Soft, absorbed X-ray spectra of the new transient IGR J17451-3022
Heinke, C.O.; Bahramian, A.; Altamirano, D.; Wijnands, R.A.D.

Published in:
The astronomer's telegram

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Soft, absorbed X-ray spectra of the new transient IGR J17451-3022

ATel #6459; C. O. Heinke, A. Bahramian (Alberta), D. Altamirano (Southampton), R. Wijnands (Amsterdam) on 10 Sep 2014; 21:47 UT

Credential Certification: Craig Heinke (cheinke@virginia.edu)

Subjects: X-ray, Neutron Star, Transient

Referred to by ATel #: 6469, 6486, 6501, 6533, 7028, 7361

We report Swift/XRT followup observations of the new transient IGR J17451-3022 discovered in JEM-X observations performed Aug. 22-24 (Atel #6451). Swift observed with XRT in PC mode on Sept. 5 (1648 seconds; position reported in Atel #6451), Sept. 9 (1950 s, starting at UT 10:00), and on Sept. 10 (856 s, starting at UT 2:12). IGR J17451-3022 is clearly detected in each observation, with moderate pileup.

We extracted source spectra (excluding the central 8-10" to avoid the piled-up region) and background spectra from the 3 XRT PC mode observations, constructed effective area files, and used the appropriate response matrices. We grouped the data to 50 counts/bin in the first two observations, and 25 counts in the third observation, and fit the spectra simultaneously in XSPEC with absorbed (TBABS, using Wilms et al. (2000, ApJ, 542, 914) abundances) power-law, blackbody (bbodyrad), or bremsstrahlung models. An absorbed power-law model gave a poor fit (reduced chi-squared of 1.34 for 59 degrees of freedom), with photon indices greater than 3.3 (best-fit around 3.7). Bremsstrahlung models gave a better fit (reduced chi-squared of 1.16 for 59 degrees of freedom), but with low temperatures around 2 keV, which seem physically implausible. Fits with a blackbody allowing the absorption, temperature, and radius to vary provided a good fit (reduced chi-squared of 1.16 for 59 dof). In this case, the temperature remains essentially constant at 0.82 ±0.06, at 90% confidence) keV, while the absorption increased (N_H=5.2±0.8 *10^22 cm^-2 on Sept. 5; 7.2±1.0 *10^22 on Sept. 9; 6.4±1.5 *10^22 on Sept. 10). The bbodyrad normalization may increase (from 33 to 50, then down to 44), but the variations are not significant. The 2-10 keV unabsorbed flux increases from 1.2(±0.1)*10^{-10} ergs cm^{-2} s^{-1} to 1.9(±0.2)*10^{-10} ergs cm^{-2} s^{-1}, then to 1.6(±0.2)*10^{-10} ergs cm^{-2} s^{-1}. We attempted blackbody fitting with the absorption tied (best-fit at 6*10^22). In this case, the temperature varies (from 0.77±0.04, to 0.88±0.05, then to 0.83±0.06), but the fit is markedly poorer (reduced chi-squared of 1.25 for 61 dof).

The nature of IGR J17451-3022 remains unclear. The high absorption is consistent with a black hole in the hard state. This might be explained if the system is nearly edge-on, reducing our visibility of the inner space for free for your conference.

Related
7361 Discovery of eclipses in the X-ray transient IGR J17451-3022
7096 INTEGRAL detection of the on-going outbursts from 1RXS J180408.9-342058 and GRO J1750-27
7039 Swift observations of 1RXS J180408.9-342058
7028 Continuing outburst of Galactic transient IGR J17451-3022
7008 MAXI/GSC observation of 1RXS J180408.9-342058 in outburst
6997 Swift/BAT detects an outburst from the neutron star binary 1RXS J180408.9-342058
6839 New Outburst of the Be/X-ray Transient GRO J1750-27 Detected with Fermi/GBM
6602 INTEGRAL/JEM-X sees enhanced activity in the Galactic center region: SAX J1747.0-2853 and IGR J17454-2919
6574 Hard X-ray spectral and timing properties of IGR J17454-2919 consistent with a black hole in the hard state
6533 Chandra Localization of IGR J17451-3022
6530 IGR J17454-2919: a new X-ray transient found by INTEGRAL/JEM-X close to the Galactic Center
6501 New Galactic transient IGR J17451-3022 still soft
6486 Detection of spectral hardening in IGR J17451-3022; evidence for a LMXB
6469 Swift observations of the on-going outburst of IGR J17451-3022
6459 Soft, absorbed X-ray spectra of the new transient IGR J17451-3022
6451 A new X-ray transient, IGR J17451-3022, discovered by INTEGRAL/JEM-X near the Galactic Centre
1400 Further observations of GRO J1750-27 (AX J1749.1-2639) with INTEGRAL
1385 INTEGRAL Galactic bulge monitoring observations of GRO J1750-27 (AX J1749.1-2639), H1743-322 and SLX 1746-331

The nature of IGR J17451-3022 remains unclear. The high absorption is consistent with both cataclysmic variables and high-mass X-ray binaries, and appears consistent with either a low-mass X-ray binary in the soft state, or perhaps a magnetar. If it is an LMXB located in the Galactic Center, the luminosity (2-10 keV Lx=1*10^{36} erg/s) would be unusually low for a soft state. This might be explained if the system is nearly edge-on, reducing our visibility of the inner state.
disk, which could also explain the varying N_H. Alternatively, the system may be located well beyond the Galactic Center; a distance of 20 kpc would bring the Lx up to 10^{37} ergs/s, reasonable for the soft state. The apparently varying N_H could in this case be due to variations in a more complex spectrum (e.g. a disk blackbody, plus comptonization, and perhaps another blackbody from a neutron star surface) that our limited spectra cannot reasonably constrain. Alternatively, IGR J17451-3022 may be a transient magnetar, in which case we should detect pulsations (in the 2-12 second range) in data of sufficient time resolution.

We thank the Swift team for their rapid scheduling of these observations.