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Most mortality models proposed in recent literature rely on the standard ARIMA framework (in particular:
a random walk with drift) to project mortality rates. As a result the projections are highly sensitive to the
calibration period. We therefore analyse the impact of allowing for multiple structural changes on a large
collection of mortality models. We find that this may lead to more robust projections for the period effect but
that there is only a limited effect on the ranking of the models based on backtesting criteria, since there is
often not yet sufficient statistical evidence for structural changes. However, there are cases for which we do
find improvements in estimates and we therefore conclude that one should not exclude on beforehand that
structural changes may have occurred.

Keywords: stochastic mortality; structural changes; mortality forecasting; backtesting

1. Introduction

Mortality rates have improved substantially during the last century as discussed in, for example,
Cairns et al. (2008) and Barrieu et al. (2012). Life insurance companies and pension funds
need to monitor and predict mortality improvements for proper pricing and reserving. It is also
important to quantify the uncertainty in future mortality rates for regulatory purposes such as
Solvency II.

Constructing mortality rate projections consists of two steps, namely (i) estimating a mortality
model on historical data, and (ii) forecasting the time-dependent parameters obtained in (i). The
seminal paper by Lee & Carter (1992) introduces a stochastic mortality model that allows for
mortality improvements. This is a single-factor model with age and period effects. Several
extensions have been proposed to the Lee–Carter model, such as the introduction of a cohort
effect (Currie 2006, Renshaw & Haberman 2006), functional forms for the age effects to limit
the number of parameters (Cairns et al. 2006, 2009) and the introduction of age-group specific
and quadratic effects (Plat 2009, O’Hare & Li 2011).

The modelling of time-dependent effects in mortality models is underexposed in recent
literature. The period and cohort effects are often projected using ARIMA models. However,
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582 F. van Berkum et al.

when structural changes are present, the time-dependent effects cannot always be captured
by standard ARIMA models. The resulting mortality forecasts are highly sensitive to the cal-
ibration period. Alternatives have been proposed to tackle this problem, e.g. Booth et al.
(2002) and Denuit & Goderniaux (2005) use a frequentist approach and Li et al. (2013) a
Bayesian approach to choose an optimal calibration period, Milidonis et al. (2011) intro-
duce regime switching models to mortality modelling and Li et al. (2011), Sweeting (2011)
and Coelho & Nunes (2011) introduce structural changes in trend and difference stationary
processes.

In this paper we extend the approach of Coelho & Nunes (2011). They allow for a single
structural change in period effects. However, multiple structural changes may have occurred, as
suggested for trend stationary processes by Sweeting (2011). We focus on the class of difference
stationary processes as the majority of the above-mentioned literature does. When extending the
approach of Coelho & Nunes (2011) by allowing for multiple structural changes in the period
effects, we determine the structural changes in an objective manner (Bai & Perron 1998). The
optimal number of structural changes is selected using the Bayesian Information Criterion. To
evaluate the performance of this approach, we compare the projections using this approach
to those obtained when no structural changes or a single structural change is allowed using
the Dawid-Sebastiani scoring rule (Riebler et al. 2012). Whereas the aforementioned papers
often focus on a specific mortality model, we show results for Dutch and Belgian mortality
data, calibrated to a wide variety of mortality models. We include both models with and
without cohort effects since recent results by Coelho & Nunes (2013) show that evidence of
structural changes in models without cohort effects may disappear once cohort effects have been
included.

The remainder of this article is organised as follows. In Section 2, we introduce different
mortality models and we review methods used for mortality forecasting. In Section 3, we present
our approach for mortality forecasting when allowing for multiple structural changes within the
period effects. We investigate the estimation and backtesting results in Section 4, and Section 5
concludes.

2. Literature review

We start with an overview of mortality models from recent literature. Then we review the
literature on forecasting period and cohort effects when modelling mortality.

2.1. Mortality model structures

Let the expected number of deaths during calendar year t aged x at death be d̂t,x , and the average
population aged x during calendar year t (exposure) be et,x . The death rate, mt,x , is defined by

mt,x = d̂t,x

et,x
. (1)
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The probability that a person aged exactly x at the beginning of calendar year t dies within the
next year is called the mortality rate qt,x . The force of mortality μt,x is the instantaneous death
rate at exact time t for individuals aged exactly x at time t . If we assume that μt,x is constant in
the interval [t, t + 1) × [x, x + 1), then the maximum likelihood estimate μ̂t,x of the force of
mortality μt,x is given by (see Pitacco et al. (2009)):

μ̂t,x = dt,x

et,x
= mobs

t,x , (2)

with mobs
t,x the observed death rate. Further, given the previous assumption, the mortality rate is

linked to the force of mortality through the relationship:

qt,x = 1 − e−μt,x . (3)

We will estimate the force of mortality based on the observed death rates using age effects (β(i)
x ),

period effects (κ(i)
t ) and cohort (year of birth) effects (γc), with c = t − x . Mortality models

may include several age and period effects, hence, the superscript (i) for the β’s and κ’s in
Table 1.

As in Brouhns et al. (2002), we assume a Poisson distribution for the number of deaths within
a year, Dt,x ∼ Poisson(et,xμt,x ). The various specifications for μt,x are listed in Table 1. Here,

b(x) =
(
(x − x̄)2 − 1

n

∑xn
xi =x1

(xi − x̄)2
)

where the xi are the ages included in the data-set,

c(x) = (x̄ − x)+ + [(x̄ − x)+]2, x̄ is the average of the ages and xc is a constant which can
be chosen up front or can be estimated; in this paper we estimate this parameter1. For each of
these models, we specify the likelihood and apply standard Newton-Raphson steps to maximise
this likelihood. Since most models may involve identification issues, we apply the parameter
constraints as proposed in the recent literature. Appendix 1 gives an overview.

The models M5–M8 use the linearity of the age effects for the pensioner ages. That linearity
does not hold for lower and higher ages, and these models are therefore appropriate for the
pensioner ages only (60–89). We calibrate the models M5–M8 only on the ages 60–89, whereas
the other models are calibrated both for the ages 20–89 and the ages 60–89.

2.2. Forecasting mortality

We give an overview of standard ARIMA time series models, extensions to the standard ARIMA
models, and other time series models and approaches used for forecasting mortality.

2.2.1. Standard ARIMA models

Cairns et al. (2011) consider the models M1 to M5, M7 and M8. These models are fitted to
England and Wales mortality data from the years 1961 to 2004. For the period effects, they
fit a (uni/multi)variate random walk with drift. For the cohort effects, they estimate different
ARIMA(p, d, q) specifications. The specifications used in backtesting are selected based on
biological reasonableness of the projections and the BIC. Second-order differencing of the

1We estimate the model for all xc ∈ {x1, . . . , xn}, and the value of xc is chosen such that the likelihood is maximised.
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584 F. van Berkum et al.

Table 1. Model specifications used in this paper.

Model Name Formula Original paper

M1 LC ln μt,x = β
(1)
x + β

(2)
x κ

(2)
t Lee & Carter (1992)

M1A LC2 ln μt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x κ

(3)
t Renshaw & Haberman (2003)

M2 M ln μt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γt−x Renshaw & Haberman (2006)

M2A – ln μt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x κ

(3)
t + γt−x

M3 APC ln μt,x = β
(1)
x + κ

(2)
t + γt−x Currie (2006)

M5 CBD logit qt,x = κ
(1)
t + (x − x̄)κ

(2)
t Cairns et al. (2006)

M6 logit qt,x = κ
(1)
t + (x − x̄)κ

(2)
t + γt−x Cairns et al. (2009)

M7 logit qt,x = κ
(1)
t + (x − x̄)κ

(2)
t + b(x)κ

(3)
t + γt−x Cairns et al. (2009)

M8 logit qt,x = κ
(1)
t + (x − x̄)κ

(2)
t + (xc − x)γt−x Cairns et al. (2009)

M9 M6∗ ln μt,x = β
(1)
x + κ

(1)
t + (x̄ − x)κ

(2)
t + (x̄ − x)+κ

(3)
t + γt−x Plat (2009)

M10 M5∗ ln μt,x = β
(1)
x + κ

(1)
t + (x̄ − x)κ

(2)
t + (x̄ − x)+κ

(3)
t Haberman & Renshaw (2011)

M11 M7∗ ln μt,x = β
(1)
x + κ

(1)
t + (x̄ − x)κ

(2)
t + (x̄ − x)+κ

(3)
t + b(x)κ

(4)
t + γt−x Haberman & Renshaw (2011)

M12 M8∗ ln μt,x = β
(1)
x + κ

(1)
t + (x̄ − x)κ

(2)
t + (x̄ − x)+κ

(3)
t + (xc − x)γt−x Haberman & Renshaw (2011)

M13 Expl.YM ln μt,x = β
(1)
x + κ

(1)
t + (x̄ − x)κ

(2)
t + c(x)κ

(3)
t + γt−x O’Hare & Li (2011)

cohort effect (d = 2) leads to large confidence intervals which the authors find less plausible.
For the data under consideration a mean reverting process (AR(1)) or anARIMA(1, 1, 0) process
(both including a constant) is most appropriate for the cohort effects.

Plat (2009) introduces M9 and includes it in a comparative study of mortality models fit-
ted to data from the United States (1961 to 2005), England and Wales (1961–2005) and the
Netherlands (1951–2005). In his approach, the first period effect (κ(1)

t in Table 1) is the main
effect, and a random walk with drift is used to project this factor. For the other period effects
(κ(2)

t and κ
(3)
t in Table 1), a non-stationary ARIMA process like a random walk with drift

is not used for projection, because he argues that this may lead to biologically unreasonable
projections. Therefore, a mean reverting process is fitted with non-zero mean (AR(1) with a
constant).

Plat (2009) considers two approaches for calibrating cohort effects: (i) estimate the cohort
effect for all cohorts available, and (ii) estimate the cohort effect only for cohorts older than
1946. The idea is that the cohort effect is most prominent for higher ages, and cohort effects
estimated on younger cohorts should therefore not be used to project mortality rates for the
elderly2. The cohort effect is then projected using a mean reverting process with mean zero. As
a result, there is no trend in the projected cohort effect.

Haberman & Renshaw (2011) consider the models listed in Table 1, except for M2A and
M13, and they consider the Lee–Carter model extended with a cohort effect instead of our
M3 specification. The models are fitted on England and Wales data from 1961 to 2007. To
project mortality, these authors fit a multivariate random walk with drift for all period effects,
similar to the approach used in Dowd et al. (2010). Haberman & Renshaw (2011) argue that
the extrapolation of the cohort effect should be avoided, because there is no justification to treat
the cohort effect and the period effect independently. Therefore, they focus on modelling life
expectancy and annuity values for existing cohorts.

2In this paper, we set the cohort effects equal to zero for the models M9 and M13 when there are no observations available
related to age 60 or higher, conform the idea in Plat (2009).
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Lovász (2011) considers several models for Finnish (1950–2009) and Swedish (1950–2008)
data. He models the period effects as in Dowd et al. (2010) and Haberman & Renshaw (2011)
by assuming a multivariate random walk with drift. For the cohort effects, he chooses the
ARIMA(p, d, q) process that is optimal in terms of BIC. He considers the combinations d ∈
{0, 1, 2} and (p, q) ∈ {0, 1, 2}, and for those data-sets the optimal ARIMA specifications are
always integrated, possibly with a lag included (ARIMA(p, 1, 0)); two times differencing is
never optimal.

Finally, O’Hare & Li (2011) introduce M13 and apply it to data from a range of developed
countries from 1950 to 2006. The proposed model is a modification of Plat’s model, and therefore
they use the same ARIMA specifications as in Plat (2009). A random walk with drift is used
for the main period effect, mean reverting processes with non-zero mean are used for the
remaining period effects, and a mean-reverting process with mean zero is used for the cohort
effect.

The papers mentioned above all use a random walk with constant drift for the first period
effect, and often also for the other period effects. However, different calibration periods are
used and projections based on a random walk with constant drift are potentially highly sensitive
towards the calibration period, see e.g. Booth et al. (2002) and Denuit & Goderniaux (2005).
Furthermore, factors like medical advances (Bots & Grobbee 1996) and health system reforms
(Moreno-Serra & Wagstaff 2010) have an impact on the speed of the mortality improvements.
Dropping the assumption of a random walk with a constant drift may therefore be a way to
improve model performance, and several authors proposed different methods on how to deal
with the sensitivity of the calibration period.

2.2.2. Optimal calibration period

Booth et al. (2002) note that a random walk with constant drift may not be appropriate over
the whole period of available mortality data. For the Lee–Carter model, they propose to restrict
the calibration period. The last year is determined by the most recent data available, and the
first year is chosen by optimising the fit of the random walk with drift model relative to the
fit of the Lee–Carter model. They note that age effects may change through time and that by
optimising the calibration period, the age effects are chosen more appropriately for the purpose
of projecting mortality rates.

Denuit & Goderniaux (2005) approximate the period effect κt in the Lee–Carter model by a
straight line using OLS and choose the calibration period when the corresponding adjusted R2

is optimal. Li et al. (2013) include the length of the calibration period in their parameter space in
a Bayesian framework. Mortality rates are projected for three mortality models using different
calibration periods where projections resulting from different calibration periods are weighted
by their posterior distribution.

2.2.3. Regime switching models

Milidonis et al. (2011) calibrate the Lee–Carter model on US data for the ages 0–100 in the years
1901–2005 (males and females combined). They propose a regime switching model with two
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regimes for the differenced series of κt . The two regimes are allowed to have a different mean
as well as a different variance, and the estimation reveals that the variance differs substantially
between the two regimes. Based on information criteria and a likelihood ratio test, they conclude
that for the data-set considered the regime switching model outperforms the random walk with
drift.

Hainaut (2012) extends the regime switching model to model M1A applied to French data for
the ages 20–100 in the years 1946–2007 (males and females separately), and concludes that the
improvement in loglikelihood is significant compared to the standard Lee–Carter model and the
extension from Milidonis et al. (2011).

2.2.4. Structural changes in trend stationary models

Li et al. (2011) calibrate the Lee–Carter model on England and Wales and US data for the
ages 0–99 in the years 1950–2006 (males and females combined). They perform a unit root test
on the time series κt , which means that they test the null hypothesis of a random walk with
constant drift versus the alternative hypothesis of a broken-trend stationary model. The broken-
trend stationary model implies that the mortality trend κt fluctuates around a deterministic
trend. The deterministic trend is piecewise linear and is estimated by regressing κt versus t
and an intercept. Dummy variables are included in the regression such that the trend may
change once in the data-set, but the different trends do not have to be connected. For both data-
sets, they conclude that a broken-trend stationary model is preferred over a random walk with
constant drift model, and they use the latest trend for predictions. Since this is a trend stationary
process, predictions from this model do not lead to confidence intervals that become wider over
time.

Sweeting (2011) calibrates the original CBD-model (M5) on England and Wales data for the
ages 60–89 in the years 1841–2005. He assumes a broken-trend stationary model as in Li et al.
(2011), but he allows for multiple structural changes and imposes the different trends to connect.
He then fits distributions to the frequency and the severity of the changes in the trend and uses
these distributions for forecasting mortality. Structural changes are tested for significance using
the Chow test (Chow 1960).

2.2.5. Structural change in difference stationary models

Coelho & Nunes (2011) consider the Lee–Carter model for a variety of countries, both for males
and females for the ages 0-99 in the years after 19503. They perform a unit root test as suggested
by Harvey et al. (2009) and Harris et al. (2009) that allows for a single structural change both
in the trend stationary and in the difference stationary model, where Li et al. (2011) only allow
for a single structural change in the trend stationary model. They perform this analysis for 18
countries both for males and females. From all these data-sets, the trend stationary model with
possibly a structural change is rejected 33 out of 36 times in favour of a difference stationary
model with possibly a structural change. Further, for 21 out of 36 data-sets, a structural change
is detected.

3The data-set depends on the data availability per country.
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O’Hare & Li (2014) investigate the impact of a single structural change on mortality models
beyond Lee–Carter. They apply the methodology for difference stationary time series to the
models M1 (Lee–Carter), M5 (CBD), M9 (Plat) and M13 (O’Hare and Li). They find that in
mortality models other than the Lee–Carter model a structural change is often detected as well,
and that allowing for a structural change can substantially improve the quality of forecasts,
measured in mean absolute error and root mean squared error.

3. Proposed forecasting method

3.1. Forecasting period effects

When regime switching models are applied to mortality models, it is known beforehand that
mortality dynamics observed in the past will occur in the future. Changes in mortality
dynamics may be a result of changes in lifestyle, health care systems, etc. For example, in
the Netherlands, changes in smoking habits have been an important driver of changes in mor-
tality, which resulted in increasing (1950–1970) and decreasing (from 1970 onwards) mortality
rates (Janssen et al. 2007). Since we find it difficult to predict whether and how histori-
cal changes in mortality may occur again in the future, we will not use regime switching
models.

Optimisation of the calibration period as in Booth et al. (2002) and Denuit & Goderniaux
(2005) has appealing characteristics. Since older data points are excluded, the age effects are
based on more recent data and are therefore more appropriate for forecasting than when all data
are included. However, this approach may lead to short calibration periods which may result
in more volatile parameter estimates and projections. Further, by excluding data, the researcher
implicitly chooses not to explain part of the available data. Finally, these methods have been
applied to the Lee–Carter model, but they are not easily transferable to multi-factor models,
since different factors may suggest different calibration periods.

Therefore, we use recent information on mortality dynamics, but we use the entire calibration
period to estimate the variability in the mortality dynamics. Following the findings from Coelho
& Nunes (2011) and the fact that a random walk with drift is most prominent in the mortality
literature, we focus on the difference stationary process. However, we extend the approach of
Coelho & Nunes (2011) and the work of O’Hare & Li (2014) such that multiple structural
changes can be detected, as multiple events in the past may have affected the speed of mortality
improvements.

We assume a multivariate random walk with drift for the period effects. Each univariate
series may experience multiple structural changes during the calibration period. We determine
the optimal number of structural changes separately for each time series using an optimisation
criterion. The period effects are then simulated using the latest drift parameters and the estimated
covariance structure.

To determine the number of structural changes and their corresponding dates, we follow the
methodology introduced in Bai & Perron (2003). Suppose we have at our disposal a period
effect κ

(i)
t (t = 1, . . . , T ) and define the first-order differences by �κ

(i)
t = κ

(i)
t − κ

(i)
t−1 for

t = 2, . . . , T . We estimate a random walk with a piecewise constant drift:
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�κ
(i)
t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β1 + εt , t ≤ t1
. . .

β j + εt t j−1 < t ≤ t j

. . .

βm+1 + εt , tm < t

(4)

where εt ∼ N (0, σ 2
ε ) are independent over time. We estimate this model using OLS, hence, we

minimise the sum of squared residuals (SSR):

SSR(t1, . . . , tm) =
m+1∑
j=1

t j∑
t=t j−1+1

[�κ
(i)
t − β j ]2 (5)

where t0 = 1 and tm+1 = T . In the model specification above, we distinguish m break points
that divide the time series into m + 1 periods with different drifts. Both the number of break
points and the dates of the break points are unknown.

Let β(Tm) denote the estimates {β1, . . . , βm+1} based on a given m-partition (t1, . . . , tm)

denoted Tm . If we substitute these parameter estimates β(Tm) into (5), then the estimated
break points (t̂1, . . . , t̂m) are such that (t̂1, . . . , t̂m) = arg mint1,...,tm SSR(t1, . . . , tm), where
the minimisation is taken over all partitions (t1, . . . , tm) for which t j − t j−1 ≥ h. The parameter
h corresponds to the minimum period that a regime should last, and is to be chosen up front.
Bai & Perron (2003) describe an efficient algorithm to determine the optimal break points for a
given m.

If we set h too low, it is possible that spurious effects are picked up, which is undesirable. On
the other hand, if we set h too high, then it is possible that we miss break points because they are
not allowed. We take h = 5 which is in line with Zeileis et al. (2003) and Harvey et al. (2009),
who suggest to set h equal to 10% of the sample.

Given the method described above, we can determine the optimal break points (t1, . . . , tm)

for an a priori given number of break points m. We then have to determine what the optimal
number of break points, say m∗, is. In general, there are two ways to choose the optimal number
of break points: (i) using an information criterion like the BIC, and (ii) performing F-tests to
test the significance of the improvement in fit when adding one or multiple break points.

If the information criterion is used, then one determines the BIC for all m ∈ {0, . . . , 5}4, see
Zeileis et al. (2003). Denote BIC(m) as the BIC corresponding to the optimal break points for
a given m. The optimal number of break points is then defined by m∗ = arg max BIC(m).

As in Bai & Perron (1998) and Bai & Perron (2003), we may consider two F-tests. The first
is the sequential test of m = l versus m = l + 1 break points. This is a sequential procedure:
one starts with the null hypothesis of m = 0 versus the alternative hypothesis of m = 1 break
points. If the null hypothesis of no break points is rejected, then one continues testing for the
significance of two break points versus the null hypothesis of one break point, and so on. The
F-statistic is a function of the restricted sum of squared residuals (RSSR) and the unrestricted
sum of squared residuals (USSR), the null and alternative hypothesis, respectively:

4We consider at most five structural changes. In the analysis performed, there was no reason to allow for more structural
changes.
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F = (RSSR − USSR) /(p1 − p0)

USSR/(n − p1)
, (6)

where p0 is the number of parameters in the model under the null hypothesis, p1 the number of
parameters in the model under the alternative hypothesis and n is the number of observations.
Since the dates of the structural changes are unknown, we cannot use the standard critical values
of the F-distribution as used in Sweeting (2011), but critical values have to be obtained through
simulation (see Andrews 1992). If the break point is significant, then this break point is fixed
and one searches for a new break point. The old break point is not allowed to move, which may
be suboptimal when searching for more than one break point. Therefore, we shall not use the
sequential F-test.

The second F-test is based on the null hypothesis of no break point (m = 0) versus the
alternative hypothesis of m = k break points. To determine the optimal number of break points,
we determine the F-statistic as defined in (6) for all k ∈ {1, . . . , 5} which we denote by F(k).
We then define the UDmax test statistic as the maximum value of those F-statistics:

UDmax = max
k

F(k) (7)

Since the number and dates of the break points are unknown, critical values have to be obtained
through simulation. If the observed UDmax test statistic is larger than the critical value, then
the number of break points is equal to k∗ = arg max F(k). If the test statistic is smaller than the
critical value, then there is insufficient proof for a structural change.

The latter F-test is close to using the BIC, because an optimal model is chosen while
considering all model specifications. Yao (1988) shows that the number of break points that
follows from optimising the BIC is a consistent estimator of the true number of break points,
and Bai & Perron (2003) note that the BIC performs well in the absence of serial correlation.
We will therefore use the BIC to choose the number of break points. In the following paragraph,
we illustrate the method applied to Dutch male mortality.

3.1.1. Illustration – the Lee–Carter model

We consider the period effect of the Lee–Carter model, estimated on Dutch male mortality data
for the period 1960–2008, for the ages 60–89. We illustrate our method, but also show results
of the optimal calibration period strategy in Denuit & Goderniaux (2005). The top left graph
in Figure 1 shows the parameter estimates for κ

(2)
t . A random walk with constant drift does

not seem appropriate, because of apparent structural changes around 1972 and 2000. This is
confirmed in the bottom left graph. The black lines correspond to projections from a random
walk with constant drift and these projections are not well connected with the observations. The
blue lines correspond to projections when one structural change is allowed; the break point is
dated at 1993. These projections are not unreasonable, but the drift of the period effect does
not appear to be piecewise constant before and after the break point. If we allow for multiple
structural changes, then we obtain the projections represented by the red lines. The break points
are estimated at 1972 and 2002. The projections look reasonable, because the drift of the period
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590 F. van Berkum et al.

Figure 1. Top left: parameter estimates of κ
(2)
t in the Lee–Carter model, calibrated on data from Dutch males aged

60–89 in the period 1960–2008. Bottom left: projections for the period effect using different projection methods. Top
right through bottom right: projections of the period effect for different calibration periods without allowing for structural
changes, allowing for one structural change and allowing for multiple structural changes. Dots are estimated parameters,
solid lines are the 50th percentile and dashed lines are the 5th and 95th percentiles of the projections. (Coloured versions
of the figures can be found online.)

effect is piecewise constant between the different break points, and the lines connecting the
break points are not always below or above the observed values.

The graphs on the right-hand side of Figure 1 show the projections for the period effects from
the Lee–Carter model calibrated on different periods. We compare scenarios without structural
changes, with a single structural change and with multiple structural changes. Allowing for a
single structural change leads to more robust projections with respect to the calibration period,
and if we allow for multiple structural changes, projections become even more robust.

Figure 2 shows the first-order differences of the estimated period effect from Figure 1 (top left).
From the upper right graph, we observe that the first break point is accurately estimated, since
the confidence interval5 (shown by the red line) is narrow. The lower left graph in Figure 2 shows
the confidence intervals for the case of two break points. The second break point (around the year
2002) is estimated accurately, but the confidence interval corresponding to the first break point
is wide. This can be explained by the outliers before and after the year 1972. However, allowing
for the second break point leads to an improvement in fit over the whole observation period.

5See Bai & Perron 1998 for a description how these confidence intervals are derived. We used the R-package
strucchange (Zeileis et al. 2002) to detect structural changes.
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Figure 2. Confidence intervals for estimated break points for κ

(2)
t in the Lee–Carter model, calibrated on Dutch males

aged 60–89 in the years 1960–2008. In the plots (i) BP’s vs. (i + 1) BP’s the green lines represent the mean of �κ
(2)
t

for the different periods when (i) BP’s are allowed, and the blue lines represent the mean of �κ
(2)
t when (i + 1) BP’s

are allowed. The red lines represent the confidence intervals corresponding to the break points. (Coloured versions of the
figures can be found online.)

This is illustrated by the differences between the green and blue lines in Figure 2. The bottom
right graph shows the confidence intervals for the case of three break points. The confidence
intervals overlap and they are much larger than for the case of two break points.

Figure 1 (bottom left) also shows the estimated period effect if the calibration period is
chosen according to the procedure proposed in Denuit & Goderniaux (2005). We calibrate the
Lee–Carter model to the entire calibration period, and then estimate OLS on different subsets of
the period effect while keeping the end date fixed. The optimal calibration period is chosen where
the adjusted R2 is maximal. Using that calibration period, we recalibrate the Lee–Carter model,
and the result is plotted here in grey6. In line with Denuit & Goderniaux (2005), we enforce that
the calibration period must be larger than ten years, and in this example the optimised calibration
period turns out to be of minimal length, in contrast to the findings of Denuit & Goderniaux
(2005) for Belgian data.

In this recent calibration period, the period effect shows little variability which is translated
into narrower confidence intervals than when we would have required the model to explain
the entire data-set. Figure 3 shows the parameter estimates of the Lee–Carter model based on
the entire and the optimal calibration period. Given the parameter restrictions, β

(1)
x is the mean

mortality rate, which explains the downward shift. The estimates for β
(2)
x differ substantially

and those for the optimal (and shorter) calibration period are more volatile.

6The estimated period effect on the optimal calibration period is shifted upwards due to the parameter restrictions.
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Figure 3. Parameter estimates of the Lee–Carter model, calibrated on data from Dutch males aged 60–89 using the
large calibration period 1960–2008, and the optimal calibration period 1998–2008 according to the method of Denuit &
Goderniaux (2005). (Coloured versions of the figures can be found online.)

3.2. Forecasting cohort effects

Section 2.2 contains an overview of different approaches to project the cohort effect. Imposing
an ARIMA specification up front can lead to biologically unreasonable forecasts. Therefore, we
use the BIC to select the optimal specification, but we only consider ARIMA(p, d, q) specifi-
cations for d ∈ {0, 1} and (p, q) ∈ {0, 1, 2}. We do not consider the case d = 2, because
from Cairns et al. (2011) we conclude that using a second-order differencing model leads to
implausibly large confidence intervals.

4. Results

In this section, we calibrate the mortality models from Table 1 to Dutch and Belgian mortality
data. Then we perform an out-of-sample backtest to investigate the predictive properties of the
models while allowing for no, a single or multiple structural change(s).

4.1. Model fit

We calibrate the models on male mortality data7 from the Netherlands and Belgium for the
years 1950–2008. Earlier data are excluded such that there are no world wars in the data-set. We
consider the ages 20–89, because mortality rates for younger ages are not relevant for insurers
and pension funds, and mortality rates for ages above 89 are less reliable and are therefore
excluded. If mortality rates are needed for higher ages, multiple techniques are available to
close mortality tables; see e.g. Vaupel (1990), Lindbergson (2001) and Denuit & Goderniaux
(2005).

We present the estimation results for Dutch and Belgian males8 for ages 20–89 in Table 2
and for ages 60–89 in Table 3. These tables contain the effective9 number of parameters that

7Human Mortality Database is a joined project of the University of California, Berkeley (USA) and Max Planck Institute
for Demographic Research (Germany). Data are available at http://www.mortality.org.
8Similar results for Dutch and Belgian females are available upon request from the authors.
9The effective number of parameters is the total number of parameters that is included in the model minus the number of
parameter constraints that are used to identify the model.
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Table 2. Estimation results for Dutch and Belgian male mortality rates, estimated on the age range 20 to 89 and calibration
period 1950–2008.

The Netherlands Belgium

Model Parameters AIC BIC AIC BIC

M1 197 −22, 000 (10) −22, 623 (10) −22, 332 (10) −22, 955 (10)
M1A 324 −19, 535 (8) −20, 559 (8) −20, 122 (8) −21, 146 (8)
M2 385 −18, 425 (5) −19, 642 (5) −19, 129 (6) −20, 345 (6)
M2A 513 −18, 438 (6) −20, 060 (7) −18, 994 (5) −20, 616 (7)
M3 246 −18, 947 (7) −19, 724 (6) −19, 538 (7) −20, 315 (5)
M9 327 −18, 359 (4) −19, 392 (2) −18, 885 (4) −19, 919 (2)
M10 244 −19, 905 (9) −20, 676 (9) −21, 419 (9) −22, 190 (9)
M11 422 −18, 258 (1) −19, 591 (4) −18, 810 (1) −20, 144 (4)
M12 364 −18, 289 (2) −19, 439 (3) −18, 840 (2) −19, 990 (3)
M13 327 −18, 358 (3) −19, 392 (1) −18, 873 (3) −19, 907 (1)

Note: The numbers in brackets represent the ranking of the models for a specific dataset.

Table 3. Estimation results for Dutch and Belgian male mortality rates, estimated on the age range 60–89 and calibration
period 1950–2008.

The Netherlands Belgium

Model Parameters AIC BIC AIC BIC

M1 117 −11, 035 (14) −11, 355 (14) −10, 421 (14) −10, 741 (14)
M1A 204 −9, 204 (12) −9, 762 (13) −9, 665 (12) −10, 223 (12)
M2 225 −8, 797 (8) −9, 412 (4) −8, 991 (6) −9, 606 (4)
M2A 313 −8, 820 (9) −9, 675 (11) −8, 995 (7) −9, 850 (9)
M3 166 −8, 941 (11) −9, 395 (3) −9, 101 (10) −9, 555 (2)
M5 118 −9, 345 (13) −9, 668 (10) −9, 912 (13) −10, 235 (13)
M6 196 −8, 732 (1) −9, 268 (1) −8, 935 (1) −9, 471 (1)
M7 254 −8, 735 (2) −9, 429 (5) −8, 938 (2) −9, 632 (5)
M8 198 −8, 792 (7) −9, 333 (2) −9, 031 (9) −9, 572 (3)
M9 284 −8, 752 (4) −9, 528 (8) −8, 942 (4) −9, 719 (7)
M10 204 −8, 908 (10) −9, 465 (6) −9, 347 (11) −9, 905 (11)
M11 342 −8, 771 (5) −9, 706 (12) −8, 965 (5) −9, 900 (10)
M12 284 −8, 783 (6) −9, 560 (9) −9, 002 (8) −9, 778 (8)
M13 284 −8, 748 (3) −9, 524 (7) −8, 939 (3) −9, 716 (6)

Note: The numbers in brackets represent the ranking of the models for a specific dataset.

is estimated in each of the models, and the corresponding AIC and BIC that we define as
AIC = log L − k and BIC = log L − 1

2 k · log n, where log L is the loglikelihood, n is the
number of observations and k is the effective number of parameters. A higher AIC or BIC means
that the model is better able to explain the data. The difference between the AIC and the BIC
is that the BIC imposes a higher penalty for the number of parameters used. Mortality models
contain many parameters and we therefore believe the BIC to be a more appropriate information
criterion. However, the ranking based on fit on historical data does not predict whether a model
will produce good mortality projections.

For the age range 20–89, the models with a cohort effect and interaction between age and
period effects have the highest AIC and BIC. As expected, models that score well on AIC but
which have many parameters, score worse on BIC; M11 is the clearest example of this. The
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ranking of the models for Dutch males is similar to the ranking for Belgian males. However,
some models that score well on the age range 20–89 score worse for the age range 60–89 (M9,
M11, M12 and M13) and vice versa (M2 and M3). The ranking of the models for the age range
60–89 is again similar for the Dutch and Belgian males.

For the models M8 and M12, the impact of the cohort effect on the mortality rates for age
x depends on the parameter xc. The cohort effect γt−x is multiplied with (xc − x), so it has a
larger impact on mortality rates for ages farther away from xc. From Table 4 we conclude that,
for the data-sets considered, four out of 12 times the cohort effect mainly affects younger ages
(xc = 89), and eight out of 12 times the cohort effect mainly affects the elderly.

For illustration purposes, we present the parameter estimates for M2 estimated on Dutch
male mortality data in Figure 4 since this model fits the data reasonably well for both age
ranges. The parameter estimates for the two age ranges are similar and the fitted mortality rates
differ only marginally. In order to project mortality, the parameter κ

(2)
t needs to be projected

into the future, and for new cohorts we also have to project the cohort effect γt−x . As the
time-dependent parameters are different, it is possible that mortality projections resulting from
the two different age ranges are different, regardless of the similar in-sample fit.

4.2. Out-of-sample performance

We now evaluate the predictive power of the models under consideration. We calibrate the
models using data from 1950 to 2000 and then simulate forces of mortality for the years 2001–
2008. This leads to a predictive distribution for the forces of mortality �t,x for x = x1, . . . , xn

and t = T + 1, . . . , T + s. As in Riebler et al. (2012), we obtain the mean E(�t,x ) and
variance Var(�t,x ) of future forces of mortality from the simulated predictive distribution. With
Dt,x ∼ Poisson(et,x�t,x ) and using the law of total expectation it follows that for t > T the
expected death counts are

d̂t,x = E(Dt,x ) = et,xE(�t,x ) (8)

and the variance of the death counts is

σ 2
t,x = Var(Dt,x ) = E(Var(Dt,x |�t,x )) + Var(E(Dt,x |�t,x ))

= E(et,x�t,x ) + Var(et,x�t,x )

= et,xE(�t,x ) + e2
t,xVar(�t,x ),

Table 4. Optimal values for xc in M8 and M12 when xc ∈ {60, . . . , 89} or xc ∈ {20, . . . , 89}, based on the calibration
period 1950–2008.

The Netherlands Belgium

Model Ages Males Females Males Females

M8 60–89 60 60 60 60
M12 60–89 60 89 89 89
M12 20–89 20 89 20 26
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Figure 4. The first five panels show the parameter estimates for M2 calibrated on Dutch male mortality in the years
1950–2008 on the ages 20–89 and 60–89. The last four panels show realised mortality rates (dots) and fitted mortality
rates for x = {25, 45, 65, 85} (calibrated on ages 20–89 and ages 60–89). (Coloured versions of the figures can be found
online.)

since we assume the population size et,x given10. In the evaluation of the out-of-sample perfor-
mance Gneiting & Raftery (2007) consider the differences between observations and projections
(hereafter: calibration of the projections), and the width of the confidence intervals of the
projections (hereafter: sharpness of the projections). We compare the calibration of the mortality
models using the root mean squared error (RMSE), both with and without the possibility of
structural changes:

RMSE =
√

1

n · s

∑
t,x

(
dt,x − d̂t,x

)2
. (9)

The RMSE only accounts for differences between observations and predictions, but not for
differences in scale. A typical problem for mortality data is to summarise the quality of the
forecasts for different ages and years in a single statistic. The death counts under consideration
differ in scale for different ages and years due to different forces of mortality and exposures.
The Dawid-Sebastiani scoring rule (DSS) introduced by Gneiting & Raftery (2007) is a statistic
that evaluates the calibration and the sharpness of the projections, and also takes the scale
of the observations into account. We compute the average DSS (DSS) as introduced by
Riebler et al. (2012), which allows us to summarise the quality of all forecasted death counts
into a single statistic:

10We shall not simulate the population size, because then assumptions must be made on immigration and emigration.
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Table 5. Results for Dutch and Belgian female mortality rates for the ages 20–89 calibrated on the years 1950–2000.
Mortality forecasts are backtested for the years 2001–2008 using different forecasting methods for the period effects.‘0’,
‘1’ or ‘> 1’ means we allow for no, a single or multiple structural changes, respectively.

The Netherlands, females 20–89 Belgium, females 20–89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 67.7 67.7 67.7 7.79 7.79 7.79 56.1 56.1 56.1 7.36 7.36 7.36
M1A 75.9 75.9 75.9 7.76 7.76 7.76 57.7 57.7 57.7 7.46 7.46 7.46
M2 71.7 71.7 71.7 8.73 8.73 8.73 – – – – – –
M2A 79.7 82.1 82.1 7.62 7.69 7.69 39.0 36.8 36.8 7.24 7.31 7.31
M3 118.1 118.1 118.1 8.69 8.69 8.69 82.2 82.2 82.2 7.72 7.72 7.72
M9 81.9 166.9 166.9 8.50 9.34 9.34 61.4 81.0 81.0 8.31 8.62 8.62
M10 92.5 92.5 92.5 8.71 8.71 8.71 86.9 86.9 86.9 9.62 9.62 9.62
M11 64.6 64.6 64.6 8.19 8.19 8.19 38.0 38.0 38.0 7.05 7.05 7.05
M12 121.9 76.2 76.2 9.06 8.21 8.21 72.9 72.9 72.9 7.32 7.32 7.32
M13 91.7 91.7 91.7 8.54 8.54 8.54 60.8 61.2 61.2 8.04 8.16 8.16

Notes: Bold numbers indicate improved backtesting results compared with no structural changes; italic numbers indicate
worsened results compared with no structural changes.

DSS = 1

n · s

∑
t,x

[(
dt,x −d̂t,x

σt,x

)2 + log σ 2
t,x

]
. (10)

Tables 5 and 6 show the backtesting results for Dutch and Belgian females for the ages
20–89 and 60–89, respectively11, and Tables 7 and 8 show similar results for Dutch and Belgian
males. For some models, the statistics are lower when structural changes are incorporated (the
bold figures in the tables), which means that allowing for structural changes has improved the
quality of the mortality forecasts; especially the decrease in RMSE can be large. For other
models, however, the statistics are higher (the italic figures), which means that the quality of the
forecasts has worsened. Allowing for structural changes has little effect on the ranking of the
models based on RMSE or DSS, but the ranking of the models based on the backtest is markedly
different from the ranking based on the fit on historical data in Tables 2 and 3.

Figure 5 shows projections of the period effects for M12 applied to Dutch females aged 20–89
and Figure 6 shows resulting mortality projections. The non-monotone behaviour observed in
the red and grey projections is due to the estimated cohort effect. This effect is not visible for
q80 because for Dutch females aged 20–89 we found xc = 89, which implies that the cohort
effect hardly affects the highest ages. From Figure 5, we observe that the projections of κ

(1)
t are

more convincing if we allow for structural changes, and in Figure 6 the mortality projections
with structural changes are more convincing as well. This is confirmed in Table 5 as both the
RMSE and the DSS have improved substantially.

Similar results are shown in Figures 7 and 8 for model M9 applied to Dutch females aged
20–89. The projections for κ

(2)
t are more plausible when structural changes are allowed, but

the projections for κ
(3)
t are still implausible. The last fitted cohort effect is the cohort 193512,

11In Table 5, the results for M2 applied to Belgian females are implausible due to unrealistic cohort projections and are
therefore not included in the table. Using a different time series model for the cohort effect might lead to better results.
12For M9 and M13, the cohort effect is set equal to zero if there are no observations related to the age 60 or higher. For
the age range 20–89 and the calibration period 1950–2000 this means that the last estimated cohort is 2000 − 65 = 1935.
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Table 6. Results for Dutch and Belgian female mortality rates for the ages 60–89 calibrated on the years 1950–2000,
backtested on the years 2001–2008.

The Netherlands, females 60–89 Belgium, females 60–89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 128.2 128.2 128.2 10.38 10.38 10.38 78.2 78.2 78.2 9.36 9.36 9.36
M1A 112.8 112.8 112.8 9.71 9.71 9.71 87.8 87.8 87.8 9.58 9.58 9.58
M2 102.5 102.5 102.5 10.03 10.03 10.03 61.8 61.8 61.8 9.49 9.49 9.49
M2A 201.8 124.7 124.7 10.06 9.83 9.83 154.7 84.4 84.4 9.95 9.68 9.68
M3 160.7 160.7 160.7 11.32 11.32 11.32 111.4 111.4 111.4 9.97 9.97 9.97
M5 134.1 134.1 134.1 12.75 12.75 12.75 101.9 101.9 101.9 13.28 13.28 13.28
M6 339.5 412.0 412.0 15.22 15.36 15.36 177.8 177.8 177.8 10.92 10.92 10.92
M7 517.3 719.3 421.9 19.88 23.39 16.77 399.8 500.7 470.5 15.33 15.54 14.17
M8 141.2 88.6 88.6 10.03 10.38 10.38 149.1 149.1 149.1 10.49 10.49 10.49
M9 114.4 114.4 114.4 10.08 10.08 10.08 86.6 86.6 86.6 9.55 9.55 9.55
M10 113.1 113.1 113.1 9.93 9.93 9.93 86.0 86.0 86.0 9.56 9.56 9.56
M11 137.0 137.0 137.0 10.06 10.06 10.06 83.3 83.3 83.3 9.40 9.40 9.40
M12 151.5 151.5 151.5 10.51 10.51 10.51 98.5 98.5 98.5 9.66 9.66 9.66
M13 135.5 218.6 218.6 10.16 11.66 11.66 87.8 87.8 87.8 9.40 9.40 9.40

Note: see Table 5.

Table 7. Results for Dutch and Belgian male mortality rates for the ages 20–89 calibrated on the years 1950–2000,
backtested on the years 2001–2008.

The Netherlands, males 20–89 Belgium, males 20–89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 266.4 243.4 243.4 22.01 21.43 21.43 147.2 147.2 147.2 10.56 10.56 10.56
M1A 222.9 222.9 222.9 14.35 14.35 14.35 124.1 113.3 113.3 9.52 9.42 9.42
M2 105.2 105.2 105.2 9.41 9.41 9.41 84.7 84.7 84.7 8.79 8.79 8.79
M2A 164.9 164.9 164.9 10.76 10.76 10.76 87.3 61.7 61.7 8.46 8.25 8.25
M3 145.4 145.4 145.4 10.06 10.06 10.06 71.8 71.8 71.8 8.77 8.77 8.77
M9 176.7 120.3 120.3 9.71 8.99 8.99 79.7 79.7 79.7 8.61 8.61 8.61
M10 193.7 159.4 159.4 10.55 9.87 9.87 117.1 83.4 83.4 9.32 9.45 9.45
M11 187.2 187.2 187.2 10.25 10.25 10.25 93.3 93.3 93.3 8.38 8.38 8.38
M12 178.1 118.2 118.2 12.69 11.31 11.31 45.3 45.3 45.3 8.58 8.58 8.58
M13 164.4 111.8 111.8 9.59 8.96 8.96 72.3 72.3 72.3 8.67 8.67 8.67

Note: see Table 5.

and later cohort effects are projected using an appropriate ARIMA process. The cohort effect
needed for projections for x = 30 are therefore projected over 35 years into the future13, while
for x = 60 the cohort effect is projected only few years into the future and for x = 80 it is
available from the model calibration. This explains the relatively large confidence interval for
q30 in Figure 8. The projections for q80 including the structural change in κ

(2)
t do not follow

the realised mortality improvements, while the projections without structural changes do follow

13The cohort effect needed in 2001 for x = 30 is for the cohort 1971. The last estimated cohort effect is for the cohort
1935. Hence, the cohort effect for the cohort 1971 is projected 36 years from the last estimated cohort effect.
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Table 8. Results for Dutch and Belgian male mortality rates for the ages 60–89 calibrated on the years 1950–2000,
backtested on the years 2001–2008.

The Netherlands, males 60–89 Belgium, males 60–89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 296.9 296.9 296.9 16.30 16.30 16.30 160.6 160.6 160.6 10.99 10.99 10.99
M1A 297.0 297.0 297.0 15.53 15.53 15.53 173.3 173.3 173.3 11.19 11.19 11.19
M2 120.2 120.2 120.2 10.58 10.58 10.58 77.3 77.3 77.3 10.11 10.11 10.11
M2A 166.9 166.9 166.9 10.97 10.97 10.97 112.1 80.5 80.5 10.17 10.15 10.15
M3 200.2 200.2 200.2 11.63 11.63 11.63 91.7 91.7 91.7 9.81 9.81 9.81
M5 286.5 286.5 286.5 13.86 13.86 13.86 166.6 166.6 166.6 10.68 10.68 10.68
M6 232.3 232.3 232.3 13.59 13.59 13.59 163.1 163.1 163.1 10.63 10.63 10.63
M7 202.4 202.4 202.4 12.53 12.53 12.53 132.3 132.3 132.3 10.23 10.23 10.23
M8 386.6 284.7 284.7 15.47 14.14 14.14 209.4 209.4 209.4 11.35 11.35 11.35
M9 207.9 207.9 207.9 12.00 12.00 12.00 148.3 148.3 148.3 10.41 10.41 10.41
M10 283.4 283.4 283.4 13.61 13.61 13.61 161.5 161.5 161.5 10.62 10.62 10.62
M11 283.2 283.2 283.2 13.42 13.42 13.42 174.5 174.5 174.5 10.99 10.99 10.99
M12 343.7 227.5 227.5 14.09 12.41 12.41 154.6 154.6 154.6 10.51 10.51 10.51
M13 233.1 233.1 233.1 12.56 12.56 12.56 198.8 198.8 198.8 11.65 11.65 11.65

Note: see Table 5.

M12 −  κt
(1)

Year

No break points
One break point
Multiple break points
Estimated break points

M12 −  κt
(2)

Year

M12 −  κt
(3)

Year

1950 1960 1970 1980 1990 2000 2010 2020

−0
.6

−0
.4

−0
.2

0.
0

1950 1960 1970 1980 1990 2000 2010 2020

−0
.0

10
0.

00
0

0.
01

0

1950 1960 1970 1980 1990 2000 2010 2020

−0
.0

8
−0

.0
4

0.
00

0.
04

Figure 5. Projections for the period effects of M12 applied to Dutch females aged 20–89 in the period 1950–2000. The
structural change for κ

(1)
t is identified both if we allow for one and if we allow for multiple structural changes. (Coloured

versions of the figures can be found online.)
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Figure 6. Mortality projections from M12 for x = {30, 60, 80} calibrated on Dutch females aged 20–89 in the period
1950–2000. The black and red lines represent projections without and with multiple structural changes, respectively, at
the 5th, 50th and 95th percentile.

the realised mortality rates closely. Hence, even though the projected period effect is more
plausible when structural changes are accounted for, the resulting mortality projections can be
implausible for certain ages leading to worse backtesting results in Table 5.
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Figure 7. Projections for the period effects of M9 applied to Dutch females aged 20–89 in the period 1950–2000. The
structural change for κ

(2)
t is identified both if we allow for one and if we allow for multiple structural changes.
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Figure 8. Mortality projections from M9 for x = {30, 60, 80} calibrated on Dutch females aged 20–89 in the period
1950–2000. The black and red lines represent projections without and with multiple structural changes, respectively, at
the 5th, 50th and 95th percentile.

Figure 9. Projections for the period effects of M7 applied to Dutch females aged 60–89 in the period 1950–2000.

(Coloured versions of the figures can be found online.)

The most interesting example is M7 applied to Dutch females aged 60–89. In Table 6, we see
that both the RMSE and DSS worsen if we allow for a single structural change, but the statistics
improve if we allow for multiple structural changes. Figure 9 shows the projections for the
period effects while allowing for no, one or multiple structural changes. The projections for κ

(1)
t

with a single structural change are less convincing than when no structural changes are allowed,
because the last structural change has not been identified. When we allow for multiple structural
changes we are able to detect both structural changes, and the projections for the period effects
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are more convincing. The projections for κ
(2)
t are also most convincing if we allow for multiple

structural changes. This example illustrates the potential added value from allowing for multiple
structural changes.

5. Conclusion

In this paper, we calibrate a selection of stochastic mortality models on historical mortality
data from the Netherlands and Belgium. To create mortality projections, we project the period
and the cohort effects. The cohort effects are projected using an ARIMA(p, d, q) specifi-
cation, where (p, d, q) are chosen such that the BIC is optimal. The period effect is pro-
jected using a modelling strategy that allows for objective detection of multiple structural
changes in the difference stationary process. We observe that projections of the period
effects are most robust with respect to the calibration period if we allow for multiple structural
changes.

We compare the impact on mortality projections of not allowing for structural changes with
allowing for a single or multiple structural changes. We find evidence for one structural change,
and sometimes even multiple structural changes are estimated. We also find that allowing for
structural changes can lead to improved backtesting results.Allowing for structural changes does
not always lead to improved backtesting results, because apparent structural changes may not be
identified until sufficient evidence for their existence has accumulated, i.e. the improvement in
fit from including a structural change is not sufficient yet to overcome the penalty in BIC caused
by the extra parameter. Another explanation why backtesting results may not have improved is
because changes in age effects have not been accounted for Zhao & Sweeting (2012) propose a
method to account for this, but further investigation is needed.

The model we propose relaxes the assumption that all parameter values remain constant
over the considered time period. We check for different mortality trends in the period effects
and use the latest trend for projecting mortality. In that sense it resembles methods in which
the calibration period is restricted to a particular subset of recent data points which is chosen
to provide the best model fit. Such alternative methods also allow that other, age-dependent,
parameters are only fitted for this restricted period and this may improve fit for the most recent
observations.

Our approach has the advantage that it can still be used when one requires that a model
structure describes the entire collection of data points. This would for example be the case if
we want to compare the performance of different model structures for a given dataset. If such
structures involve more than one stochastic factor, we do not have to exclude the possibility that
one of the multiple time series undergoes a structural change while the others remain the same
as before and we do not need to adjust the overall calibration period as a result of such a change.

Each approach therefore has its advantages and disadvantages, but it is reassuring that our
numerical example for a single factor model suggests that estimates generated by the two methods
will not differ substantially in their fit over the most recent years.

In this paper, the mortality model and the time series models are estimated separately. Ideally,
all sources of randomness should be addressed at once, which means that the Poisson likelihood
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and the likelihood of the time series should be optimised simultaneously. However, this raises
severe computational challenges since the conveniently simple structure of the logarithmic
likelihood can no longer be exploited in the same way as in the standard approach. This is
therefore left as a subject for future research.
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Appendix 1. Parameter constraints

Some of the mortality models experience identifiability issues. Therefore, we impose parameter
constraints. Table A1 provides an overview of the parameter constraints that are imposed on the
models.

Table A1. Overview of the parameter constraints imposed on the models.

Model Constraints

M1
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

M1A
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t κ

(3)
t = 0

M2
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t,x γt−x = 0

M2A
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t κ

(3)
t = 0

∑
t,x γt−x = 0

M3
∑

t κ
(2)
t = 0

∑
t,x γt−x = 0

M5 –
M6

∑
c γc = 0

∑
c cγc = 0

M7
∑

c γc = 0
∑

c cγc = 0
∑

c c2γc = 0
M8

∑
t,x γt−x = 0

M9
∑

c γc = 0
∑

c cγc = 0
∑

t κ
(3)
t = 0

M10
∑

t κ
(1)
t = 0

∑
t κ

(2)
t = 0

∑
t κ

(3)
t = 0

M11
∑

c γc = 0
∑

c cγc = 0
∑

c c2γc = 0
∑

t κ
(3)
t = 0

M12
∑

t,x γt−x = 0

M13
∑

c γc = 0
∑

c cγc = 0
∑

t κ
(3)
t = 0
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