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ORIGINAL ARTICLE

A functional MRI marker may predict the outcome of
electroconvulsive therapy in severe and treatment-resistant
depression
JA van Waarde1, HS Scholte2, LJB van Oudheusden1, B Verwey1, D Denys3 and GA van Wingen3

Electroconvulsive therapy (ECT) is effective even in treatment-resistant patients with major depression. Currently, there are no
markers available that can assist in identifying those patients most likely to benefit from ECT. In the present study, we investigated
whether resting-state network connectivity can predict treatment outcome for individual patients. We included forty-five patients
with severe and treatment-resistant unipolar depression and collected functional magnetic resonance imaging scans before the
course of ECT. We extracted resting-state networks and used multivariate pattern analysis to discover networks that predicted
recovery from depression. Cross-validation revealed two resting-state networks with significant classification accuracy after
correction for multiple comparisons. A network centered in the dorsomedial prefrontal cortex (including the dorsolateral prefrontal
cortex, orbitofrontal cortex and posterior cingulate cortex) showed a sensitivity of 84% and specificity of 85%. Another network
centered in the anterior cingulate cortex (including the dorsolateral prefrontal cortex, sensorimotor cortex, parahippocampal gyrus
and midbrain) showed a sensitivity of 80% and a specificity of 75%. These preliminary results demonstrate that resting-state
networks may predict treatment outcome for individual patients and suggest that resting-state networks have the potential to
serve as prognostic neuroimaging biomarkers to guide personalized treatment decisions.
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INTRODUCTION
Depression is the leading cause of disability worldwide and is a
major contributor to the global burden of disease.1,2 Successful
treatment is possible using psychotherapeutical, psychopharma-
cologic or combined strategies. Despite adequate treatment,
about 30% of patients remain depressed.3 In more severe and
treatment-resistant cases, electroconvulsive therapy (ECT) under
general anesthesia and with the use of adequate muscle
relaxation may be very effective.1 Although 48–65% of the
depressed patients recover with ECT, this treatment frequently
provokes cognitive adverse effects and may be regarded as more
invasive than pharmacotherapy.1,4–7 Moreover, as treatment
with ECT generates costs for hospitals, financial considerations
may limit its availability.8 However, for severely suicidal and/or
somatically compromised patients, ECT may be a life-saving
procedure in which the benefits substantially outweigh both the
costs and adverse effects.
Although clinical characteristics such as disturbances in

vegetative functions, psychomotor retardation, psychotic features,
heritability and shorter duration of illness have been used to
predict the outcome of ECT,1,9–11 there is a lack of objective and
reliable evidence on which to base the selection of patients
suitable for ECT. Preferably, a reliable prediction tool should
produce individualized results, as only this will adequately allow
the clinician to inform the patient and realistically support the

individual decision-making process. In this way, the chance to
recover from depression can be weighed against the risk of
possible cognitive adverse effects and the unnecessary costs of
ineffective treatment might be avoided.
Using noninvasive methods such as functional magnetic

resonance imaging (fMRI), researchers aim to develop robust
diagnostic and prognostic classifiers for individual patients. Recent
studies have started to use machine-learning techniques; these
refer to a group of statistical methods used to detect patterns or
regularities within high-dimensional data such as fMRI.12 These
methods can distinguish between depressed patients and healthy
controls with a very high accuracy (494%) at the individual
patient level by using functional connectivity data obtained
during rest.13,14 Furthermore, the preliminary results of two small
studies indicate the possibility of classifying patients at baseline as
either remitter or non-remitter before undergoing antidepressant
treatment (fluoxetine; n= 19)15 or cognitive behavioral therapy
(n= 16).16

Clinically speaking, to inform the patient more accurately and to
assess the advantages and disadvantages of ECT with greater
precision, identification of a patient as a probable remitter or non-
remitter in advance of ECT would be valuable. In this pilot study,
we therefore used a machine-learning method to examine the
prognostic value of pre-ECT resting-state fMRI in patients with
severe and/or treatment-resistant unipolar depression.
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PATIENTS AND METHODS
Participants
Resting-state fMRI data were available from a prospective observational
study relating ECT outcome to structural MRI data, including patients
indicated for ECT in the Rijnstate Hospital in Arnhem, the Netherlands (a
36-bed psychiatric facility with a catchment area of 600 000 inhabitants)
from 2009 to 2011.17,18 We included patients suffering from severe and/or
treatment-resistant unipolar depressive disorder according to the Diag-
nostic and Statistical Manual of Mental Disorders, 4th edition, text revision
(DSM-IV-TR) as diagnosed by at least two independent experienced
psychiatrists. A course of ECT was indicated for all patients (n= 45). Age,
sex, previous ECT treatment and total administered ECT sessions during
the course and concomitant medication use were documented. We scored
the severity of depression in the week before the first ECT session
(baseline) and within 1 week after the last ECT session using the
Montgomery–Åsberg Depression Rating Scale (MADRS). This is a validated
observer-rated scale with 10 items (scored 1–6 per item), with higher
scores indicating increasingly severe depressive symptoms.19 Patients with
a final MADRS score ⩽ 10 at end point were considered to be in complete
remission (‘remitters’; n= 25), and the remaining patients were considered
to be ‘non-remitters’ (n=20).20

The local Medical Ethical committee approved the study protocol and
after a complete description of the study to the subjects, we obtained
written informed consent from all participants (Registration number:
NL24697.091.09).

Electroconvulsive therapy
ECT was administered using a constant current (0.9 A), (ultra-) brief pulse
(0.25ms in right unilateral ECT (RUL) and 0.5 ms in bifrontotemporal (BL))
ECT device (maximum output 1008mC; Thymatron IV; Somatics Incorpora-
tion, Lake Bluff, IL, USA), after induction of anesthesia intravenously with
etomidate (0.2–0.5 mg kg− 1 body mass), muscle paralysis with succinyl-
choline (0.5–1mg kg− 1 body mass) intravenously and with appropriate
oxygenation (100% oxygen, positive pressure) until the resumption of
spontaneous respiration. Electrode placement was started RUL (n=37;
82%), except in patients at high risk for suicidal behavior and/or somatic
complications, or in cases where previous ECT had been successfully
administered bilaterally. Initial seizure threshold was measured at the first
ECT session by an empirical titration method17 and the consecutive
electrical dosage was then set at 6 times initial seizure threshold in RUL
ECT and at 2.5 times initial seizure threshold for BL treatment. ECT was
administered two times a week. RUL electrode placement was changed
into BL during the ECT course, based on the clinical decision of
experienced psychiatrists. Generally, this occurred if the patient did not
show (sufficient) improvement after six RUL sessions (n= 22; 49%). The
index course of ECT was terminated or continued on a lower frequency if
the patient had recovered (MADRS score ⩽ 10) or showed no (further)
clinical improvement over a period of 2 weeks, or had shown no
improvement at all after 10 BL sessions, based on the judgment of at least
two independent experienced psychiatrists.

Structural and functional MRI
Within 2 weeks before the first ECT session, a structural and functional MRI
of the head was made. Imaging was performed on a 1.5 T Philips MRI
scanner (Philips, Best, The Netherlands), using an 8-channel SENSE head
coil. The scanning protocol included a high-resolution T1-weighted turbo
field echo MRI (sequence parameters: repetition time= 7.6 ms; echo
time= 3.5 ms; flip angle = 15°; 145 sagittal slices; voxel size = 1.1 mm
isotropic). For fMRI, using blood oxygen level-dependent signals, two-
dimensional gradient-echo single-shot echoplanar imaging was used to
acquire T2*-weighted MRI volumes (sequence parameters: repetition
time= 1868ms; echo time= 30ms; flip angle = 90°; slice thickness = 4.5
mm; field of view= 230mm; 96× 96 matrix; 150 volumes).

Preprocessing and independent component analysis
Functional data were analyzed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/) and
the following processing steps were applied: removal of non-brain tissue,
motion correction, spatial smoothing with a Gaussian kernel of 6 mm full-
width at half-maximum, grand mean intensity normalization, high-pass
temporal filtering (sigma =75 s), linear registration to Montreal Neurolo-
gical Institute space using coregistration to the high-resolution T1 scan,
and resampling into 4mm isotropic voxels to limit the number of voxels

for subsequent processing steps. Standard group independent component
analysis was then performed to obtain physiologically meaningful resting-
state networks and reduce dimensionality of the data using Multivariate
Exploratory Linear Decomposition into Independent Components (MELO-
DIC), including data demeaning and variance normalization.21 All data sets
were concatenated in time and dimensionality was estimated automati-
cally, resulting in 32 independent components. Dual regression was used
to obtain subject-specific expressions of each component. Components
reflecting non-neural signals (e.g., motion, white matter, cerebral spinal
fluid) were removed, and the remaining 25 network images were
maintained for further analysis.
Structural data were analyzed using voxel-based morphometry (VBM) in

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Gray matter images were
obtained from the structural scans using segmentation and were
subsequently normalized to Montreal Neurological Institute space using
modulation to obtain regional volume images. The images were then
resampled to 2mm isotropic voxels to limit the number of voxels for
subsequent processing steps, and also to retain sufficient high-resolution
anatomic information. The images were also smoothed with a Gaussian
kernel of twice the voxel size (4 mm full-width at half-maximum).

Pattern classification
To assess whether resting-state networks or structural data could predict
remission or non-remission from depression, each network and voxel-
based morphometry image was entered into a supervised multivariate
classification procedure using a linear support vector machine (SVM)
algorithm (Figure 1; http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm/). The SVM
classifier was trained and tested using leave-one-per-group-out cross-
validation with 19 subjects per group to avoid bias to the largest group.
During the training phase, a hyperplane was estimated that maximally
separates the remitters from the non-remitters based on all available data
points (features) that showed a difference between the groups. We then
tested the accuracy with which the determined hyperplane could classify
other subjects during the classification stage with independent data not
used for training. For each cross-validation iteration and evaluation of the
accuracy of the classifier, we excluded a random participant from the non-
remitters and six subjects from the remitters to keep both groups of equal
size during the training stage. A data-driven feature-selection procedure
was applied by averaging the group members per voxel, subtracting the
groups from each other and transforming the resulting values in z-scores.
Three separate classification analyses were performed with z-thresholds at
3, 3.5 and 4. As this feature selecting depends strongly on the incidental
inclusion of subjects, and because we wanted to obtain information about
the reliability of the classification procedure at a group level, this
procedure was iterated 10 000 times for each network and z-threshold.

Figure 1. Flow diagram illustrating the independent component
analysis (ICA) and support vector machine (SVM) classification
procedure of resting-state functional magnetic resonance imaging
(MRI) data.
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This resulted in an accuracy measure, per subject, based on the number of
times the subject was included in the test sample and correctly classified.
When the proportion of classifications was ⩾ 0.5, the subject was
considered correctly classified. Statistical significance was determined by
binomial test with Bonferroni correction for all networks and feature-
selection models. A map of the brain regions with the largest contribution
to the classification results was generated by an inverse independent
component analysis.

Univariate data analysis
To evaluate whether significant multivariate pattern classifiers resonated
consistent univariate differences in connectivity between groups, we
performed additional univariate two-sample t-tests. Permutation tests were
carried out with family-wise error rate correction for multiple voxel-wise
comparisons (Po0.05) using threshold-free cluster enhancement22 with
5000 permutations implemented in FSL.

Statistical analysis of clinical data
Data are presented as means± s.d. or numbers and percentages when
appropriate. The group of remitters (n= 25) was compared with the non-
remitters (n= 20) using t-tests or Mann–Whitney U-tests when appropriate
(age, MADRS scores and total administered ECT sessions) and Fisher’s
exact tests (sex, presence of psychotic features, previous ECT treatment
and concomitant medication used) for dichotomous variables. Mean pre-
and post-ECT MADRS scores were compared using a paired t-test. All tests
were two-sided, with Po0.05 denoting statistical significance; SPSS for
Windows (version 20) was used for all analyses.

RESULTS
Study participants
Data of 45 patients with unipolar depression (mean age
56.6 ± 14.1 years; 28 (62%) female; mean MADRS score at baseline
36.5 ± 8.3) were available for the analyses. On average, we
administered a total of 18.7 ± 7.1 ECT sessions to the patients
during a completed treatment course. These patients did not
differ from the total group of patients indicated for ECT and which

participated in the original observational study.17 After ECT, the
mean MADRS score in the total group was significantly lower than
pre-ECT (mean post-ECT MADRS score: 13.1 ± 10.4; Po0.001) and
had decreased (on average) by 23.4 ± 12.9 points. After ECT, the
MADRS scores decreased ⩾ 50% in 69% (n= 31) of all patients, and
56% (n= 25) reached complete remission. Per definition, the
MADRS scores were significantly lower in the remission group
than in the non-remission group (Po0.001) after completion of
the ECT course. However, there were no significant differences in
the baseline MADRS scores, age, sex, presence of psychotic
features, presence of previous ECT course(s), total number of ECT
sessions or concomitant medications, thus indicating that no
clinical data included in these analyses were available that might
have predicted remission at the group level (all P40.05) (Table 1).
Differences in movement within the scanner between the

group of remitters and non-remitters could generate artifacts in
the fMRI signal, causing long-range correlations that could be
mistaken for connectivity changes, which in turn could be linked
to response. We therefore examined head motion during
scanning, but this revealed no significant differences in mean
head displacement between the remitters and non-remitters
(absolute displacement: P= 0.24; relative displacement: P= 0.17).

fMRI prediction of ECT outcome
Two resting-state networks showed significant classification
accuracy after correcting for multiple comparisons. The first
network (centered in the dorsomedial prefrontal cortex and
including the dorsolateral prefrontal cortex, orbitofrontal cortex
and posterior cingulate cortex) had a sensitivity of 84% (the
proportion of correctly classified remitters) and a specificity of
85% (the proportion of correctly classified non-remitters) to
predict whether a patient would remit from depression (Figure 2).
This network had a positive predictive value of 88%, which is the
proportion of true-positive test results. The second network
(centered in the anterior cingulate cortex and including the

Table 1. Characteristics of 45 patients undergoing a course of ECT assessed with functional MRI, and grouped according to their post-ECT MADRS
score as remitter or non-remitter

Patient characteristics All (n= 45) Remitter post-ECT MADRS
score ⩽ 10 (n= 25)

Non-remitter post-ECT MADRS
score 410 (n= 20)

P-value comparison remitters
and non-remitters

Mean age± s.d. (in years) 56.6± 14.1 59.8± 13.7 52.6± 14.0 0.09a

Female sex (%) 28 (62) 16 (67) 12 (57) 1.00b

Diagnosis of depressive disorder (%) 45 (100)
Without psychotic features (%) 35 (78) 17 (68) 18 (90) 0.15
With psychotic features (%) 10 (22) 8 (32) 2 (10)

Mean MADRS score ± s.d.
At baseline 36.5± 8.3 36.9± 7.9 36.1± 9.0 0.73a

After ECT course 13.1± 10.4 5.6± 3.0 22.4± 8.6 o0.001c

MADRS score ⩽ 10 point after ECT
(‘remitter’)

25 (56)

MADRS score decreased ⩾ 50% after ECT
(‘responder’)

31 (69)

Treatment characteristics
Previous ECT treatment (%) 12 (27) 9 (36) 3 (15) 0.18b

Total administered ECT sessions during
the course± s.d.

18.7± 7.1 17.6± 7.6 20.1± 6.4 0.26a

Use of concomitant psychopharmacologic drugs
Benzodiazepines (%) 29 (64) 17 (68) 12 (60) 0.76b

Antidepressants (%) 29 (64) 17 (68) 12 (60) 0.76b

Antipsychotics (%) 29 (64) 17 (68) 12 (60) 0.76b

Antiepileptics (%) 1 (2) 0 (0) 1 (5) 0.44b

Abbreviations: ECT, electroconvulsive therapy; MADRS, Montgomery–Åsberg Depression Rating Scale. aIndependent samples t-test. bFisher’s exact test.
cMann–Whitney U-test.

fMRI marker may predict outcome of ECT
JA van Waarde et al

611

© 2015 Macmillan Publishers Limited Molecular Psychiatry (2015), 609 – 614



dorsolateral prefrontal cortex, sensorimotor cortex, parahippo-
campal gyrus and midbrain) had 80% sensitivity, 75% specificity
and 80% positive predictive value for remission (Figure 3). The
prediction accuracy based on structural gray matter images was
61%, which was nonsignificant.
Since the presence of psychotic symptoms is currently the best

clinical predictor available for ECT at group level (although not
significant in our data17), we assessed whether the classification
remained accurate even after the exclusion of psychotically
depressed patients (n= 10). The sensitivity of the first network
increased slightly to 88%, with 83% specificity and a positive
predictive value of 83%. The sensitivity of the second network
decreased slightly to 76%, with 72% specificity and a positive
predictive value of 72%. Thus, the classification of remission was
not derived from the distinction between psychotically and non-
psychotically depressed patients.
To evaluate whether these two resting-state networks also

showed consistent univariate differences in connectivity between
groups in specific brain regions, we carried out additional two-
sample t-tests. These tests revealed no observable significant
differences in connectivity between the remission and non-
remission groups after correction for multiple comparisons
(P40.05).

DISCUSSION
This prospective pilot study reveals that the whole brain pattern of
neural connectivity distinguished between patients who reached
complete remission following a course of ECT and patients who
did not. The sensitivity of two baseline resting-state fMRI networks
for estimating remission after ECT was 80% and higher with similar
specificity. For a marker to be considered clinically useful, it is
generally required to show 80% sensitivity and specificity.12

The brain areas that provided the largest contribution to the
classification of remitters versus non-remitters were the cingulate
cortex and the medial- and orbitofrontal cortices (Figures 2 and 3).
Increased activation in these brain regions is associated with
response to pharmacotherapy and cognitive behavioral therapy in
less severely depressed patients.23 Note that not all predictive

brain areas were located within the analyzed networks, which
suggests that the brain regions not strongly correlated to the
network of interest do show discriminative properties. This can be
understood as relative decoupling of these brain regions with the
network of interest, or by appreciating the multivariate nature of
the results that do not need to overlap with the univariate
connectivity network maps, indicating that these regions are only
part of a multidimensional network. Interestingly, the dorsomedial
prefrontal cortex appears to serve as a hub of multiple networks
implicated in depression.24,25 Neuroimaging studies investigating
neural changes associated with ECT also indicate involvement of
the dorsomedial prefrontal, dorsolateral prefrontal, anterior
cingulate and orbitofrontal cortices.26–29 Although our findings
underscore the key role of the prefrontal cortex in the
antidepressive response as found by others, our results differ
due to their multivariate nature. As such, the results do not reflect
increased or decreased connectivity in particular brain regions. In
fact, the univariate analyses showed no consistent group
differences in regional connectivity strength. This suggests that
the predictive markers are based on a distinct pattern of
connectivity across many nodes of these networks in patients
that remit after ECT. This also implies that the results are not
readily explicable in simpler terms, which may hamper the
interpretation of the results in physiologic terms. Although this
difficulty may limit the credibility of this technique, this seems
inherent to the methodology. The differences in sensitivity may
also partly explain the divergent results of the mutivariate and
univariate analyses. Univariate analyses that test thousands of
independent voxels in parallel require stringent correction for
multiple comparisons to control for false-positive results, whereas
no such correction is necessary for multivariate methods that
combine all the included data.
The results showed that the structural data had no predictive

value. This is at odds with a small pilot study that showed that
structural data could predict remission from depression after
fluoxetine treatment in 18 non-treatment-resistant patients with
89% accuracy.30 A more recent study with a larger sample size
showed a 70% accuracy in predicting the response to various
antidepressants, which was significant, but below the accuracy

Figure 2. The first resting-state network that predicted remission from depression. The features that showed accurate classification of remitted
and non-remitted patients are shown in red, superimposed on the network that was used for classification in yellow (z42.3). The panels
present the results from the left side of the brain to the right side (x coordinates in Montreal Neurological Institute space). BS, brainstem; CB,
cerebellum; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; ITC, inferior temporal cortex; OFC, orbitofrontal
cortex.

Figure 3. The second resting-state network that predicted remission from depression. The features that showed accurate classification of
remitted and non-remitted patients are shown in red, and superimposed on the network that was used for classification in yellow (z42.3). The
panels present the results from the left side of the brain to the right side (x coordinates in Montreal Neurological Institute space). ACC, anterior
cingulate cortex; BS, brainstem; CB, cerebellum; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; ITC, inferior
temporal cortex; MTL, medial temporal lobe; OC, occipital cortex; PC, parietal cortex.
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considered clinically useful.31 It may be argued that our study with
a sample of treatment-resistant patients and a different treatment
modality (ECT versus antidepressants) differs too much from these
other studies, but together these studies suggest that structural
data do not yet provide sufficient information for predicting
treatment response in depression. As depression and other
neuropsychiatric disorders are characterized by differences in
functional connectivity,32 resting-state connectivity may provide a
more sensitive measure to discover MRI markers.
Electrode placement determines the intracerebral spatial

distribution of electrical charge density and thereby determines
the resultant initiation of seizure activity. For ECT to be effective, it
is hypothesized that seizures need to be initiated in the prefrontal
areas and that the mechanism of therapeutic action of ECT may be
related to the suppression of functional brain activity, especially in
the prefrontal cortex.33–35 Remarkably, our predicting networks
include prefrontal brain areas directly beneath the electrodes,
supporting the hypothesis that direct electrical stimulation in
these prefrontal areas is crucial for seizure initiation and ECT
effectiveness. The ‘anatomico-ictal theory’ of the working mechan-
ism of ECT may explain the involvement of more deeply located
brain areas in our predictive networks (such as the brainstem,
midbrain and cingulate cortex). This theory states that the greatest
antidepressive impact of ECT is achieved when seizures are
initiated in the prefrontal regions and then propagated maximally
throughout the cortex and subcortex, involving diencephalic
centers in particular.33,36

Clinical implications
Despite the fact that the present pilot study used an internal
validation method, the results should be replicated in an
independent cohort to justify that the neuroimaging marker we
identified is robust against both technical (e.g., data acquisition)
and clinical variations. When replicated, these results may help
clinicians, patients and their significant others to make better-
informed treatment decisions. The remission rate of ECT generally
ranges from 48 to 65% 7 and was 56% in the present study. Thus,
about half of our patients did not derive optimal benefit from the
ECT and were possibly exposed to unnecessary cognitive adverse
effects and costs.1 On the other hand, we classified remission/non-
remission defined as a MADRS score ⩽ 10 at end point, which from
a clinical perspective may be too strict a criterion, because in
several patients even a partial response to ECT would be
beneficial.
Our data set derived from a prospective study, in which 91 out

of 114 patients (80%) indicated for ECT agreed to participate and
underwent the fMRI procedure.18 We therefore think that 5 min of
resting-state fMRI is achievable in daily clinical practice, even in
severely ill, psychotically depressed patients. Pre-ECT fMRI data as
a marker for treatment efficacy may help to guide clinicians in
their discussions with patients and relatives in ascertaining the
expectations related to this treatment and in turn may lead to
greater cost effectiveness.

Study limitations
In general, the heterogeneity within a given clinical diagnosis is a
warning for any appropriate marker. In our sample of patients with
unipolar depression, this may not be problematic because the
patients formed a highly selected group, that is, they were
indicated for ECT by at least two independent experienced
clinicians. As we only examined patients with unipolar depression
in this study, our results cannot be generalized to the entire ECT
population. We cannot exclude however that different brain
processes are involved here as opposed to other (e.g., bipolar)
depressive patient groups. Furthermore, most patients used a
constant dose of concomitant medication(s) during the ECT
course, which may have influenced undefined fMRI signals.37 In

our naturalistically studied ECT population, discontinuation of
psychotropic medication was generally undesirable owing to the
patients’ illness; this suggests that our findings are representative
for the regular ECT patient group.
Technical aspects such as hardware and acquisition parameters

may have influenced the results. Although resting-state analyses
appear robust against variations in data acquisition and pooling of
data acquired at multiple sites is feasible,38,39 the machine-
learning procedure may have led to overfitting of the SVM
classifiers with idiosyncratic features of the data, for instance,
idiosyncrasies related to hardware and acquisition parameters and
particular sample characteristics. This is inherent to the procedure
as the test data left out during training are still more similar to the
training data than to any potentially unseen data. Replication of
our results in independent samples recruited in very different
circumstances (i.e., a multisite study) is desirable, before more firm
conclusions can be drawn.
Another possible drawback is that limited accessibility of MRI

scanners may hamper general application of our brain biomarker
predicting response to ECT. However, ECT is currently accessible in
second- or third-line treatment hospitals in which MRI scanners
are readily available.
In conclusion, this pilot study demonstrates that resting-state

connectivity patterns in prefrontal and cingulate cortex networks
are capable of predicting ECT efficacy in severe and treatment-
resistant unipolar depressive patients. Application of this fMRI
method can be examined in other psychiatric and neurologic
conditions to discover further resting-state biomarkers for
treatment response. Accurate prediction of treatment efficacy
can be helpful to prevent unnecessary adverse effects and reduce
health-care costs.
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