
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Quenching the Anisotropic Heisenberg Chain: Exact Solution and Generalized Gibbs
Ensemble Predictions

Wouters, B.; De Nardis, J.; Brockmann, M.; Fioretto, D.; Rigol, M.; Caux, J.-S.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.113.117202

Link to publication

Citation for published version (APA):
Wouters, B., De Nardis, J., Brockmann, M., Fioretto, D., Rigol, M., & Caux, J-S. (2014). Quenching the
Anisotropic Heisenberg Chain: Exact Solution and Generalized Gibbs Ensemble Predictions. Physical Review
Letters, 113(11-12), 117202. https://doi.org/10.1103/PhysRevLett.113.117202

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 27 Nov 2020

https://doi.org/10.1103/PhysRevLett.113.117202
https://dare.uva.nl/personal/pure/en/publications/quenching-the-anisotropic-heisenberg-chain-exact-solution-and-generalized-gibbs-ensemble-predictions(d9421353-f7de-4800-9af3-084532f9684f).html
https://doi.org/10.1103/PhysRevLett.113.117202


Quenching the Anisotropic Heisenberg Chain: Exact Solution
and Generalized Gibbs Ensemble Predictions

B. Wouters,1 J. De Nardis,1 M. Brockmann,1 D. Fioretto,1 M. Rigol,2 and J.-S. Caux1
1Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, Netherlands

2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 15 May 2014; revised manuscript received 22 July 2014; published 9 September 2014)

We study quenches in integrable spin-1=2 chains in which we evolve the ground state of the
antiferromagnetic Ising model with the anisotropic Heisenberg Hamiltonian. For this nontrivially
interacting situation, an application of the first-principles-based quench-action method allows us to give
an exact description of the postquench steady state in the thermodynamic limit. We show that a generalized
Gibbs ensemble, implemented using all known local conserved charges, fails to reproduce the exact
quench-action steady state and to correctly predict postquench equilibrium expectation values of physical
observables. This is supported by numerical linked-cluster calculations within the diagonal ensemble in the
thermodynamic limit.

DOI: 10.1103/PhysRevLett.113.117202 PACS numbers: 75.10.Jm, 02.30.Ik, 05.70.Ln

Introduction.—Out-of-equilibrium phenomena are of
importance throughout physics, in fields ranging from
cosmology [1] and superfluid helium [2], heavy-ion colli-
sions [3], pattern formation [4], exclusion processes [5],
and glasses [6] all the way to atomic-scale isolated quantum
systems [7]. Much recent experimental and theoretical
activity has been focused on the latter, raising fundamental
questions as towhether, how, and towhat state such systems
relax under unitary time evolution following a sudden
quantum quench [8–42]. From this work, two scenarios
for equilibration have emerged, one applicable to models
having only a few local conserved quantities, the other
relevant to integrable models characterized by an infinite
number of local conserved charges. In the former, thermal-
ization to a Gibbs ensemble is the rule [11], while in the
latter, equilibration to a so-called generalized Gibbs ensem-
ble (GGE) [9,10] is generally thought to occur, in particular
for lattice spin systems [12–20].
In this Letter, we study a quench in which the second

scenario breaks down. Our initial state, defined as a purely
antiferromagnetic (spin-1=2 Néel) state, is let to evolve
unitarily in time according to the XXZ spin chain
Hamiltonian. This is a physically meaningful quench pro-
tocol, which can, in principle, be implemented using cold
atoms [43–47]. We provide a thermodynamically exact
solution for the steady state reached long after the quench,
derived directly from microscopics using the recently pro-
posed quench-action method [48]. The solution takes the
form of a set of distributions of quasimomenta that com-
pletely characterizes the macrostate representing the steady
state, from which observables of interest can be calculated.
As a stringent test, it correctly reproduces the expectation
values of all local conserved charges. Furthermore, we
implement a numerical linked-cluster expansion (NLCE)
[49,50] whose results support the correctness of the

quench-action approach. Our application of the latter to
nontrivially interacting lattice models follows up on the
recent quench-action solution of interaction quenches in
one-dimensional Bose systems [51] and demonstrates the
broad applicability of the approach.
Besides providing the exact solution using the quench

action, we explicitly construct a GGE for the Néel-to-XXZ
quench using all known local conserved charges, enabling
an analytical check of the GGE logic applied to interacting
systems. We show that it fails to reproduce the steady
state as predicted by the quench action. As a consequence,
equilibrium expectation values of physical observables are
predicted differently by the quench-action method, which
corresponds to the prediction of the diagonal ensemble,
and the GGE based on all known local conserved charges.
We display these differences explicitly for short-distance
spin-spin correlations and verify them using NLCE. Our
results highlight how far-from-equilibrium dynamics can
reveal the effects of physically relevant but unknown
conserved quantities in interacting integrable models.
Quench protocol.—Our initial state is the ground state

of the antiferromagnetic Ising model, namely, the transla-
tionally invariant Néel state

jΨ0i ¼
1ffiffiffi
2

p ðj↑↓↑↓…i þ j↓↑↓↑…iÞ: ð1Þ

The time evolution after the quench is governed by the
antiferromagnetic XXZ spin chain Hamiltonian

H ¼ J
4

XN
j¼1

½σxjσxjþ1 þ σyjσ
y
jþ1 þ Δðσzjσzjþ1 − 1Þ�; ð2Þ

with exchange coupling J > 0. The Néel state is the
ground state in the limit Δ → ∞. The Pauli matrices σαj
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(α ¼ x; y; z) represent the spin-1=2 degrees of freedom at
lattice sites j ¼ 1; 2;…; N, and we assume periodic boun-
dary conditions σαNþ1 ¼ σα1 . We restrict our analysis to
quenches for which Δ ≥ 1 (details for the Δ ¼ 1 case are
provided in Ref. [52]).
Eigenstates of the Hamiltonian (2) can be obtained by

Bethe ansatz [53,54]. Each normalized Bethe wave function

jλi ¼
X
x

X
Q

AQðλÞ
YM
j¼1

eixjpðλQj
Þσ−xj j↑↑…↑i ð3Þ

lies in a fixed magnetization sector hσztoti=2 ¼ N=2 −M.
It is completely specified by a set of complex quasimo-
menta or rapidities λ ¼ fλkgMk¼1, which satisfy the Bethe
equations

�
sinðλj þ iη=2Þ
sinðλj − iη=2Þ

�
N

¼ −
YM
k¼1

sinðλj − λk þ iηÞ
sinðλj − λk − iηÞ ; ð4Þ

for j ¼ 1;…;M. The parameter η > 0 is related to the
anisotropy parameter Δ ¼ coshðηÞ. The first sum in
Eq. (3) is over all ordered configurations x ¼ fxjgMj¼1 ⊂
f1;…; Ng of down spin positions, while the second
sum runs over all permutations Q of labels f1;…;Mg.
AQðλÞ are rapidity-dependent amplitudes [53,54]. The total
momentum and energy of a Bethe state are given by

Pλ ¼
XM
j¼1

pðλjÞ; pðλÞ ¼ i ln

�
sinðλ − iη=2Þ
sinðλþ iη=2Þ

�
; ð5Þ

ωλ ¼
XM
j¼1

eðλjÞ; eðλÞ ¼ −Jπ sinhðηÞa1ðλÞ; ð6Þ

where a1ðλÞ ¼ sinhðηÞ=½πðcosh η − cos 2λÞ�.
Bethe states are classified according to the string

hypothesis [53,55]. Rapidities arrange themselves in
strings λn;aα ¼λnαþðiη=2Þðnþ1−2aÞþiδn;aα , a ¼ 1;…; n,
where n is the length of the string and the deviations
δn;aα vanish (typically exponentially) upon taking the
infinite-size limit. For Δ > 1, the string centers λnα lie in
the interval ½−π=2; π=2Þ. Physically, such an n-string
corresponds to a bound state of n magnons, which in
the Ising limit Δ → ∞ can be seen as a block of n adjacent
down spins.
At time t after the quench, the state of the system can

be expanded in the basis of Bethe states such that the
postquench time-dependent expectation value of a generic
operator O is exactly given by the double sum

hΨðtÞjOjΨðtÞi ¼
X
λ;λ0

e−S
�
λ−Sλ0eiðωλ−ωλ0 ÞthλjOjλ0i; ð7Þ

with overlap coefficients Sλ ¼ − ln hλjΨ0i.

Quench action.—The double sum over the full Hilbert
space in Eq. (7) represents a substantial bottleneck, its size
growing exponentially with N. The quench-action method
[48,51] gives a handle on this double sum in the thermo-
dynamic limit N → ∞ (with M=N ¼ 1=2 fixed), denoted
by limth. In this limit, a state is characterized by the
distributions of its string centers. They are given by a
set of positive, smooth, and bounded densities ρ ¼ fρng∞n¼1

for the string centers λnα, representing a set of Bethe states
with Yang-Yang (YY) entropy

SYY½ρ�
N

¼
X∞
n¼1

Z
π=2

−π=2
dλ½ρn lnð1þ ηnÞ þ ρn;h lnð1þ η−1n Þ�:

ð8Þ
Here, ρn;h is the density of holes of n-string centers [56,57],
ηn ¼ ρn;h=ρn, and we leave the λ dependence implicit.
The Bethe Eqs. (4) become a set of coupled integral
equations [55] for the densities ρ,

ρnð1þ ηnÞ ¼ s � ðηn−1ρn−1 þ ηnþ1ρnþ1Þ; n ≥ 1; ð9Þ
with η0ðλÞ ¼ 1 and ρ0ðλÞ ¼ δðλÞ. The convolution � is
defined by ðf � gÞðλÞ ¼ R π=2

−π=2 fðλ − μÞgðμÞdμ, and the

kernel in Eqs. (9) is sðλÞ ¼ ð2πÞ−1Pk∈Z½e−2ikλ=coshðkηÞ�.
As explained in Ref. [51], for a large class of physical

observables, the double sum in Eq. (7) can be recast in the
thermodynamic limit as a functional integral over the root
densities ρ. The weight of the functional integral e−SQA½ρ� is
given by the quench action (QA) SQA½ρ� ¼ 2S½ρ� − SYY½ρ�,
where S½ρ� ¼ limthReSλ is the extensive real part of the
overlap coefficient in the thermodynamic limit. Since
the quench action is extensive, real, and bounded from
below, a saddle-point (sp) approximation becomes exact in
the thermodynamic limit. At long times after the quench,
the system relaxes to a steady state ρsp determined by the
variational equations

0 ¼ δSQA½ρ�
δρnðλÞ

����
ρ¼ρsp

for n ≥ 1: ð10Þ

Steady-state expectation values of physical observables can
then be effectively computed on this state,

lim
t→∞

limthhΨðtÞjOjΨðtÞi ¼ hρspjOjρspi: ð11Þ

The saddle-point distributions of string centers ρsp thus
encode all equilibrium expectation values and correlators of
physical observables after the quench [14,48].
The implementation of the quench action approach to

the Néel-to-XXZ quench proceeds as follows (see the
Supplemental Material [58] for details). One of the main
ingredients is the leading-order behavior of the overlaps
hλjΨ0i in the thermodynamic limit. It was proven in
Refs. [59,60] (starting from Refs. [61,62]) that only over-
laps between jΨ0i and parity-invariant Bethe states are
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nonvanishing; practical determinant expressions were also
derived. Taking M to be even, rapidities of parity-invariant
states come in pairs such that fλjgMj¼1 ¼ f−λjgMj¼1 and the

overlap is now determined byM=2 rapidities ~λ ¼ fλjgM=2
j¼1 .

The overlap’s leading term (in system size) reads [59]

h ~λjΨ0i ∼
YM=2

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðλj þ iη=2Þ tanðλj − iη=2Þp

2 sinð2λjÞ
: ð12Þ

One can straightforwardly separate the contributions of
different string lengths and derive an expression for the
thermodynamic overlap coefficients S½ρ�. Before varying
the quench action, per Eqs. (10), one needs to add a
Lagrange multiplier fixing the filling of the saddle-point
state to the Néel state’s limthM=N ¼ 1=2. Variation leads to
a set of generalized thermodynamic Bethe ansatz (GTBA)
equations for the functions ηn (see the Supplemental
Material [58]),

lnðηnÞ ¼ dn þ s � ½lnð1þ ηn−1Þ þ lnð1þ ηnþ1Þ�; ð13Þ
where n ≥ 1, η0ðλÞ ¼ 0 by convention, and

dnðλÞ ¼
X
k∈Z

e−2ikλ
tanhðηkÞ

k
½ð−1Þn − ð−1Þk�: ð14Þ

The solution to the GTBA Eqs. (13), substituted into the
Bethe Eqs. (9), leads to a set of root densities ρsp describing
the steady state of the Néel-to-XXZ quench. They can be
numerically computed by truncating the infinite sets of
Eqs. (13) and (9). In Figs. 1(a) and 1(b), we plot saddle-
point distributions of 1- and 2-strings for different values

of Δ. A notable feature is the vanishing of the even-length
string densities at λ ¼ 0, which corresponds to the fact that
the overlaps (12) between the Néel state and parity-
invariant Bethe states with a string of even length centered
at zero identically vanish. Furthermore, for large Δ values,
the density of 1-strings becomes increasingly dominant,
approaching the ground state of the Ising model [ρ1ðλÞ ¼
1=ð2πÞ and ρnðλÞ ¼ 0 for n ≥ 2], in accordance with the
expected result for the quenchless point Δ ¼ ∞.
NLCE.—Our NLCE follows on Ref. [49] and has been

tailored to solve the specific quench studied in this work
[50,58]. NLCEs enable the calculation of the infinite-time
average (also known as the diagonal ensemble result) of
correlation functions after the quench in the thermody-
namic limit [49,50]. The idea is that any spin-spin corre-
lation can be computed as a sum over the contributions
from all connected clusters c that can be embedded on the
lattice, hσziσzjiNLCE ¼ P

cMðcÞ ×Wσzi σ
z
j
ðcÞ, where MðcÞ is

the number of embeddings of c per site, andWσzi σ
z
j
ðcÞ is the

weight of σziσ
z
j in c. The latter is calculated using the

inclusion-exclusion principle Wσzi σ
z
j
ðcÞ ¼ hσziσzjiDEc −P

s⊂cWσzi σ
z
j
ðsÞ, where the last sum runs over all connected

subclusters of c, and hσziσzjiDEc ¼ Tr½σziσzjρ̂DEc �=Tr½ρ̂DEc � is
the expectation value of σziσ

z
j calculated with the density

matrix in the diagonal ensemble (DE) ρ̂DEc (in cluster c).
In order to accelerate the convergence of the NLCE,
we use Wynn’s and Brezinski’s resummation algorithms
(Supplemental Material [58]) [63,64].
GGE.—The integrable structure of the XXZ spin chain

provides, in the thermodynamic limit, an infinite set of local
conserved charges Qm, m ∈ N, such that Q1 ∝ P, Q2 ∝ H
[65,66]. For integrable models, it is conjectured (and shown
for specific quenches) that the steady state after a quench
can be described by a GGE. For the XXZ spin chain, the
latter is given by a set of densities ρGGE that maximizes the
Yang-Yang entropy SYY½ρ� under the constraint of fixed
expectation values of the local conserved charges Qm
[67,68]. This translates into GTBA equations of the same
form as Eqs. (13) but now with the driving function d1
determined by the chemical potentials associated with the
charges and the remaining dnðλÞ ¼ 0 for n ≥ 2. Together
with Eqs. (9), this uniquely determines ρGGE. In general, the
values of the chemical potentials are inaccessible for the
XXZ model, except for a truncated GGE when only a small
number of conserved charges is taken into account [36].
However, it turns out that the expectation values of

all local conserved charges Qm on the initial state are in
one-to-one correspondence with the density ρ1;h of 1-string
holes, i.e.,

limth

�hΨ0jQ2mþ2jΨ0i
Nsinh2mþ1ðηÞ

�
¼

X
k∈Z

ρ̂1;hðkÞ − e−jkjη

2 coshðkηÞ ðikÞ2m;

ð15Þ

(a) (b)

(c)

FIG. 1 (color online). (a),(b) Density functions ρ1 and ρ2 for the
quench to different values of Δ > 1 of both the quench-action
saddle-point state (solid lines) and the GGE equilibrium state
(dashed lines). (c) Difference between the GGE prediction for ρ1
and the quench-action saddle-point result. All distributions are
symmetric functions of λ ∈ ½−π=2; π=2Þ.
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with m ≥ 0 and ρ̂1;h the Fourier transform of ρ1;h, see the
Supplemental Material [58]. In the case of the Néel-to-XXZ
quench, the expectation values of the conserved charges
on the initial state [69] fix ρ1;h unambiguously [52],

ρNéel1;h ðλÞ ¼ π2a31ðλÞsin2ð2λÞ
π2a21ðλÞsin2ð2λÞ þ cosh2ðηÞ ; ð16Þ

where a1 was defined right after Eq. (6). This makes the
input from the chemical potentials redundant. The densities
ρGGE for the GGE can be found by solving the GTBA
Eqs. (13) for n ≥ 2 [dnðλÞ ¼ 0] and the Bethe Eqs. (9) with
the constraint ρGGE1;h ¼ ρNéel1;h .
Discussion of results.—Numerical and analytical analy-

sis show exact agreement between ρ1;h predicted by the
quench-action approach and ρNéel1;h in Eq. (16) [52]. The
expectation values of all local conserved charges Qn are,
thus, reproduced exactly. We stress that this nontrivial
agreement constitutes strong evidence for the correctness of
the quench-action prediction of the steady state.
Furthermore, the distributions of the GGE can be

compared with the steady-state distributions provided by
the quench-action approach, see Fig. 1. The densities ρn for
the GGE and the quench action are clearly different, the
discrepancies becoming more pronounced as one reduces
the anisotropy towards the gapless point Δ ¼ 1. We
emphasize that all our results are obtained in the thermo-
dynamic limit: these differences are not finite-size effects.
We verified the existence of these discrepancies by

analytically solving the GTBA equations of the two
ensembles in a large-Δ expansion. The differences between
the distributions are of order Δ−2, e.g., for 1- and 2-strings
(for other strings and higher orders, see Ref. [52])

ρGGE1 ðλÞ − ρsp1 ðλÞ ¼
1

4πΔ2
þOðΔ−3Þ; ð17aÞ

ρGGE2 ðλÞ − ρsp2 ðλÞ ¼
1 − 3sin2ðλÞ

3πΔ2
þOðΔ−3Þ: ð17bÞ

Given steady-state distributions, one can compute physical
observables [Eq. (11)]. Nonvanishing differences between
distributions will generally be reflected in those expectation
values, even in simple ones such as few-point spin-spin
correlation functions. We have implemented an adapted
version of the Hellmann-Feynman theorem to compute the
expectation value hσz1σz2i from the distributions ρ [58,70].
The nearest-neighbor two-point correlator is predicted
differently by the quench-action steady state and the
GGE (see Fig. 2). The NLCE results (not shown) are
consistent with those predictions but cannot resolve their
difference since it is too small (≲2%, as shown in the inset
in Fig. 2). It should be noted that the magnitude of
differences between distributions in Eqs. (17) does not
directly translate into a similar difference for physical
observables. Expanding for large anisotropy, we obtain a
discrepancy of order Δ−6,

hσz1σz2iGGE − hσz1σz2isp ¼
9

16Δ6
þOðΔ−7Þ: ð18Þ

We also calculate the next-nearest-neighbor correlator
hσz1σz3i by means of the method of Ref. [70], see Fig. 3.
In the inset in Fig. 3(a) one can see that, as Δ → 1, the
differences between the predictions of the quench-action
approach and the GGE become of the order of 10%.
Figure 3(b) provides a closer look of hσz1σz3i in that regime.
There, we also report our NLCE results (Supplemental
Material [58]). The latter are consistent with the quench-
action predictions and inconsistent with the GGE results.
Hence, our NLCE calculations support the correctness of
the QA approach for describing observables after relaxation
and the inability of the GGE constructed here to do so.
Conclusions.—We used the quench-action method to

obtain an exact description of the steady state following a
quench from the ground state of the Ising model to an XXZ
spin-1=2 chain with anisotropyΔ ≥ 1. We were also able to

(a) (b)

FIG. 3 (color online). (a) The same as Fig. 2 for hσz1σz3i.
(b) Comparison between the quench action, the GGE prediction,
and the NLCE result close to the isotropic point. Error bars in
the NLCE data display an interval of confidence that includes
all resummation results (except for Δ ¼ 1.015) (Supplemental
Material [58]).

-1

− 2
3

− 1
3

0

1 3 5 7 9
Δ

〈σz
1σz

2〉

0

0.02

1 2

δ〈σz
1σz

2〉

FIG. 2. Correlator hσz1σz2i evaluated on the quench-action steady
state (solid lines) and on the GGE (dashed lines). The energy
sum rule 2hσx1σx2i þ Δhσz1σz2i ¼ −Δ explains the exact value of
−1=3 at the isotropic point Δ ¼ 1. Numerical errors are
10−5 or smaller. Both sets of data are in agreement with the
finite-size computations of Ref. [19], within the numerical pre-
cision of the latter. Inset: Relative difference between the
GGE prediction and the quench-action saddle-point result,
δhσz1σz2i ¼ ðhσz1σz2iGGE − hσz1σz2ispÞ=jhσz1σz2ispj.
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fully implement a GGE based on all known local conserved
charges. Our main finding is that the quench-action steady
state is different from the GGE prediction. We have shown
that even for local correlators, the methods produce differ-
ent results. An independent NLCE calculation supports the
predictions of the quench-action approach. A possible
interpretation of our results is that GGE based on the local
charges Qm is incomplete and that a larger set of conserved
(quasi- or nonlocal) charges is needed [71–73]. This makes
it apparent that the study of quantum quenches provides
a unique venue to further deepen our understanding of
interacting integrable models.
It also remains an interesting open problem to extend

our results to the gapless regime −1 < Δ < 1 and, going
beyond steady-state issues, to reconstruct the postquench
time-dependent relaxation itself, which is accessible via a
quench-action treatment and which would make correspon-
dence to eventual experimental realizations more direct.
We will return to these and further applications of the
quench-action method in future work.
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Note added.—Further evidence that, in contrast to the GGE,
the quench-action approach correctly predicts the steady
state for XXZ quenches is presented in the accompanying
Letter [74]. Related issues are also treated in two other
recent papers [75,76].
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