noticed that

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

73



using the embedding vector representation, the network needs a lot
of examples to learn embeddings that are more e�ective for retrieval
compared to pre-trained embeddings. �anks to weak supervision,
we can generate as much training data as we need with almost no cost.

Several future directions can be pursued. An immediate task
would be to study the performance of more expressive neural net-
work architectures e.g., CNNs and LSTMs, with weak supervision
setup. Other experiment is to leverage multiple weak supervision
signals from di�erent sources. For example, we have other unsuper-
vised ranking signals such as query likelihood and PageRank and
taking them into consideration might bene�t the learning process.
Other future work would be to investigate the boosting mechanism
for the method we have in this paper. In other words, it would be
interesting to study if it is possible to use the trained model on weakly
supervised data to annotate data with more quality from original
source of annotation and leverage the new data to train a be�er
model. Finally, we can apply this idea to other information retrieval
tasks, such as query/document classi�cation and clustering.

ACKNOWLEDGMENTS
�is research was supported in part by Netherlands Organization for
Scienti�c Research through the Exploratory Political Search project
(ExPoSe, NWO CI # 314.99.108), by the Digging into Data Challenge
through the Digging Into Linked Parliamentary Data project (DiLi-
PaD, NWO Digging into Data # 600.006.014), and by the Center for
Intelligent Information Retrieval. Any opinions, �ndings and con-
clusions or recommendations expressed in this material are those of
the authors and do not necessarily re�ect those of the sponsors.

REFERENCES
[1] Nima Asadi, Donald Metzler, Tamer Elsayed, and Jimmy Lin. 2011. Pseudo test

collections for learning web search ranking functions. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval. ACM, 1073–1082.

[2] Pierre Baldi. 2012. Autoencoders, unsupervised learning, and deep architectures.
ICML unsupervised and transfer learning 27 (2012), 37–50.

[3] Lidong Bing, Sneha Chaudhari, Richard C Wang, and William W Cohen.
2015. Improving Distant Supervision for Information Extraction Using Label
Propagation �rough Lists. In EMNLP ’15. 524–529.

[4] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A
Neural Click Model for Web Search. In WWW ’16. 531–541.

[5] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature Veri�cation Using a ”Siamese” Time Delay Neural Network. In
NIPS ’93. 737–744.

[6] Daniel Cohen and W. Bruce Cro�. 2016. End to End Long Short Term Memory
Networks for Non-Factoid �estion Answering. In ICTIR ’16. 143–146.

[7] Gordon V. Cormack, Mark D. Smucker, and Charles L. Clarke. 2011. E�cient and
E�ective Spam Filtering and Re-ranking for Large Web Datasets. Inf. Retr. 14,
5 (2011), 441–465.

[8] �omas Desautels, Andreas Krause, and Joel W Burdick. 2014. Parallelizing
exploration-exploitation tradeo�s in Gaussian process bandit optimization.
Journal of Machine Learning Research 15, 1 (2014), 3873–3923.

[9] Fernando Diaz. 2016. Learning to Rank with Labeled Features. In ICTIR ’16. 41–44.
[10] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. 2016. �ery Expansion with

Locally-Trained Word Embeddings. In ACL ’16.
[11] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,

Pascal Vincent, and Samy Bengio. 2010. Why does unsupervised pre-training
help deep learning? Journal of Machine Learning Research 11 (2010), 625–660.

[12] Martı́n Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. (2015). h�p://tensor�ow.org/ So�ware available from
tensor�ow.org.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NIPS. 2672–2680.

[14] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Cro�. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In CIKM ’16. 55–64.

[15] Xianpei Han and Le Sun. 2016. Global Distant Supervision for Relation Extraction.
In AAAI’16. 2950–2956.

[16] Ralf Herbrich, �ore Graepel, and Klaus Obermayer. 1999. Support Vector
Learning for Ordinal Regression. In ICANN ’99. 97–102.

[17] Raphael Ho�mann, Congle Zhang, Xiao Ling, Luke Ze�lemoyer, and Daniel S.
Weld. 2011. Knowledge-based Weak Supervision for Information Extraction of
Overlapping Relations. In ACL ’11. 541–550.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In CIKM ’13. 2333–2338.

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446.

[20] �orsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data.
In KDD ’02. 133–142.

[21] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[22] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In NIPS ’15.
3294–3302.

[23] �oc V Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In ICML ’14, Vol. 14. 1188–1196.

[24] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep Learning. Nature
521, 7553 (2015), 436–444.

[25] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-yi Wang.
2015. Representation Learning Using Multi-Task Deep Neural Networks for
Semantic Classi�cation and Information Retrieval. In NAACL ’15. 912–921.

[26] Zhengdong Lu and Hang Li. 2013. A Deep Architecture for Matching Short Texts.
In NIPS ’13. 1367–1375.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In NIPS ’13. 3111–3119.

[28] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match
Using Local and Distributed Representations of Text for Web Search. In WWW
’17. 1291–1299.

[29] Kezban Dilek Onal, Ismail Sengor Altingovde, Pinar Karagoz, and Maarten de
Rijke. 2016. Ge�ing Started with Neural Models for Semantic Matching in Web
Search. arXiv preprint arXiv:1611.03305 (2016).

[30] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A Picture of Search.
In InfoScale ’06.

[31] Je�rey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP ’14. 1532–1543.

[32] Navid Rekabsaz, Mihai Lupu, Allan Hanbury, and Hamed Zamani. 2017. Word
Embedding Causes Topic Shi�ing; Exploit Global Context!. In SIGIR’17.

[33] Navid Rekabsaz, Mihai Lupu, Allan Hanbury, and Guido Zuccon. 2016. General-
izing translation models in the probabilistic relevance framework. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 711–720.

[34] Aliaksei Severyn and Alessandro Moschi�i. 2015. Twi�er Sentiment Analysis
with Deep Convolutional Neural Networks. In SIGIR ’15. 959–962.

[35] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In WWW ’14. 373–374.

[36] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Over��ing. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958.

[37] Yuan Tang. 2016. TF.Learn: TensorFlow’s High-level Module for Distributed
Machine Learning. arXiv preprint arXiv:1612.04251 (2016).

[38] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
latent vector spaces for product search. In CIKM’16. 165–174.

[39] Christophe Van Gysel, Maarten de Rijke, and Marcel Worring. 2016. Unsupervised,
e�cient and semantic expertise retrieval. In WWW’16. 1069–1079.

[40] Fabian L. Wauthier, Michael I. Jordan, and Nebojsa Jojic. 2013. E�cient Ranking
from Pairwise Comparisons. In ICML’13. 109–117.

[41] LiuYang, QingyaoAi, JiafengGuo, andW.BruceCro�.2016. aNMM:RankingShort
AnswerTextswithA�ention-BasedNeuralMatchingModel. InCIKM’16. 287–296.

[42] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.
Situational Context for Ranking in Personal Search. In WWW ’17. 1531–1540.

[43] Hamed Zamani and W. Bruce Cro�. 2016. Embedding-based �ery Language
Models. In ICTIR ’16. 147–156.

[44] Hamed Zamani and W. Bruce Cro�. 2016. Estimating Embedding Vectors for
�eries. In ICTIR ’16. 123–132.

[45] Hamed Zamani and W. Bruce Cro�. 2017. Relevance-based Word Embedding.
In SIGIR ’17.

[46] Ye Zhang, Md Musta�zur Rahman, Alex Braylan, Brandon Dang, Heng-Lu Chang,
Henna Kim, �inten McNamara, Aaron Angert, Edward Banner, Vivek Khetan,
and others. 2016. Neural Information Retrieval: A Literature Review. arXiv
preprint arXiv:1611.06792 (2016).

[47] Guoqing Zheng and Jamie Callan. 2015. Learning to Reweight Terms with
Distributed Representations. In SIGIR ’15. 575–584.

Session 1B: Retrieval Models and Ranking 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

74

http://tensorflow.org/

	Abstract
	1 Introduction
	2 Related Work



