Bottom-up influences in representative negotiations: How representatives affect intra-inter group relations

Saygi, Ö.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 3

Competitive Representative Negotiations
Worsen Intergroup Relations

Intergroup conflicts are part and parcel of human history. To manage intergroup conflicts, groups often resort to negotiation and engage representatives to barter with the other side. To date, most if not all work on representative negotiation has taken a top-down approach, examining how inter- and intragroup relations influence the negotiation between representatives (De Dreu, Aaldering, & Saygi, 2014). Accordingly, studies have focused on how constituency demands and accountability pressures influence the representative’s negotiation behavior (e.g., Benton & Druckman, 1974; Carnevale, Pruitt, & Britton, 1979; Klimoski, 1972; also see Aaldering, Greer, van Klee, & De Dreu, 2013), or how social norms and within-constituency status differences impact the representative’s motivational orientation towards their outgroup protagonist (Aaldering & De Dreu, 2012; Gelfand & Realo, 1999; Steinel, De Dreu, Ouwehand, & Ramirez-Marín, 2009; Steinel, Van Klee, Van Knippenberg, Hogg, Homan, & Moffitt, 2010; Van Klee, Steinel, van Knippenberg, Hogg, & Svensson, 2007).

To complement this earlier work, we developed a bottom-up approach to representative negotiation, focusing on how the negotiation process between opposing representatives shapes broader intergroup relations. Our point of departure was that constituents often learn about the representative negotiation, and the process of negotiation, through different sources such as the representatives themselves, spokespersons, journalists, or news reporters. Accordingly, constituencies may not be affected only by the ultimate outcome their representatives negotiated, but also by what happened during the negotiation process, and this not only influences their judgments of the representatives but, critically, of the rival outgroup as well. We report two experiments that show how cooperative versus competitive negotiation processes influence the way individuals come to see, and respond to uninvolved members of the outgroup, thus providing first time evidence that representative negotiation is not only influenced by, but also influences broader intergroup relations.

Bottom-Up Influences in Representative Negotiation

Representative negotiations may be modeled as a two-level situation, in which (a) the negotiation among individual representatives is embedded in a broader intergroup context, and (b) the broader intergroup relation may depend on the way representatives negotiate in that members of one group (henceforth “ingroup”) form
Competitive Representative Negotiations

impressions of and make judgments about the members of an opposing group (henceforth “outgroup”) on the basis of the way a few individuals within the ingroup and/or outgroup, such as representatives, appear and behave (e.g., Knowles & Bassett, 1976; Lickel, Hamilton, & Sherman, 2001; Lickel et al., 2000).

Negotiation research has largely ignored the bottom-up influences through which individuals form perceptions of and judgments about their ingroup as well as about more or less rivaling outgroups (De Dreu et al., 2014). An exception is work on problem-solving workshops, which suggests that constructive, face-to-face discussions between representatives are vital for the development of constructive intergroup relations (Burton, 1969; Fisher, 2006; also see Tam, Hewstone, Kenworthy, & Cairns, 2009). For example, Kelman (1995, 2005) applied this approach to the Israeli–Palestinian conflict by bringing together political leaders, negotiators, and constituencies through personal contact, speeches, and interviews. Consequently, the contact between the representatives improved ingroup members’ view of the conflict as well as their perception of the entire outgroup (Davidson & Montville, 1981; Fisher, 2006). Because these intervention studies lacked proper baseline conditions and did not control for the specifics of the interactions between protagonists, these problem-solving studies are suggestive rather than conclusive about the possibility that representative negotiations can have a bottom-up influence on broader intergroup relations. Although not concerned with representative negotiation, the possibility that the negotiation among representatives can influence broader intergroup relations resonates with the main tenets of intergroup contact theory (Tropp & Pettigrew, 2006). The theory proposes that positive contact with an outgroup member can improve the perception of the entire outgroup, provided four conditions are met: equal status among the groups, common goals, intergroup cooperation, and support from authorities (Allport, 1954; Pettigrew, 1998). For example, Tam et al. (2009) examined the relationship between intergroup contact and intergroup trust in Northern Ireland between Catholics and Protestants. In addition to direct contact between members of both groups, they also examined extended contact—the cross-group friendship between another ingroup member and an outgroup member (Wright, Aron, McLaughlin-Volpe, & Ropp, 1997). Tam et al. (2009) found that trust mediated the effect of both direct and extended contact on action tendencies towards the outgroup. Even in the absence of direct contact with the outgroup members, extended contact created trust between Catholics and
Protestants, which improved outgroup perceptions (see also Dhont & van Hiel, 2011).

Because representative negotiations can be viewed as a specific form of extended contact, one would expect that representative negotiations influence intergroup relations. However, such translation of intergroup contact theory to representative negotiation in intergroup conflict faces a number of difficulties. Most, if not all, research on intergroup contact theory defined extended contact as cross-group friendship (e.g., Cameron, Rutland, Brown, & Douch, 2006; Pettigrew, Christ, Wagner, & Stellmacher, 2007; Turner, Hewstone, Voci, & Vonofakaou, 2008; Wright et al., 1997), or via family members and work colleagues (Tausch, Hewstone, Schmid, Hughes, & Cairns, 2011). In representative negotiation, opposing individuals are not necessarily personally acquainted, let alone friends. Furthermore, extended contact theory specified as a critical condition that intergroup relations are, in principle, cooperative and marked by salient common goals. Whereas representative negotiators do have the cooperative incentive to reach agreement, they also face fierce competitive pressures to outperform their opponent. Indeed, intergroup relations within which representative negotiation emerges are often marked by histories of hostility and violence (Pruitt, 2007). Whereas both the problem-solving workshop approach and (extended) intergroup contact theory point to bottom-up influences in representative negotiation, these theoretical perspectives may not necessarily apply in the competitive context of representative negotiations. A systematic investigation of the exact manner by which the process of negotiation shapes broader intergroup relations is still lacking. To fill this void, we focused on how an outgroup representative’s competitive versus cooperative behavior impacts individual constituents’ perceptions of and behavioral tendencies towards otherwise uninvolved members of the rivaling outgroup. In Experiment 3.1, we compared competitive, cooperative, and neutral communications by the outgroup representative while keeping the outcome of the negotiation constant. In Experiment 3.2, we kept the amount of competition (resistance to concession making) equal, but varied whether the competitive behavior occurred at the beginning or towards the end of the negotiation process to further examine the effects of the dynamics of the negotiation process on intergroup relations, regardless of the outcome.
Competitive and Cooperative Communication in Intergroup Conflict

Negotiation processes are typically classified as competitive or cooperative (Deutsch, 1949; Pruitt, 1967). When processes are competitive, parties use deception, voice hostilities, fail to exchange information, and try to exploit one another. When negotiation processes are cooperative, parties share information, make and reciprocate concessions, and refrain from hostile exchanges and deceitful tactics (Bazerman, Curhan, Moore, & Valley, 2000; De Dreu, Beersma, Steinel, & van Kleef, 2007).

Work on interpersonal negotiations has revealed that even if the ultimate outcome is the same, negotiators are less satisfied with this outcome when the process was marked by competitive rather than cooperative communication processes (e.g., Curhan, Elfenbein, & Xu, 2006; Schei, Rognes, & De Dreu, 2008; also see van den Bos, Wilke, Lind, & Vermunt, 1998). It follows then that competitive communication by the outgroup representative during the negotiation process will create more dissatisfaction with the negotiated outcome among ingroup constituents than cooperative and neutral communication by the outgroup representative. Furthermore, we anticipate that cooperation by the outgroup representative leads to better outcome satisfaction as opposed to neutral communication due to its unexpected occurrence in a competitive representative negotiation setting. Due to the competitive nature of the negotiations, cooperative behavior may become more salient and lead to more appreciation and satisfaction with the negotiation than more natural competitive behaviors.

However, although cooperation may have a positive impact on outcome satisfaction, we expect the negative effect of competition, to be stronger than the positive effect of cooperation, compared to neutral behavior, for a number of reasons. First, negative information weighs heavier on the mind than positive information (Ito, Larsen, Smith, & Cacioppo, 1998). Second, negotiated outcomes framed as losses loom larger than gains (De Dreu, Carnevale, Emans, & van de Vliert, 1994; Kahneman, 2003; van Beest, van Dijk, De Dreu, & Wilke, 2005). Third, negative emotional communications have bigger impact than positive emotional communications (van Kleef, De Dreu, & Manstead, 2004). Finally, competitive information affects negotiation processes more strongly than cooperative information (Aaldering & De Dreu, 2012; Steinel et al., 2009; Weingart, Brett, Olekalns, & Smith, 2007). We thus expected that competitive communication would decrease outcome satisfaction and that
cooperative communication would increase outcome satisfaction compared to neutral communication, and we anticipated that the former effect would be more pronounced than the latter.

If representative negotiation has the type of bottom-up influences we proposed, we should see that representatives create a positive or negative ingroup and/or outgroup image via their communication and/or behavior during the negotiation process and thereby influence intergroup relations. Because competitive communication increases fear and intergroup anxiety (Stephan & Stephan, 1984; Wildschut, Pinter, Vevea, Insko, & Schopler, 2003), the cognitive salience of the intergroup boundary (Wilder, 1986), and confirms the categorization of ingroup and outgroup (Tajfel & Turner, 1979), we expected competitive compared to neutral and cooperative representative negotiation to promote outgroup derogation. Furthermore, because of the benefits of intergroup contact (e.g., Dhont & van Hiel, 2011; Tam et al., 2009; Tropp & Pettigrew, 2006) and the fact that cooperation has been shown to increase outgroup projection (Riketta & Sacramento, 2008), we propose that cooperative communication will reduce outgroup derogation compared to the neutral communication condition.

Study 3.1: Introduction and Hypotheses

Hypotheses were tested in two experiments. Study 3.1 focused on cooperative versus competitive messages communicated by the outgroup representative. Study 3.2, which we introduce later, focused on the timing of competition. Study 3.1 tested four hypotheses: (1a) Competitive communication by the outgroup representative leads to lower outcome satisfaction compared to cooperative and neutral communication; (1b) Compared to neutral communication condition, cooperative communication by the outgroup representative has a positive effect on ingroup’s outcome satisfaction; (2a) Ingroup members show more outgroup derogation in response to competitive (as opposed to neutral or cooperative) communication by the outgroup representative; (2b) Ingroup members show less outgroup derogation in response to cooperative communication compared to neutral communication.

Method

Sample and design. Fifty-three undergraduate students at the University of Amsterdam participated in the study for monetary compensation (€7.00 or one course credit). Using a double-blind procedure, participants were randomly assigned to a
competitive outgroup representative, cooperative outgroup representative, or neutral outgroup representative condition. Dependent variables were the participants’ final satisfaction with the outcome and intergroup bias.

Procedure and manipulation. Upon arrival, participants were seated in separate cubicles in front of a computer. They read that they would be divided into two three-person groups after completing a personality survey. After they completed the survey, all participants were told that they belonged to Group O with two other participants who performed similarly on the survey and that they would be participating in an intergroup negotiation with three other students who formed Group P. Participants were further told that one of the members in each group would be randomly chosen to represent their group in a negotiation about the division of €30.00 between the two groups, and that the remaining group members would act as observers. All participants were in fact placed in the observer role and informed that they would receive feedback from their representative about the negotiation with the other group’s representative. They were told that they would receive additional pay depending on the agreement reached by their representatives if the representatives came to an agreement within 10 minutes. Finally, participants were told that they would be able to see the offers made by their own representative but not the offers made by the outgroup representative. However, participants were told that they would be shown some of the messages from the outgroup representative to their ingroup negotiator.

The negotiation started and concessions made by a simulated ingroup representative were shown in a message box. Across the negotiation rounds, the simulated ingroup representative’s concessions were linear and constant across conditions. For example, participants received a message from the experimenter: “the representative of your group offered to keep €28.50 for your group and to give €1.50 to the other group.” As a response participants in the competitive condition received pretested competitive messages from the outgroup representative (e.g., “You should give more, my group wants to see a profit!”). Participants in the cooperative condition received cooperative messages from the outgroup representative (e.g., “Let’s try to come to a solution together—profit for everyone!”). Finally, participants in the control condition received neutral messages from the outgroup representative (e.g., “The offer is sent”). After 10 rounds, all participants were told that they would receive €15.00 as
a group because the representatives agreed on a 50–50 split of the total of €30.00. Participants then proceeded to answer a series of questions to assess satisfaction with the outcome and to probe ingroup favoritism and outgroup derogation.

Measures

Outcome satisfaction. Following Kwon and Weingart (2004), we asked participants to indicate on a 7-point scale (1 = *not at all*, 7 = *very much*) to what extent they agreed with the following two statements; “I think there could have been a better result” (reverse coded) and “I am annoyed with the negotiated outcome” (reverse coded), as well to indicate to what extent they felt “happy,” “satisfied,” and “disappointed” (reverse coded) about the negotiated outcome ($\alpha = .82$).

Intergroup bias. To measure intergroup bias, we utilized an intergroup prisoner’s dilemma maximizing differences game (IPD-MD; Halevy, Bornstein, & Sagiv, 2008), that was presented to participants as a bonus game in which they could earn extra money. They were told that each individual group member had an endowment of €10.00, that each euro that was kept was worth €1.00 to themselves, that each euro that was contributed to the within-group pool would give each ingroup member, the contributor included, €0.50 and that each euro that was contributed to the between-group pool would be worth €0.50 to each ingroup member and also subtract €0.50 from each outgroup member. The amount contributed to the within-group pool thus reflects ingroup favoritism and the amount contributed to the between-group pool reflects outgroup derogation (De Dreu et al., 2010; Halevy et al., 2008; Halevy, Chou, Cohen, & Bornstein, 2010). After participants had indicated their contributions to the within-group and the between-group pool, they responded to manipulation check questions, which ended the experiment. Participants were paid and fully debriefed.

Results and Discussion

Manipulation check. We checked for the manipulation of competitiveness with three items (e.g., “The other group representative wanted our group to be satisfied too” (reverse coded), “The other group representative was determined to earn more money for his group relative to our group,” and “During the negotiations, the outgroup representative tried to make the fairest deal possible” (reverse coded; $\alpha = .71$). A one-way analysis of variance (ANOVA) showed an overall effect of condition on perceived competitiveness of the outgroup representative, $F(2, 49) = 11.98, p < .001$. Planned
Competitive Representative Negotiations

contrasts showed that participants in the cooperative condition perceived the outgroup representative as less competitive ($M = 2.77, SD = 0.81$) than participants in the competitive condition ($M = 4.45, SD = 1.01$), $t(49) = −4.87, p < .001, d = 1.83$. Participants in the neutral messages condition perceived the outgroup representative as more competitive ($M = 3.70, SD = 1.25$) compared to the cooperative condition ($M = 2.77, SD = 0.81$), $t(49) = −2.67, p = .010, d = 0.88$ and less competitive compared to the competitive condition ($M = 4.45, SD = 1.01$), $t(49) = 2.07, p = .044, d = 0.66$. We concluded that the manipulation was successful.

Hypothesis testing. Although the final negotiated outcome was identical across conditions, we predicted in Hypothesis 1a that participants in the competitive condition would be less satisfied with the outcome compared to participants in the cooperative and neutral conditions. Hypothesis 1b specified that compared to neutral communication condition, cooperative communication by the outgroup representative will have a positive effect on ingroup’s outcome satisfaction. A one-way ANOVA revealed a significant effect for condition on outcome satisfaction, $F(2, 49) = 4.28, p = .019$. Planned contrasts showed less satisfaction in the competitive compared to the cooperative condition ($M = 4.56, SD = 1.38$ vs. $M = 5.36, SD = 1.09$), $t(49) = 2.07, p = .043, d = 0.64$ as well as compared to the neutral condition ($M = 5.70, SD = 0.93$), $t(49) = −2.83, p = .007, d = 0.96$. No significant difference was observed between the neutral and the cooperative communication condition. Therefore, Hypothesis 1a was supported, but Hypothesis 1b was not supported.

Hypotheses 2a and 2b considered ingroup favoritism and outgroup derogation. Contributions to the IPD-MD within-group pool (ingroup favoritism) and to the between-group pool (outgroup derogation) were submitted to a 2 (contribution: within vs. between pool) x 3 (condition: cooperative vs. competitive vs. neutral) mixed-model ANOVA, with the first factor within-subjects and the second factor between-subjects. Because some participants miscalculated and distributed more than €10.00 in total, we first ran a binary logistic regression, which indicated that the percentage of erring people did not differ across conditions, $\chi^2(2, N = 53) = 3.51, p = .173$. Furthermore, we checked whether any of the participants who miscalculated and distributed more than €10.00 in total were outliers by examining how much their score deviated from the group mean. Based on this analysis, only one participant was classified as an outlier.
whose score on within-group pool deviated more than three standard deviations from the group mean. The rest of the participants’ contributions in either of the pools did not substantially deviate from the group mean. We therefore removed one outlier and proceeded with the mixed-model ANOVA, which revealed a main effect of contribution, \(F(1, 49) = 40.71, p < .001, \eta_p = .45 \), and a significant interaction effect, \(F(2, 49) = 3.29, p = .046, \eta_p = .12 \). Planned contrasts showed that there was a significant main effect of outgroup representative’s communication on outgroup derogation, \(F(2, 49) = 3.46, p = .039 \). Second, contributions to the between-group pool were higher in the competitive condition than in the cooperative condition, \(t(49) = -2.52, p = .015, d = 0.72 \), and also marginally higher than in the neutral messages condition, \(t(49) = 1.92, p = .060, d = 0.54 \). The neutral messages and the cooperative messages conditions did not differ significantly (see also Table 3.1). Thus, Hypothesis 2a was supported: Especially competitive messages from an outgroup representative increased outgroup derogation as opposed to cooperative and neutral messages. However, Hypothesis 2b was not supported since there was no significant difference between neutral and cooperative communication on outgroup derogation. Finally, although not predicted, we found a significant main effect of communication on ingroup favoritism \(F(2, 49) = 3.34, p = .043 \). Participants in the cooperative condition contributed marginally more to the within-group pool than did those in the competitive \(t(49) = 1.92, p = .060, d = 0.54 \) and neutral conditions \(t(49) = 2.42, p = .019, d = 0.69 \).

Taken together, Study 3.1 showed that competitive rather than neutral or cooperative communication by the outgroup representative decreased satisfaction with the negotiated outcome (despite the fact that the outcome was the same in all conditions); cooperative communication had little or no effect compared to a more neutral communication style. More importantly, participants displayed stronger outgroup derogation when the outgroup representative communicated in a competitive rather than cooperative or neutral manner. Cooperative communication did not differ significantly from neutral communication. This finding fits work showing that negative contact has a stronger effect on intergroup relations than positive contact (Paolini, Harwood, & Rubin, 2010), that negative attitudes generalize more easily than positive attitudes (Fazio, Eiser, & Shook, 2004), and more generally that negative information weighs more heavily on the mind (Ito et al., 1998). Accordingly, it may be that only repeated demonstrations of cooperativeness by the outgroup
representative bring out the positive effect of cooperative communication on inter-group relations.

We found that ingroup favoritism was higher in the cooperative outgroup representative condition as opposed to the competitive and neutral communication conditions. Although this may appear odd at first blush, our results regarding ingroup favoritism seem to be the result of inter-dependence between the ingroup favoritism and outgroup derogation measures. In the IPD-MD game, the more participants contribute to the within-group pool (ingroup favoritism), the less they can contribute to the between-group pool (outgroup derogation). Given this hydraulic relationship, in the cooperative condition participants may have refrained from derogating the outgroup and rather showed ingroup favoritism. Finally, as predicted, participants in the competitive condition spent more of their money on derogating the outgroup than did those in the cooperative and neutral conditions.

Study 3.2

In Study 3.1, we examined the role of cooperative and competitive negotiation strategies on outcome satisfaction and intergroup relations in isolation. Study 3.2 complements Study 3.1 by presenting cooperative and competitive negotiation strategies within the same paradigm. Study 3.2 examines how the detrimental effects of competition identified in Study 3.1 could be lessened by preceding it with cooperation. Finally, in addition to Study 3.1, we test the possibility that early versus late competition may have differential effects on outcome satisfaction and intergroup relations.

Negotiation processes are temporal in that competitive and cooperative moves can be spaced differentially, such that competition precedes cooperation or cooperation precedes competition. A telling example is the so-called “good cop, bad cop” strategy (e.g., Brodt & Tuchinsky, 2000; Hilty & Carnevale, 1993; Kamisar, 1980) in which a cooperative strategy is preceded and/or followed by a competitive strategy (sometimes but not necessarily enacted by a new protagonist; Hilty & Carnevale, 1993). Kwon and Weingart (2004) found that whereas late concessions by one’s protagonist increased satisfaction with the outcome, it actually decreased satisfaction with the protagonist, perhaps because late concessions create a perception of toughness on the other side and a sense of relief when an agreement is reached after all.

In Study 3.2 we kept the overall concession made by the outgroup
representative constant but varied whether a large concession was made early or late in the negotiation. We predicted early competition (a late concession following a series of very minor concessions) to create more outcome satisfaction compared to late competition (an early concession followed by a series of minor concessions) condition (Hypothesis 3). We suspected this to come about because concessions that come late in the process enable negative counterfactuals (“If only this concession would not have been made, we would have had no agreement”), and such negative counterfactuals inspire relief and increase outcome satisfaction (e.g., Galinsky, Mussweiler, & Medvec, 2002; Kray, Galinsky, & Wong, 2006; Markman & McMullen, 2003; Wells & Gavanski, 1989). Accordingly, we predicted that the effects of the timing of concessions on outcome satisfaction are mediated by ingroup constituents’ expectations regarding the final outcome (Hypothesis 4).

As in Study 3.1, our main interest in Study 3.2 was the bottom-up influence of negotiation on intergroup relations. In Study 3.2, we measured the quality of the intergroup relations with two different measures—outgroup trust and perceived closeness of the outgroup. The reason for using evaluative rather than behavioral measures was that the behavioral measure in Study 3.1 may have reflected a desire to “get back at” the competitive representative, rather than reflecting a true change in evaluative perceptions of the outgroup as a whole. Regarding outgroup trust and perceived closeness, we reasoned that early competition creates a perception of the outgroup representative as tough and cunning, and thus rather untrustworthy. Indeed, in interpersonal negotiations, trust develops as a result of cooperative exchange but only when such cooperative exchange takes place early rather than late in the process—cooperative exchange that comes about only towards the end of a negotiation actually creates distrust (Mayer, Davis, & Schoorman, 1995). In line with the intergroup contact theory (Pettigrew & Tropp, 2006), Tam et al. (2009) found that negative direct/indirect contact with an outgroup member decreased trust towards the entire outgroup (see also Dhont & van Hiel, 2011). Accordingly, and in contrast to Hypothesis 3, in which early rather than late competition is predicted to improve outcome satisfaction, when turning to the broader intergroup relations, we predicted negative effects of early rather than late competition—namely, less outgroup trust and perceived closeness of the outgroup (Hypothesis 5).
Competitive Representative Negotiations

Method

Sample and design. Fifty-two undergraduate students at the University of Amsterdam participated in the study for monetary compensation (€7.00 or one course credit). Using a double-blind procedure, they were randomly assigned to an early competition or a late competition condition. Dependent variables were outcome satisfaction, outgroup trust, and perceived closeness of the outgroup.

Procedure and manipulation. Group formation, selection of representatives, and the negotiation task were exactly the same as in the first study. However, instead of manipulating messages by the outgroup representative, we manipulated the timing of competition by the outgroup representative by simulating the representative and the concession-making patterns. After the negotiations started, participants could follow the concessions made by each representative at each round on a slowly moving graph. Figure 3.1 shows the grid we used to manipulate timing of competition by the outgroup representative. The concession rate and magnitude of the ingroup representative’s offers were kept constant and linear across all conditions. Additionally, we kept the negotiated outcome constant across all conditions and simulated a negotiation that resulted, after 10 rounds, in an equal split between groups. In the late competition condition, participants saw a large early 40% concession by the outgroup representative in the second round of the negotiation, and then smaller, 10% concessions across the rest of the eight rounds. In the early competition condition, the outgroup representative only conceded 10% across the first eight rounds, and in the second to last round of the negotiation made a large concession of 40%. After Round 9, outcome expectations were assessed by asking participants “As a group, how much do you expect to get at the end of the negotiations?” by typing a number between 0 and 30. Then the negotiation proceeded and ended at Round 10, as in Study 3.1, with an agreed upon 50–50 split of the total of €30.00 (i.e., €15.00 to each group). Participants answered a series of questions assessing outcome satisfaction, outgroup trust, and perceived closeness of the outgroup. This ended the experiment, and participants were paid and debriefed.

Measures. Outcome satisfaction was measured as in Study 3.1 (α = .75). Outcome expectations were assessed after Round 9 of the negotiation (see previous lines). Outgroup trust was measured with the 12-item trust scale of Mayer and Davis.
(1999) adapted to fit our negotiation context (e.g., “I believe that the other group had a strong sense of justice,” “I believe that the other group tried to be honest with us during the negotiations,” “The wishes and desires of our group were very important to the other group” (1 = not at all, to 7 = very much; α = .73).

Perceived closeness of the outgroup. To assess the perceived closeness of the outgroup, we used a modified version of the Inclusion of Other in the Self (IOS) Scale, a pictorial measure intended to measure people’s sense of interpersonal interconnectedness (see Figure 3.2; Levinger & Snoek, 1972; also see Pipp, Shaver, Jennings, Lamborn, & Fischer, 1985; Tropp & Wright, 2001). Specifically, we showed participants a large grid, and asked them to drag and drop their ingroup members (identified as circles on the down left corner), the participant him or herself (identified as “me” circle), and outgroup members (identified as triangles on the upper right corner) onto some place in the grid, in a way that it represents the relationship between the two groups. Coordinates were recorded, and from these we measured the geometrical distances between the participant and outgroup members. To calculate the geometrical distances between the participant and outgroup members, first the distances between the participant and each outgroup member were calculated by using the Pythagoras theorem \(a^2 + b^2 = c^2\). Afterwards we created an output that calculates the average distances between the participant and the outgroup members. The output was calculated by taking the average of each distance between the participant and the outgroup members. The further apart participants placed themselves from the outgroup, the less close they felt towards the outgroup members, and the closer they placed themselves with the ingroup members, the closer they felt with the ingroup members.

Results and Discussion

Manipulation checks. To check the effectiveness of our manipulation of timing of competition, participants responded to the items “The other group representative gave in” and “The other group representative was cooperative” (1 = mostly in the beginning, 7 = mostly at the end). Univariate ANOVA showed that participants in the late competition condition were more likely to say that the other group representative gave in mostly in the beginning \((M = 2.85, SD = 1.93), F(1, 50) = 62.17, p < .001, \eta_p = .55\), and that the other group representative was cooperative mostly in the beginning \((M = 3.69, SD = 2.01), F(1, 50) = 15.24, p < .001, \eta_p = .23\), than participants in the
early competition condition ($M = 6.27$, $SD = 1.07$, and $M = 5.62$, $SD = 1.49$, respectively). We concluded that our manipulation was successful.

Hypothesis testing. Hypothesis 3 predicted that early compared to late competition by the outgroup representative leads ingroup constituents to be more satisfied with the negotiated outcome. Although the outcome was identical in both conditions, a univariate ANOVA indeed showed that participants in the late competition condition ($M = 4.81$, $SD = 1.07$) reported lower outcome satisfaction than participants in the early competition condition ($M = 5.57$, $SD = 0.87$), $F(1, 50) = 7.85$, $p = .007$, η2_p = .14. Hypothesis 4 predicted this effect to be mediated by ingroup expectations about the outcome their representative would reach. Our independent variable, late versus early competition, was dummy coded as 0 for late competition and 1 for early competition. Figure 3.3 shows our mediation model with the path coefficients as well as the significance levels from a set of hierarchical regressions used to test this prediction. First, timing of competition by the outgroup representative had a significant effect on outcome expectations ($β = -.33$, $p = .018$). Second, timing of competition had a significant effect on outcome satisfaction ($β = .37$, $p = .007$). Third, outcome expectations had a significant effect on outcome satisfaction ($β = -.28$, $p = .043$). Finally, the effect of timing of competition on outcome satisfaction was reduced when outcome expectations were controlled for ($β = .27$, $p = .045$). Using Preacher and Hayes’s (2004) bootstrapping procedure, we obtained a point estimate for this mediation effect of .18, with a bias-adjusted and accelerated 95% confidence interval ranging from .03 to .48. Accordingly, we conclude that Hypothesis 4 was supported. Hypothesis 5 predicted this effect would “spill-over” to the entire outgroup. For the outgroup trust measure, one-way ANOVA showed that participants in the early competition condition ($M = 3.61$, $SD = 0.73$) trusted the outgroup less compared to the participants in the late competition condition ($M = 4.02$, $SD = 0.53$), $F(1, 50) = 5.53$, $p = .023$, η$^2 = .10$ (see also Table 3.2). For the closeness measure, a univariate ANOVA revealed a significant effect for participants in the early competition condition to place him or herself farther from the outgroup members than participants in the late competition condition ($M = 465$, $SD = 244$ vs. $M = 312$, $SD = 204$), $F(1, 50) = 5.97$, $p = .018$, η$^2_p = .11$. We conclude that Hypothesis 5 was supported.

Taken together, Study 3.2 showed that ingroup constituents were more satisfied
with the negotiation outcome when their outgroup representative competed early rather than later in the negotiation process because early competition set lower expectations and, probably, elicited negative counterfactuals. We also found that such enhanced outcome satisfaction in case of early competition came hand in hand with reduced outgroup trust and lower closeness towards outgroup members.

Conclusions and General Discussion

Complementing the traditional top-down approach to understand representative negotiation, the two studies reported here provided first-time evidence for bottom-up influences of representative negotiations on the broader intergroup relations within which such negotiations are conducted. Study 3.1 revealed that competitive communication by an outgroup representative decreased ingroup members’ outcome satisfaction and increased outgroup derogation as opposed to cooperative and neutral communication conditions. Study 3.2 complemented Study 3.1 by examining both cooperation and competition in a dynamic setting in which both strategies may take place. This dynamic setting allowed us to test whether competition preceded by cooperation (late competition) or followed by cooperation (early competition) has differential effects on intergroup relations as well as on outcome satisfaction. Study 3.2 revealed that early rather than late competition by the outgroup representative harmed outgroup trust and reduced perceived closeness with the outgroup. Interestingly, Study 3.2 also showed that this effect emerged even though ingroup members were relatively satisfied with the outcome from the negotiation, an effect we attribute to them being relieved about the fact that the seemingly competitive negotiation process ended with agreement (rather than impasse). Together, these studies bridge negotiation theory focusing primarily on interpersonal interactions (e.g., Bazerman et al., 2000; De Dreu & Carnevale, 2003) and extant work on intergroup perceptions and evaluations (Dovidio & Gaertner, 2010; Yzerbyt & Demoulin, 2010), literatures that thus far have developed in relative isolation. In the following sections, theoretical and practical implications of our findings will be discussed as well as limitations and future research ideas.

Theoretical and Practical Implications

Core to social psychology is furthering our understanding of the origins of intergroup perceptions. Much of the work dealing with this issue took as its starting
Competitive Representative Negotiations

point intergroup contact theory, which suggests that prejudice can be reduced through (repeated) positive contact with outgroup members (Allport, 1954), or the “extended contact hypothesis” positing that ingroup members can also change their perception of the outgroup through indirect contact with an outgroup member (Wright et al., 1997). Although extended contact has previously been defined as cross-group friendship (e.g., Cameron et al., 2006; Pettigrew et al., 2007; Turner et al., 2008; Wright et al., 1997), our studies suggest that extended contact does not have to be based on friendship, but can also be contact in competitive settings between group representatives. Even within the relatively competitive context of negotiations between representatives that are otherwise unacquainted, competitive rather than cooperative communication (Study 3.1), and early rather than late competition (Study 3.2) led to increased outgroup derogation (Study 3.1) and lower outgroup trust and perceived closeness of the outgroup (Study 3.2). Accordingly, representatives may use our findings to be more mindful about the negative consequences for intergroup relations due to competitive communication or late concessions in the negotiations.

Our findings also bring a new perspective to the negotiation literature, which has focused mostly on negotiation processes and outcomes, and remained silent about the possible consequences beyond the immediate negotiation itself, including the overarching between-group relations. While initial research has begun to examine how these broader relations may impact interpersonal processes (Aaldering & De Dreu, 2012; Aaldering et al., 2013; Steinel et al., 2009; Steinel et al., 2010; van Kleef et al., 2007), the current study is the first to evidence the reverse possibility—that the negotiation tactics and strategies employed by individual representatives influence how constituents perceive and evaluate outgroup members that were not involved in the negotiation, and did not contribute to the process. Because this is the first study to provide evidence for such bottom-up influences, and because of the potentially important effects on intergroup trust and closeness, we call for more research into these bottom-up processes. Note, however, that the lack of a significant correlation between outcome satisfaction and intergroup relation measures in Study 3.1 and 3.2 suggests that they may have different underlying mechanisms and hence the chosen negotiation strategy may have differential effects for outcome satisfaction and intergroup relations.

Relatedly a practical implication of our findings is that representative
negotiators should not simply assume better intergroup relations if they achieve satisfying outcomes, but rather consider the effect of their negotiation behavior on post-negotiation intergroup relations as well. Based on our findings we could say that representatives should avoid using competitive as opposed to cooperative communication to facilitate better intergroup relations as well as higher outcome satisfaction. Additionally, representative’s competition that comes late (rather than early) in the negotiation may facilitate higher outgroup trust as well as higher perceived closeness with the outgroup members, even though ingroup members may feel less satisfied with the outcome because of higher expectations compared to competition that comes early in the negotiation.

Future Directions and Limitations

Further exploration of the effects of the negotiation process on intergroup relations will provide valuable insights across a variety of disciplines about the reasons why intergroup relations may be damaged, even under considerably favorable negotiation outcomes. For example, further research could elaborate whether or not the optimal conditions for better intergroup relations identified by Allport (1954)—equal status, common goals, intergroup cooperation, and support from authorities (Pettigrew, 1998)—can be stretched or modified to fit the content of representative negotiation. For example, do representatives need to be of equal status in order to establish good relations between the two groups? Could it be that a higher power representative’s competitive act is justified more easily (because it is more expected) than a similar act by a low power representative, and therefore reduces the negative impact of competition on intergroup relations?

Related to the extended contact hypothesis, recent research examined different types of extended contact and compared the effectiveness of extended contact on outgroup trust. For example, Tausch et al. (2011) argued that extended contact via more intimate ingroup relationships (i.e., friends and family) would be more strongly related to outgroup trust compared to extended contact via less intimate ingroup relations (i.e., neighbors and work colleagues). Indeed they found the strongest effect of extended contact on outgroup trust via friends. It is important to note that, differently from Tausch et al. (2011), our representative negotiation context was rather competitive and extended contact was not via an intimate ingroup member such as a friend or a family
Competitive Representative Negotiations

member, but via a group representative. We believe representative negotiation context provides a unique context for extended contact because it can occur even in places where direct contact via friends, family, work colleagues, and neighbors is not possible, but via leaders and representatives is possible. To understand the effectiveness of extended contact via different sources, future research should compare extended contact via intimate ingroup members (e.g., friends, family, work colleagues) and extended contact via representatives.

In our experiments, we examined process factors that have been previously discussed as determinants of negotiation outcomes (e.g., cooperative vs. competitive communication, concession-making), and identified their role in determining the quality of intergroup relations. Our findings thus raise questions about the benefits of strategies identified in previous research, such as combinations of high resistance to concession-making and prosocial orientation leading to higher outcomes (De Dreu, Weingart, & Kwon, 2000), since we found detrimental effects of early competition (as opposed to late competition) on outgroup perceptions. Future research should therefore investigate whether combinations of early competition and prosocial behavior of the outgroup representative can decrease the detrimental effects of early competition on intergroup relations, since prosocial behavior of the outgroup representative can enhance, instead of decrease, trust towards the outgroup.

While a primary goal of our study was to examine the effects of the negotiation process in isolation, we do not know if our findings will apply when negotiated outcomes are more or less favorable. In sensu stricte, our results are limited to 50–50 splits between the two groups. Whereas 50–50 compromises are more often rule than exception (Zartman, 1991), generalizing our findings to situations where ingroup members win or lose needs to be done with caution and requires future research.

External validity was an issue in our experiments since our experimental design allows us to generalize our findings only to situations in which ingroup members only had contact with the outgroup representative. Although this could be the case in many organizational negotiations as well as international negotiations, we realize that we need future research in order to generalize our findings across situations in which ingroup members know one or more outgroup members. For example, future research can examine how ingroup member’s positive or negative contact with an outgroup member
interacts with the outgroup representative’s negotiation behavior to influence intergroup relations. It is important to understand which contact (via a representative or an outgroup member) is more effective in improving intergroup relations in order to develop better intervention programs.

Conclusion

Two experiments showed that the representative negotiation process during intergroup negotiations could affect intergroup relations, regardless of the negotiated outcome. Together, these findings show that representatives can create a group image through the way they negotiate, which becomes the defining feature of their group. This in turn shifts ingroup members’ social perception from individual (representative) to group perception (entire outgroup) and therefore affects intergroup relations. More specifically we found that competitive communication as well as early competition by a group representative during an intergroup negotiation can harm intergroup relations more compared to cooperative communication and late competition by a group representative, even if the negotiated outcome is the same.
Footnotes

1 One participant was classified as an outlier (+/- 3 SDs from the group mean) in the IPD-MD Game. Hence, we removed the outlier from all the analyses for the sake of consistency. Results did not change if we maintained the outlier unless reported in the paper.

2 In total 11 participants made calculation mistakes. One of these participants was classified as an outlier (i.e., > +/-3 SDs from the group mean) and removed from the analysis. To correct for participants’ calculation mistakes, rather than taking the absolute contribution participants made to the within- and the between-group pool, we calculated the proportion of within-group contributions relative to the total amount they contributed (i.e., to within- and between-group pool combined). A repeated-measures ANOVA revealed a main effect for contribution, $F(1,49) = 39.05, p < .001, \eta_p^2 = .44$, and a marginally significant interaction effect, $F(2,49) = 3.13, p = .053, \eta_p^2 = .11$. Planned contrasts showed more outgroup derogation (contributions to the between-group pool) in the competitive rather than cooperative condition, $t(49) = -2.46, p = .017$, and a non-significant tendency for more out-group derogation in the competitive compared to the neutral communication condition, $t(49) = 1.32, p = .19$. The neutral messages and the cooperative messages conditions did not differ significantly, $t(49) = -1.07, p = .29$.

3 In addition to calculating the average distances between the participant and the outgroup members, we calculated the average distances between the ingroup and the outgroup members, as well as the center distance between the ingroup triangle and the outgroup triangle. If participants identify with their group, these three measures should be highly correlated as well as lead to similar results. Indeed, participant-outgroup distance was highly correlated with ingroup-outgroup average distance, $r = .97, p < .001$, as well as with the ingroup-outgroup center distance, $r = .97, p < .001$. Center distance and ingroup-outgroup average distance were highly correlated with each other as well, $r = .99, p < .001$. Furthermore, the results of the one-way ANOVA revealed that participants in the early competition condition placed ingroup members farther from the outgroup members than participants in the late competition condition (ingroup-outgroup center distance, $F(1,50) = 4.03, p = .050$; ingroup-outgroup average distance, $F(1,50) = 3.83, p = .056$).
Figure 3.1. Manipulation of competition by the outgroup representative. The line below represents the offers made by the ingroup representative whereas the line above represents the concessions made by the outgroup representative (Experiment 3.2).
Figure 3.2. The grid used for the perceived closeness measure. (Experiment 3.2).
Figure 3.3. Mediation of timing of competition by the out-group representative on outcome satisfaction by expected outcome in Study 3.2. Represented path coefficients are standardized betas; †p > .05; *p < .05; **p < .01.
Table 3.1. Means, standard deviations, and correlations among dependent variables (Study 3.1)

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cooperative</td>
<td>neutral</td>
<td>competitive</td>
<td></td>
</tr>
<tr>
<td>1. Outcome</td>
<td>5.36 (1.09)</td>
<td>5.70 (0.93)</td>
<td>4.56 (1.38)</td>
<td>1</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>5.36 (1.09)</td>
<td>5.70 (0.93)</td>
<td>4.56 (1.38)</td>
<td>1</td>
</tr>
<tr>
<td>2. Within group pool (ingroup favoritism)</td>
<td>8.68 (1.97)</td>
<td>6.38 (3.18)</td>
<td>6.88 (3.19)</td>
<td>-.06 1</td>
</tr>
<tr>
<td>3. Between group pool (outgroup derogation)</td>
<td>2.11 (2.18)</td>
<td>2.56 (2.52)</td>
<td>4.35 (3.23)</td>
<td>-.08 -.57** 1</td>
</tr>
</tbody>
</table>

Note: N = 53, SDs = Standard deviations, **p < .01, *p < .05
Table 3.2. Means, standard deviations, and correlations among dependent variables (Study 3.2)

<table>
<thead>
<tr>
<th></th>
<th>Means (SD)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>late</td>
<td>early</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Outcome</td>
<td>4.81</td>
<td>5.57</td>
<td>1.07</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction</td>
<td>(1.07)</td>
<td>(0.87)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Expected outcome</td>
<td>14</td>
<td>10.96</td>
<td>-.37**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.7)</td>
<td>(5.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Participant to</td>
<td>312</td>
<td>465</td>
<td>.09</td>
<td>-.07</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>outgroup distance</td>
<td>(204)</td>
<td>(244)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Outgroup Trust</td>
<td>4.02</td>
<td>3.61</td>
<td>-.10</td>
<td>.24</td>
<td>-.31*</td>
<td>1</td>
</tr>
<tr>
<td>(0.53)</td>
<td>(0.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Within ingroup</td>
<td>187.58</td>
<td>147.80</td>
<td>.09</td>
<td>.17</td>
<td>-.15</td>
<td>.05</td>
</tr>
<tr>
<td>distances</td>
<td>(115.24)</td>
<td>(86.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: N = 52, SDs = Standard deviations, **p < .01, *p < .05.