Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.112.041802

Publication date
2014

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in \(pp\) Collisions at \(\sqrt{s} = 8\) TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 16 September 2013; published 29 January 2014)

A search is presented for dark matter pair production in association with a W or Z boson in \(pp\) collisions representing 20.3 fb\(^{-1}\) of integrated luminosity at \(\sqrt{s} = 8\) TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of squarks and gluinos. These searches have greatest sensitivity at low WIMP mass.

Although the presence of dark matter in the Universe is well established, little is known of its particle nature or its nongravitational interactions. A suite of experiments is searching for a weakly interacting massive particle (WIMP), denoted by \(\chi\), and for interactions between \(\chi\) and standard model (SM) particles [1].

One critical component of this program is the search for pair production of WIMPs at particle colliders, specifically \(pp \rightarrow \chi \bar{\chi}\) at the Large Hadron Collider (LHC) via some unknown intermediate state. These searches have greatest sensitivity at low WIMP mass \(m_{\chi}\), where direct detection experiments are less powerful. At the LHC, the final-state WIMPs are invisible to the detectors, but the events can be detected if there is associated initial-state radiation of a SM particle [2]; an example is shown in Fig. 1.

The Tevatron and LHC collaborations have reported limits on the cross section of \(pp \rightarrow \chi \bar{\chi} + X\) where \(X\) is a hadronic jet [3–5] or a photon [6,7]. Other LHC data have been interpreted to constrain models where \(X\) is a leptonically decaying W [7] or Z boson [8]. In each case, limits are reported in terms of the mass scale \(M_{\chi}\) of the unknown interaction expressed in an effective field theory as a four-point contact interaction [10–18]. In the models considered until now, the strongest limits come from monojet analyses, due to the large rate of gluon or quark initial-state radiation relative to photon, W or Z boson radiation. The operators studied in these monojet and monophoton searches assume equal couplings of the dark matter particles to up-type and down-type quarks \([C(u) = C(d)]\). For W boson radiation there is interference between the diagrams in which the W boson is radiated from the u quark or the d quark. In the case of equal coupling, the interference is destructive and gives a small W boson emission rate. If, however, the up-type and down-type couplings have opposite signs \([C(u) = -C(d)]\) to give constructive interference, the relative rates of gluon, photon, W or Z boson emission can change dramatically [7], such that mono-W-boson production is the dominant process.

In this Letter, a search is reported for the production of W or Z bosons decaying hadronically (to \(q \bar{q}'\) or \(q \bar{q}\), respectively) and reconstructed as a single massive jet in association with large missing transverse momentum from the undetected \(\chi \bar{\chi}\) particles. This search, the first of its kind, is sensitive to WIMP pair production, as well as to other dark-matter-related models, such as invisible Higgs boson decays (\(WH\) or \(ZH\) production with \(H \rightarrow \chi \bar{\chi}\)).

The ATLAS detector [19] at the LHC covers the pseudorapidity [20] range \(|\eta| < 4.9\) and the full azimuthal angle \(\phi\). It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating large superconducting toroidal magnets. A three-level trigger system is used to select interesting events for recording and subsequent offline analysis. Only data for which beams were stable and all subsystems described

* Full author list given at the end of the article.

0031-9007/14/112(4)/041802(17) 041802-1 © 2014 CERN, for the ATLAS Collaboration
above were operational are used. Applying these requirements to pp collision data, taken at a center-of-mass energy of $\sqrt{s} = 8$ TeV during the 2012 LHC run, results in a data sample with a time-integrated luminosity of 20.3 fb$^{-1}$. The systematic uncertainty on the luminosity is derived, following the same methodology as that detailed in Ref. [21], from a preliminary calibration of the luminosity scale obtained from beam-separation scans performed in November 2012.

Jet candidates are reconstructed using the Cambridge–Aachen algorithm [22] with a radius parameter of 1.2, and selected using a mass-drop filtering procedure [23,24], referred to as large-radius jets. These large-radius jets are supposed to capture the hadronic products of both quarks from W or Z boson decay. The internal structure of the large-radius jet is characterized in terms of the momentum balance of the two leading subjets, as $\sqrt{y} = \min(p_{T1}, p_{T2}) \Delta R/m_{\text{jet}}$ where $\Delta R = \sqrt{(\Delta \phi_{1,2})^2 + (\Delta \eta_{1,2})^2}$ and m_{jet} is the calculated mass of the jet. Jet candidates are also reconstructed using the anti-k_t clustering algorithm [25] with a radius parameter of 0.4, referred to as narrow jets. The inputs to both algorithms are clusters of energy deposits in calorimeter cells seeded by those with energies significantly above the measured noise and calibrated at the hadronic energy scale [26]. Jet momenta are calculated by performing a four-vector sum over these clusters, treating each topological cluster [26] as an (E, \vec{p}) four vector with zero mass. The direction of \vec{p} is given by the line joining the reconstructed interaction point with the energy cluster.

Missing transverse momentum E_T^{miss} is measured using all clusters of energy deposits in the calorimeter with $|\eta| < 4.5$. Electrons, muons, jets, and E_T^{miss} are reconstructed as in Refs. [26–29], respectively. The reconstruction of hadronic W boson decays with large-radius jets is validated in a $t\bar{t}$-dominated control region with one muon, one large-radius jet ($p_T > 250$ GeV, $|\eta| < 1.2$), two additional narrow jets ($p_T > 40$ GeV, $|\eta| < 4.5$) separated from the leading large-radius jet, at least one b tag, and $E_T^{\text{miss}} > 250$ GeV (Fig. 2).

Candidate signal events are accepted by an inclusive E_T^{miss} trigger that is more than 99% efficient for events with $E_T^{\text{miss}} > 150$ GeV. Events with significant detector noise and noncollision backgrounds are rejected as described in Ref. [3]. In addition, events are required to have at least one large-radius jet with $p_T > 250$ GeV, $|\eta| < 1.2$, m_{jet} between 50 GeV and 120 GeV, and $\sqrt{y} > 0.4$ to suppress background without hadronic W or Z boson decays. Two signal regions are defined by two thresholds in E_T^{miss}: 350 and 500 GeV. To suppress the $t\bar{t}$ background and multijet background, events are rejected if they contain more than one narrow jet with $p_T > 40$ GeV and $|\eta| < 4.5$ which is not completely overlapping with the leading large-radius jet by a separation of $\Delta R > 0.9$, or if any narrow jet has $\Delta \phi(E_T^{\text{miss}} \text{ jet}) < 0.4$. Finally, to suppress contributions from $W \rightarrow \ell \nu$ production, events are rejected if they have any electron, photon, or muon candidates with $p_T > 10$ GeV and $|\eta| < 2.47, 2.37, \text{ or } 2.5$, respectively.

The dominant source of background events is $Z \rightarrow \nu \bar{\nu}$ production in association with jets from initial-state radiation. A secondary contribution comes from production of jets in association with W or Z bosons with leptonic decays in which the charged leptons fail identification requirements or the τ leptons decay hadronically. These three backgrounds are estimated by extrapolation from a common data control region in which the selection is identical to that of the signal regions except that the muon veto is inverted and $W/Z + j$ jets with muon decays are the dominant processes. In this muon control region dominated by $W/Z + j$ jets with muon decays, the combined W and Z boson contribution is measured after subtracting other sources of background that are estimated using MC simulation [30] based on GEANT4 [31]. Two extrapolation factors from the contribution of $W/Z + j$ jets in the muon control region to the contributions of $Z \rightarrow \nu \bar{\nu} + j$ and $W/Z + j$ jets with leptonic decays in the muon-veto signal region, respectively, are derived as a function of m_{jet} from simulated samples of W and Z boson production in association with jets that are generated using SHERPA1.4.1 [32] and the CT10 [33] parton distribution function (PDF) set. A second control region is defined with two muons and $E_T^{\text{miss}} > 350$ GeV, which has limited statistics and is used only for the validation of the Z boson contribution. The W boson contribution is validated in a low-E_T^{miss} control region with the same selection as the signal region but 250 GeV $< E_T^{\text{miss}} < 350$ GeV.

Other sources of background are diboson production, top quark pair production, and single-top production, which are estimated using simulated events. The MC@NLO4.03 generator [34] using the CT10 PDF with the AUET2 [35] tune, interfaced to HERWIG6.520 [36] and JIMMY4.31 [37] for the
TABLE I. Data and estimated background yields in the two signal regions. Uncertainties include statistical and systematic contributions.

<table>
<thead>
<tr>
<th>Process</th>
<th>$E_{\text{T}}^{\text{miss}} > 350 \text{ GeV}$</th>
<th>$E_{\text{T}}^{\text{miss}} > 500 \text{ GeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \ell \ell$</td>
<td>402$^{+39}_{-34}$</td>
<td>54$^{+8}_{-10}$</td>
</tr>
<tr>
<td>$W \rightarrow \ell \nu$, $Z \rightarrow \ell^+ \ell^-$</td>
<td>210$^{+20}_{-18}$</td>
<td>22$^{+5}_{-4}$</td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>57$^{+11}_{-11}$</td>
<td>9.1$^{+1.3}_{-1.1}$</td>
</tr>
<tr>
<td>$t\bar{t}$, single t</td>
<td>39$^{+10}_{-4}$</td>
<td>3.7$^{+1.3}_{-1.1}$</td>
</tr>
<tr>
<td>Total</td>
<td>707$^{+48}_{-38}$</td>
<td>89$^{+9}_{-12}$</td>
</tr>
<tr>
<td>Data</td>
<td>705</td>
<td>89</td>
</tr>
</tbody>
</table>

The data and predicted backgrounds in the two signal regions are shown in Table I for the total number of events with two jets and two are found to be negligible [3].

Samples of simulated $pp \rightarrow Wt\bar{t}$ and $pp \rightarrow Zt\bar{t}$ events are generated using MADGRAPH5 [41], with showering and hadronization modeled by PYTHIA8.1 using the AU2 [35] tune. The diboson (ZZ, WZ, and WW) samples are produced using HERWIG6.520 and JIMMY4.31 with the CTEQ6L1 PDF and AUET2 tune.

Background contributions from multijet production in which large $E_{\text{T}}^{\text{miss}}$ is due to mismeasured jet energies are estimated by extrapolating from a sample of events with two jets and two are found to be negligible [3].

The data and predicted backgrounds in the two signal regions are shown in Table I for the total number of events and in Fig. 3 for the m_{jet} distribution. The data agree well with the background estimate for each $E_{\text{T}}^{\text{miss}}$ threshold. Exclusion limits are set on the dark matter signals using the predicted shape of the m_{jet} distribution and the CLs method [42], calculated with toy simulated experiments in which the systematic uncertainties have been marginalized. Figure 4 shows the exclusion regions at 90% confidence level (C.L.) in the M_χ vs m_{jet} plane for various operators, where M_χ need not be the same for the different operators.

Limits on the dark matter–nucleon scattering cross sections are reported using the method of Ref. [14] in Fig. 5 for both the spin-independent (C1, D1, D5) and the spin-dependent interaction model (D9). References [14,50] discuss the valid region of the effective field theory, which becomes a poor approximation if the mass of the intermediate state is below the momentum transferred in the interaction. The results are compared with measurements from direct detection experiments [43–49].

FIG. 3 (color online). Distribution of m_{jet} in the data and for the predicted background in the signal regions (SR) with $E_{\text{T}}^{\text{miss}} > 350 \text{ GeV}$ (top) and $E_{\text{T}}^{\text{miss}} > 500 \text{ GeV}$ (bottom). Also shown are the combined mono-W-boson and mono-Z-boson signal distributions with $m_\chi = 1 \text{ GeV}$ and $M_\chi = 1 \text{ TeV}$ for the $D5$ destructive and $D5$ constructive cases, scaled by factors defined in the legends. Uncertainties include statistical and systematic contributions.

FIG. 4 (color online). Observed limits on the effective theory mass scale M_χ as a function of m_{jet} at 90% C.L. from combined mono-W-boson and mono-Z-boson signals for various operators. For each operator, the values below the corresponding line are excluded.
This search for dark matter pair production in association with a W or Z boson extends the limits on the dark matter–nucleon scattering cross section in the low mass region $m_T < 10$ GeV where the direct detection experiments have less sensitivity. The new limits are also compared to the limits set by ATLAS in the 7 TeV monojet analysis [3]. For the spin-independent case with the opposite-sign up-type and down-type couplings, the limits are improved by about 3 orders of magnitude, as the constructive interference leads to a very large increase in the W-boson-associated production cross section. For other cases, the limits are similar.

To complement the effective field theory models, limits are calculated for a simple dark matter production theory with a light mediator, the Higgs boson. The upper limit on the cross section of Higgs boson production through WH and ZH modes and decay to invisible particles is 1.3 pb at 95% C.L. for $m_H = 125$ GeV. Figure 6 shows the upper limit of the total cross section of WH and ZH processes with $H \rightarrow \chi \bar{\chi}$, normalized to the SM next-to-leading order prediction for the WH and ZH production cross section (0.8 pb for $m_H = 125$ GeV) [51], which is 1.6 at 95% C.L. for $m_H = 125$ GeV.

In addition, limits are calculated on dark matter $W\chi\bar{\chi}$ or $Z\chi\bar{\chi}$ production within two fiducial regions defined at parton level: $p_T^{W/Z} > 250$ GeV, $|\eta^{W/Z}| < 1.2$; two quarks from W or Z boson decay with $\sqrt{s} > 0.4$; at most one additional narrow jet [$p_T > 40$ GeV, $|\eta| < 4.5$, ΔR (narrow jet, W or Z) > 0.9]; no electron, photon, or muon with $p_T > 10$ GeV and $|\eta| < 2.47, 2.57,$ or 2.5, respectively; $p_T^{F} > 350$ or 500 GeV. The fiducial efficiencies are similar for various dark matter signals, and the smallest value is (63 ± 1)% in both fiducial regions. The observed upper limit on the fiducial cross section is 4.4 fb (2.2 fb) at 95% C.L. for $p_T^{F} > 350$ GeV (500 GeV) and the expected limit is 5.1 fb (1.6 fb) with negligible dependence on the dark matter production model.

In conclusion, this Letter reports the first LHC limits on dark matter production in events with a hadronically decaying W or Z boson and large missing transverse momentum. In the case of constructive interference between up-type and down-type contributions, the results set the strongest limits on the mass scale of M_χ of the unknown mediating interaction, surpassing those from the monojet signature.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN, CONICYT, Chile; CAS, MOST, and NSFC, China; CONICIF, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNR, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark,
Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (U.S.), and in the Tier-2 facilities worldwide.

[20] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Polar coordinates (r, \phi) are used in the transverse (x, y) plane, \phi being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \theta as \eta = -\ln \tan(\theta/2).

1School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta Canada
4Department of Physics, Ankara University, Ankara, Turkey
5Department of Physics, Gazi University, Ankara, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7Turkish Atomic Energy Authority, Ankara, Turkey
8High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9Department of Physics, University of Arizona, Tucson, Arizona, USA
10Physics Department, The University of Texas at Arlington, Arlington, Texas, USA
11Physics Department, University of Athens, Athens, Greece
12Physics Department, National Technical University of Athens, Zografou, Greece
13Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
15Institute of Physics, University of Belgrade, Belgrade, Serbia
16Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
17Department for Physics and Technology, University of Bergen, Bergen, Norway
18Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
19Department of Physics, Universidad de Buenos Aires, Buenos Aires, Argentina
20Department of Physics, University of Cambridge, Cambridge, United Kingdom
21Physikalisches Institut, University of Bonn, Bonn, Germany
22Department of Physics, Boston University, Boston, Massachusetts, USA
23Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
25Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
26Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
27School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
28Department of Physics, Bogazici University, Istanbul, Turkey
29Department of Physics, Dogus University, Istanbul, Turkey
30Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
31INFN Sezione di Bologna, Italy
32Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
33Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
34School of Physics and Technology, University of Bergen, Bergen, Norway
35Department of Physics, Bogazici University, Istanbul, Turkey
36Department of Physics, Dogus University, Istanbul, Turkey
37Physics Department, University Politehnica Bucharest, Bucharest, Romania
38Institute of Physics, University of Belgrade, Belgrade, Serbia
39Institute of Physics, University of Belgrade, Belgrade, Serbia
40Department of Physics and Technology, University of Bergen, Bergen, Norway
41Department of Physics, Bogazici University, Istanbul, Turkey
42Department of Physics, Dogus University, Istanbul, Turkey
43Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
44INFN Sezione di Bologna, Italy
45Department of Physics, Boston University, Boston, Massachusetts, USA
46Department of Physics, Brandeis University, Waltham, Massachusetts, USA
47Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
48Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
49Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
50School of Physics, Shandong University, Shandong, China
51Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
52Department of Physics, Pontificia Universidad Católica de Chile, Santiago, Chile
53Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
54Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

041802-13
35 Nevis Laboratory, Columbia University, Irvington, New York, USA
36 Niels Bohr Institute, University of Copenhagen, København, Denmark
37 INFN Gruppo Collegato di Cosenza, Italy
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
40 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
41 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, North Carolina, USA
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
51 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
52 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
53 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
54 DESY, Hamburg and Zeuthen, Germany
55 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
56 Department of Physics, Duke University, Durham, North Carolina, USA
57 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58 INFN Laboratori Nazionali di Frascati, Frascati, Italy
59 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
60 Section de Physique, Université de Genève, Geneva, Switzerland
61 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
62 Department of Physics, Hampton University, Hampton, Virginia, USA
63 Laboratoire for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
64 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
65 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
66 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
67 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
68 Department of Physics, Indiana University, Bloomington, Indiana, USA
69 Department of Physics, Leopold-Franzens-Universität, Innsbruck, Austria
70 University of Iowa, Iowa City, Iowa, USA
71 University of Iowa, Iowa State University, Ames, Iowa, USA
72 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
73 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
74 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
75 Graduate School of Science, Kobe University, Kobe, Japan
76 Faculty of Science, Kyoto University, Kyoto, Japan
77 Kyoto University of Education, Kyoto, Japan
78 Department of Physics, Kyushu University, Fukuoka, Japan
79 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
80 Physics Department, Lancaster University, Lancaster, United Kingdom
81 INFN Sezione di Lecce, Italy
82 Dipartimento di Matematica e Fisica, Universitàdél Salento, Lecce, Italy
83 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
84 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
85 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
86 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
87 Department of Physics and Astronomy, University College London, London, United Kingdom
88 Louisiana Tech University, Ruston, Louisiana, USA
89 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
90 Fysiksa institutionen, Lunds universitet, Lund, Sweden
91 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
92 Institut für Physik, Universität Mainz, Mainz, Germany
93 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
94 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
95 Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
96 Department of Physics, McGill University, Montreal, Quebec, Canada
Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEASaclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
Department of Physics, University of Washington, Seattle, Washington, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford, California, USA

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town, South Africa
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University, Sweden
The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, Ontario, Canada
TRIUMF, Vancouver BC, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Centro de Investigaciones, Universidad AntonioNarino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
INFN Gruppo Collegato di Udine, Italy
ICTP, Trieste, Italy
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, Illinois, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Deceased.
Also at Department of Physics, King’s College London, London, United Kingdom.
Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.