Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

Published in:
Catalysis Science & Technology

DOI:
10.1039/c0cy00011f

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

Fernando Cárdenas-Lizana, Santiago Gómez-Quero, Noémie Perret, Lioubov Kiwi-Minsker and Mark A. Keane

Received 8th October 2010, Accepted 14th December 2010
DOI: 10.1039/c0cy00011f

A temperature programmed treatment of MoO₃ in flowing N₂ + H₂ has been employed to prepare β-phase molybdenum nitride (β-Mo₂N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in situ and the starting oxide, reaction intermediates and nitride product have been identified and characterized by powder X-ray diffraction (XRD), diffuse reflectance UV-Vis (DRS UV-Vis), elemental analysis, scanning electron microscopy (SEM) and BET/pore volume measurements. Our results demonstrate that MoO₃ → β-Mo₂N is a kinetically controlled process where an initial reduction stage generates (sequentially) MoO₂ and Mo as reaction intermediates with a subsequent incorporation of N to produce β-Mo₂N. SEM analysis has established that the transformation is non-topotactic with a disruption to the platelet morphology that characterizes MoO₃ and an increase in BET area (from 1 m² g⁻¹ to 17 m² g⁻¹). Moreover, temperature programmed desorption measurements have revealed a significant hydrogen uptake (0.71 μmol m⁻²) on β-Mo₂N. This has been exploited in the hydrogenation of p-chloronitrobenzene where p-chloroaniline was generated as the sole product with an associated rate constant (k = 2.0 min⁻¹) that is higher than values recorded for supported transition metals.

Our study establishes the reaction mechanism involved in the synthesis of β-Mo₂N and demonstrates its viability to promote selective -NO₂ group reduction as an alternative sustainable, high throughput route to commercially important haloamines.

1. Introduction

Transition-metal nitrides in general, and Mo nitride in particular, exhibit a combination of properties that have resulted in multiple applications as coatings/structural components,¹ high performance magnets,² in electronic and optical devices³ and as catalytic materials.⁴,⁵ Conventional preparative routes have involved either (a) high temperature (1400–1900 K) reaction of the base metal and elemental nitrogen,⁶ (b) carbothermal nitridation of metal oxides⁶ or (c) a self-propagating high temperature synthesis.⁷ Alternative methods that can operate under milder reaction conditions have drawn on controlled temperature programmed procedures. Examples include the reaction of MoO₃ with NH₃⁸–¹¹ and N₂ + H₂,¹²,¹³ reaction of MoCl₅ with urea,¹⁴ reduction of MoO₂ with NH₄Cl,¹⁵ chemical vapour deposition of MoCl₅ (in the presence of NH₃)¹⁶ and the thermal decomposition of (HMT)₃(NH₄)₄Mo₇O₂₄·¹⁷,¹⁸ A combination of NH₃ + H₂ has been the most widely employed reacting gas in reduction–nitridation processes.⁴,¹⁹,²⁰ However, the use of a N₂ + H₂ mixture circumvents the heat transfer problems associated with the endothermic NH₃ decomposition.¹² The methodologies applied to date have generated a combination of Mo,N phases, principally metastable cubic (γ-Mo₂N) and hexagonal (β-Mo₂N) structures.⁶ Although γ-Mo₂N is the most commonly synthesized form by thermal treatment of MoO₃,⁹,¹²,¹⁹,²¹ there is also evidence in the literature for the formation of a body centred tetragonal β-nitride phase with a Mo/N ratio in the range 2.0–2.6.¹³,²²–²⁶

The literature dealing with the temperature programmed synthesis of Mo nitrides is still quite limited and we could not find any comprehensive analysis of the mechanism(s) involved in the formation of β-Mo nitride from MoO₃. It is, however, worth noting a number of reports that deal (in part) with Mo nitride preparation,¹³,²³,²⁴,²⁷–²⁹ physical/chemical properties⁶ and morphology.¹³,²⁴ We can also flag published studies in which the formation of partially reduced oxides (Mo₄O₁₁, MoO₂)⁹ or ordered bronzes (HₓMoO₄, 0.07 < x < 0.34)³¹ and/or Mo²⁺ have been observed during the reduction–nitridation process.
process. Nagai et al.\(^\text{23}\) recorded the formation of MoO\(_3\), γ-Mo\(_2\)N, β-Mo\(_2\)N and Mo during treatment of MoO\(_3\) with NH\(_3\) up to 1173 K. In terms of applications, it has been reported that group VI nitrides can exhibit comparable catalytic activity in hydrogen mediated reactions to that obtained with conventional metal catalysts.\(^\text{4,32}\) This has been ascribed to a contraction of the d-band and modification of electron density due to the incorporation of N interstitially in the metal lattice,\(^\text{33}\) resulting in a capacity for H\(_2\) adsorption.\(^\text{3}\) Molybdenum nitrides have been successfully used to promote the hydrogenation of long chain alkadienes,\(^\text{34}\) CO\(^\text{35}\) and ethylene,\(^\text{36}\) the hydrodenitrogenation of carbazole\(^\text{23,28,37}\) and the hydrodesulfuration of thiophene\(^\text{13,24}\) and dibenzothiophene.\(^\text{38}\) Moreover, Mckay et al., in a recent study,\(^\text{39}\) demonstrated an enhanced catalytic response in ammonia synthesis for β-Mo\(_2\)N (prepared by MoO\(_3\) treatment in H\(_2\)/N\(_2\) at 973 K) when compared with δ-MoN and γ-Mo\(_2\)N. However, we were unable to find any study in the open literature dealing with the hydrogenation of nitro-compounds over molybdenum nitride.

In this paper, we set out to explicitly identify the intermediates in β-Mo nitride synthesis and report the first application of this nitride in the catalytic hydrogenation of nitroarenes. The selective hydrogenation of p-chloronitrobenzene (p-CN) to p-chloroaniline (p-CAN) has been selected as a model reaction. p-CAN is a high production volume compound,\(^\text{40}\) extensively used in the manufacture of a range of fine chemicals.\(^\text{41}\) Existing routes to p-CAN involve high pressure batch liquid phase operations that generate toxic by-products with a low overall yield\(^\text{42}\) and there is now a pressing demand for alternative cleaner catalytic routes. In this study, we establish the feasibility of β-Mo nitride as a catalytic material to promote the continuous gas phase hydrogenation of p-CN to p-CAN.

2. Results and discussion

2.1 β-Mo\(_2\)N synthesis and characterization

2.1.1 Synthesis mechanism

2.1.1.1 TPR. The commercial MoO\(_3\) sample (as received), when subjected to a temperature programmed treatment in 15% v/v N\(_2\)/H\(_2\) to 933 K, generated the profile presented in Fig. 1(A). The emergence of four positive (H\(_2\) consumption) peaks suggests four separate reaction steps. To probe this response, the thermal treatment was repeated, stopping at different stages in order to generate eight samples for \textit{ex situ} analysis, as identified in Fig. 1(A). Sample selection included starting material (1), final product (8) and intermediate samples (2–4 and 6) obtained pre- and post- a stage of significant H\(_2\) consumption. Given the broadness of the two final peaks, samples 5 and 7 were taken at the peak maxima. Sample 2 was selected, although no significant response was noted, as there is some evidence in the literature\(^\text{31}\) of a transition from MoO\(_3\) to MoO\(_2\) at this temperature (623 K). The associated time, temperature related peak maxima (\(T_{\text{max}}\)), BET surface area, total pore volume and phase composition associated with each sample are given in Table 1. Taking the profile in Fig. 1(A), intermediate(s) formation and conversion occurred during the final isothermal (933 K) hold, suggesting a kinetically controlled process. In contrast, previous studies have suggested that Mo nitride intermediate(s) formation was temperature dependant, i.e., thermochemically controlled: MoO\(_2\) (613–773 K)\(^\text{9,12,13,43}\); H\(_x\)MoO\(_{3-x}\) (≤623 K)\(^\text{31,43,44}\); Mo\(_2\)O\(_3\) (673 K)\(^\text{45}\); γ-Mo\(_2\)O\(_3\)N\(_{1-x}\) (773 K)\(^\text{46}\); Mo (900–1153 K).\(^\text{12,13,43,45}\)

2.1.1.2 XRD/elemental analysis/DRS UV-Vis. Powder XRD patterns of passivated samples (see experimental section) obtained at points 1–8 are presented in Fig. 2. It has been established previously\(^\text{48}\) that the passivation step provides a protective oxide surface layer without deeper oxidation. In order to confirm the composition of each sample, the XRD patterns were compared with commercial samples (MoO\(_3\) (A), MoO\(_2\) (B) and Mo (C)) and the JCPDS-ICDD standards for MoO\(_3\) (35-0609), MoO\(_2\) (32-0671), Mo (42-1120) and β-Mo\(_2\)N (25-1368, D). In Fig. 2, each of the four columns represent the specific contribution at that stage of reduction and/or nitridation (1–8) due to (A) MoO\(_3\), (B) MoO\(_2\), (C) Mo and (D) β-Mo\(_2\)N and serves to illustrate the evolution of the MoO\(_3\) reactant to β-Mo\(_2\)N product. The diffractogram for the final product shows peaks at 37.73, 43.14, 45.28, 62.67, 64.28, 75.48, 78.64 and 80.54° (Fig. 2, profile 8-D), which are consistent with the (112), (200), (004), (220), (204), (312),...
(116) and (224) reflections of bulk β-Mo2N. This result agrees with the findings of Gong et al. who reported the formation of β-Mo2N via temperature programmed treatment of MoO3 with N2 + H2 at 923–1023 K. In contrast, Nagai and co-workers proposed that β-phase formation (from MoO3 treatment in NH3) required a higher synthesis temperature associated with the passivated samples: see Fig. 1(A).

Previously studies have suggested the participation of MoO2, MoO3, Mo, and (D) β-Mo2N. Diffractograms for model samples and peak assignment based on JCPDS-ICDD reference data are denoted by A (MoO3; Alfa Aesar, 99.9995; 35-0609,), B (MoO2; Aldrich, 99%; 32-0671,), C (Mo; Aldrich, ≥ 99.9%; 42-1120,) and D (JCPDS-ICDD β-Mo2N standard (25-1368),).

Table 1: Reaction time, temperature related TCD signal maximum (Tmax), BET surface area, total pore volume and % fraction of each phase associated with the passivated samples: see Fig. 1(A).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Time/min</th>
<th>Tmax/K</th>
<th>BET area/m^2 g^-1</th>
<th>Pore volume (10^-3 cm^3 g^-1)</th>
<th>% (Phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0</td>
<td>298</td>
<td>1</td>
<td>2</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(2)</td>
<td>69</td>
<td>623</td>
<td>2</td>
<td>3</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(3)</td>
<td>150</td>
<td>933</td>
<td>2</td>
<td>3</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(4)</td>
<td>240</td>
<td>933</td>
<td>6</td>
<td>7</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(5)</td>
<td>325</td>
<td>933</td>
<td>14</td>
<td>11</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(6)</td>
<td>365</td>
<td>933</td>
<td>14</td>
<td>10</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(7)</td>
<td>440</td>
<td>933</td>
<td>14</td>
<td>10</td>
<td>100 (MoO3)</td>
</tr>
<tr>
<td>(8)</td>
<td>1165</td>
<td>933</td>
<td>17</td>
<td>11</td>
<td>100 (MoO3)</td>
</tr>
</tbody>
</table>
samples 3 and 4 suggests the formation of Mo$^{5+}$ and/or Mo$^{4+}$ and is consistent with our TPR (Fig. 1(A)) and XRD (Fig. 2) measurements, i.e. MoO$_2$ is produced at the final isothermal (933 K) hold (see Table 1). Indeed the UV-Vis spectrum associated with sample 3 coincides directly with that recorded for the commercial MoO$_2$ (dotted profile). The decrease in intensity of the MoO$_2$ signal for sample 4 (profile 4) can be attributed to a partial reduction to Mo during steps 3 and 4 (see Fig. 1(A) and 2).

2.1.1.3 Stepwise reduction/nitridation and denitridation. Our results for the solid transformation of MoO$_3$ in N$_2$ + H$_2$ to β-Mo$_2$N are consistent with the formation of MoO$_2$ and Mo as intermediates, i.e. a first stage that involves the conversion of MoO$_3$ to MoO$_2$ (sample 3 in Fig. 1(A)) with subsequent reduction to metallic Mo. Nitrogen is then incorporated into the solid in a nitridation step. In order to decouple the reduction and nitridation steps and further confirm this reaction mechanism, we monitored the temperature programmed treatment of MoO$_3$ in H$_2$ + Ar, i.e. in the absence of N$_2$, which delivered the profile shown in Fig. 1(B). The final product (at 933 K) in this instance was Mo as confirmed by XRD analysis (see the inset in Fig. 1(B)). By comparing the profile obtained for thermal treatment in N$_2$ + H$_2$ (Fig. 1(A)) with that in Ar + H$_2$ (Fig. 1(B)), any observed differences can be attributed to the involvement of nitridation step(s) in the former. In both cases, the patterns coincide up to the point at which MoO$_2$ is partially reduced (sample 4 in Fig. 1(A) and sample 9 in Fig. 1(B)), where the associated XRD patterns are consistent with a mixture of MoO$_2$ + Mo; see profiles 4-B and 4-C in Fig. 2 for thermal treatment in N$_2$ + H$_2$, equivalent to that obtained in Ar + H$_2$. Additional hydrogen consumption in the Ar + H$_2$ treatment, i.e. positive signal (samples 9 and 10 in Fig. 1(B)), can be attributed to H$_2$ uptake on Mo as has been reported elsewhere.56,57 Further treatment of the Mo sample in N$_2$ + H$_2$ resulted in the sole formation of β-Mo$_2$N as confirmed by XRD analysis (diffractogram pattern not shown). We have also investigated the reversibility of the nitridation step by considering a thermally (to 1273 K) induced denitridation of sample 8 (see Fig. 1(A)). The resultant profile is shown in Fig. 4 where the amount of nitrogen released was consistent with the content in the starting sample. Nitride decomposition generated Mo as the sole product, which was confirmed by XRD analysis (see the inset in Fig. 4). This result finds support in the literature where the generation of Mo has been reported from γ-Mo$_2$N (β-Mo$_2$N at 1073 K) for treatment (in He) at $T \geq 1153$.23,47

2.1.1.4 SEM/BET/pore volume. A solid to solid transition can be termed topotactic if the structural atomic arrangement is conserved in terms of the relative position of the metal atoms.58 It has been shown that Mo nitrides can be synthesized by controlled thermal treatment of MoO$_3$ with NH$_3$ or N$_2$ + H$_2$ via a topotactic route, where a continuous transformation through oxynitride(s) takes place.44 A non-topotactic formation of β-Mo$_2$N has also been proposed in the literature22,24 but without any explicit evidence to support this. In order to consider the morphology and structural evolution of the solid during the preparation of β-Mo$_2$N, SEM analysis was conducted. The representative SEM images of the starting MoO$_3$, given in Fig. 5, clearly show a platelet orthorhombic crystal structure, as reported elsewhere.6,61 SEM analysis of the β-Mo$_2$N product (sample 8 in Fig. 1(A)) indicates a...
non-topotactic transformation, i.e. disruption of the platelet morphology during the reduction–nitridation process. Moreover, the SEM micrographs of MoO₂ (sample 3 in Fig. 1(A)) and Mo (sample 10 in Fig. 1(B)) reveal a morphology similar to that of β-Mo₂N, suggesting that the disruption of the crystal configuration takes place during the MoO₃ → MoO₂ reduction step. We provide here the first demonstrable evidence for a non-topotactic transformation, identifying the critical step(s) and intermediate(s). The BET areas and total pore volume of the samples obtained during reduction/nitridation are given in Table 1. The starting MoO₃ (pale yellow crystalline powder) exhibited a negligible surface area (1 m² g⁻¹) and low pore volume (2 × 10⁻¹³ cm³ g⁻¹). As reduction/nitridation proceeded, MoO₃ was transformed into a light gray (sample 2, Fig. 1(A)), gray (samples 3-6) and ultimately a lustrous gray-black solid (β-Mo₂N). An increase in both BET (1 → 17 m² g⁻¹) and pore volume (2 × 10⁻¹³ → 11 × 10⁻¹³ cm³ g⁻¹) was observed with the transformation of MoO₃ into β-Mo₂N. Nagai et al. recorded a surface area of 18 m² g⁻¹ for β-Mo₂N synthesised from MoO₃ (1 m² g⁻¹) in a temperature controlled reduction–nitridation using NH₃ while Gong et al. achieved BET areas in the range 2-9 m² g⁻¹ with N₂ + H₂ under similar synthesis conditions. It should be noted that the most significant increase in surface area was associated with the reduction of MoO₂ to Mo (sample 3 to 4) and the subsequent nitridation to β-Mo₂N (sample 4 to 5). Schulmeyer and Ortner reported that the conversion of MoO₂ (in H₂) to Mo was accompanied (on the basis of SEM analysis) by the formation of surface cracks and craters as a result of the stresses associated with oxygen removal, which can contribute to the higher BET value. We could not find any data on pore volume changes during β-Mo₂N synthesis: our analysis (Table 1) reveals an increase in the total pore volume that was accompanied by a greater surface area.

2.1.2 H₂-TPD. The possibility of hydrogen uptake by the nitride (Fig. 1(A), stage 6–7) has been confirmed by the H₂-TPD response recorded for sample 8 and is shown in Fig. 6; the degree of reproducibility can be assessed from the repeated measurements that are presented. The profile exhibits three different stages of hydrogen release at 412 K, 640 K and 803 K, which suggests different degrees of interaction of H₂ with β-Mo₂N. The ability of Mo nitrides to adsorb hydrogen has been noted in the review by Furimsky where the reported studies have either focused on the γ-phase or did not specify the allotrop form. Guerrero-Ruiz et al. demonstrated the co-existence of different surface sites for hydrogen adsorption on Mo₂N (with a BET area of 8 m² g⁻¹). Li and co-workers reported a dependence of hydrogen adsorption-desorption on the treatment temperature where at T > 500 K the presence of three distinct hydrogen species located on the surface, subsurface and bulk of Mo₂N was proposed and discussed in terms of a dissociation (on Mo–N) and diffusion mechanism. Nitrogen removal post-H₂ treatment has been reported in the literature and associated with desorption peaks at T > 823 K. In this study, the nitride structure was unaffected by the TPD treatment as can be evaluated from the XRD response pre- and post-TPD (see insets in Fig. 6); there was no significant change in nitrogen content post-TPD. The overall amount of H₂ released was 0.71 μmol m⁻², a value that is close to that reported (0.78 μmol m⁻²) by Li et al. for Mo₂N, although the authors did not identify the crystallographic phase.
2.2 Gas phase hydrogenation of p-chloronitrobenzene (p-CN)

The observed capacity of β-Mo$_2$N for hydrogen uptake suggests possible hydrogenation properties. We tested this in the gas phase hydrogenation of p-CN where p-CAN was detected as the sole product. There was no evidence of aromatic ring hydrogenation or hydrogenolysis of the $-\text{Cl}$ or $-\text{NO}_2$ substituents. This ultra-selectivity with respect to $-\text{NO}_2$ group reduction is a significant result as the hydrogenation of p-CN has been invariably accompanied by dechlorination and side-reactions resulting in the formation of azoxyderivates,68,69 aniline,70,72 and nitrobenzene.71,73 This has been a feature of reaction over Ru–Ir/γ-Al$_2$O$_3$, PtMoO$_x$ (M = Sm, Pr, Ce, Nd and La) supported on carbon nanotubes31 and unsupported NiB alloys (as nanotubes (20–25 nm)73 and nanoparticles (6–100 nm)).70,72 The variation in fractional p-CN conversion (X_{p-CNB}$) as a function of time-on-stream is presented (as an inset) in Fig. 7. An initial temporal decline in conversion is in evidence with a subsequent steady state at extended reaction times ($>$ 250 min). The temporal variation of conversion can be expressed in terms of the empirical relationship74

$$\frac{(X_{p$-CNB} - X_0)}{(X_{300\text{ min}} - X_0)} = \frac{\Delta t}{(\beta + \Delta t)}$$

(1)

where $X_{300\text{ min}}$ represents fractional conversion after 300 min on-stream and β is a time scale fitting parameter. Fit convergence ($R^2 > 0.99$) yields values for X_0 (initial conversion). For reactor operation under plug-flow conditions where hydrogen was maintained far in excess, the following reactor/kinetic expression applies

$$\ln\left[\frac{1}{1 - X_0}\right] = k \times \left(\frac{n}{F}\right)$$

(2)

where k (min$^{-1}$) is the pseudo-first order kinetic constant and n/F (min) has the physical meaning of contact time. The associated linear relationship (forced through the origin, see Fig. 7) serves to validate our approach and the resultant $k = 2.0$ min$^{-1}$. This value exceeds the rate constants (0.1–0.3 min$^{-1}$) that we have previously recorded (over the T range 453–523 K) for p-CNB \to p-CAN promoted using Au/Al$_2$O$_3$ 75,76 and Au/TiO$_2$. 76 Reaction over Pd/Al$_2$O$_3$ also delivered a lower rate ($k = 1.5$ min$^{-1}$),75 albeit at a lower reaction temperature (453 K) but nitrobenzene and aniline were formed as the principal products. Moreover, catalytic nitroarene hydrogenation has typically involved batch liquid phase systems operated at elevated pressures.$^{42,77-80}$ The use of β-Mo$_2$N to promote ultra-selective continuous gas phase (atmospheric pressure) hydrogenation represents a new direction in the production of industrially important aromatic amines. It must be noted that the β-Mo$_2$N catalytic system has not been optimized and future work will consider the role of the nitride crystallographic phase/surface area and the catalytic consequences of combining a transition metal (e.g. Au or Pd) with the nitride.

3. Experimental

3.1 Mo nitride synthesis

The MoO$_3$ (99.995% w/w) precursor was obtained from Alfa Aesar and used as received. Mo nitride synthesis was conducted in a commercial CHEM-BET-3000 (Quantochrome) unit. The precursor (0.150 g MoO$_3$) was loaded in a U-shaped quartz cell (10 cm \times 3.76 mm id) and heated in 15 cm3 min$^{-1}$ (GHSV = 7 \times 103 h$^{-1}$, Brooks mass flow controlled) 15% v/v N$_2$/H$_2$ at 5 K min$^{-1}$ to 933 K. The effluent gas passed through a liquid N$_2$ trap and changes in composition (consumption/release of H$_2$ and/or N$_2$) were monitored by a thermal conductivity detector (TCD) with data acquisition/manipulation using the TPR WinTM software. The reaction was quenched by switching to a He flow (15 cm3 min$^{-1}$), the temperature was maintained at 933 K for 3 h and the sample was cooled to room temperature. In order to independently analyze precursor reduction, the thermal treatment of MoO$_3$ in 15 cm3 min$^{-1}$ 15% v/v Ar/H$_2$ at 5 K min$^{-1}$ to 933 K was also monitored. In addition, nitride decomposition was examined by a controlled thermal treatment at 5 K min$^{-1}$ in a flow (60 cm3 min$^{-1}$, GHSV = 2 \times 104 h$^{-1}$) of He to 1273 K. Samples for off-line analysis were passivated at room temperature in 1% v/v O$_2$/He; there was no detectable temperature increase during sample passivation.

3.2 Sample characterisation

Temperature programmed desorption (TPD) and BET surface area measurements were conducted in situ in the CHEM-BET unit. After the reduction–nitridation procedure, the sample was thoroughly flushed with Ar for 30 min and a TPD in 65 cm3 min$^{-1}$ Ar (GHSV = 2 \times 104 h$^{-1}$) to 933 K (at 50 K min$^{-1}$) was conducted to measure the amount of H$_2$ released from the nitride. The BET surface area was obtained from analysis in a 30% v/v N$_2$/He flow with ultra pure N$_2$ ($>$ 99.99%, BOC) as the internal standard. At least two cycles of nitrogen adsorption–desorption in the flow mode were employed using the standard single point BET method. Pore volume measurements were performed using the commercial Micromeritics Floworb II 2300 unit. Prior to analysis, the samples were outgassed at 423 K for 1 h and the total pore volume was obtained at a relative N$_2$ pressure of P/P$_0$ = 0.95. BET and pore volume measurements were reproducible to within \pm5%; the values quoted represent the mean.

Fig. 7 Pseudo-first order kinetic plot for the hydrogenation of p-CN over β-Mo$_2$N. Line represents fit to eqn (2). Inset: variation of p-CNB fractional conversion (X_{p-CNB}$) with time-on-stream; n/F = 85 min; line represents fit to eqn (1). T = 493 K.
Identification of the intermediate and final products was confirmed by XRD, employing a Bruker/Siemens D500 incident X-ray diffractometer using Cu Kα radiation. The samples were scanned at a rate of 0.02° s⁻¹ over the range 20° ≤ 2θ ≤ 90° (scan time = 5 s step⁻¹). Diffractograms were identified by direct comparison with either commercial samples (MoO₃ (Aldrich, 99%) and Mo powder (Aldrich, ≥ 99.9%)) or the JCPDS-ICDD reference standards, i.e. MoO₃ (35-609), MoO₂ (32-0671), Mo (42-1120) and β-Mo₂N (25-1368). Diffuse reflectance UV-Vis (DRS UV-Vis) measurements were conducted using a Perkin Elmer Lambda 35 UV-Vis Spectrometer with BaSO₄ powder as reference; absorption profiles were calculated from the reflectance data using the Kubelka–Munk function. Analysis by scanning electron microscopy (SEM) was carried out using a Hitachi S2700 field emission SEM unit operated at an accelerating voltage of 10 kV. The sample was deposited on a standard aluminium SEM holder and coated with gold. Elemental (nitrogen) analysis was determined using an Exeter CE-440 Elemental Analyser after sample combustion at ca. 1873 K.

3.3 Hydrogenation of p-chloronitrobenzene (p-CN)

3.3.1 Catalytic system. The hydrogenation of p-CN (Sigma-Aldrich, purity ≥ 99%) was carried out under atmospheric pressure at 493 K, in situ immediately after β-Mo₂N activation, in a fixed bed vertical glass reactor (l = 450 mm; id = 15 mm). The catalytic reactor and operating conditions to ensure negligible heat/mass transport limitations have been fully described elsewhere but some features, pertinent to this study, are given below. A layer of borosilicate glass beads served as the preheating zone, ensuring that the organic reactant was vaporized and reached reaction temperature before contacting the catalyst. Isothermal conditions (±1 K) were maintained by diluting the catalyst bed with ground glass (75 μm); the ground glass was mixed thoroughly with catalyst before insertion in the reactor. The reaction temperature was continuously monitored using a thermocouple inserted in a thermowell within the catalyst bed. The p-CN reactant was delivered at a fixed calibrated flow rate \(F = 0.76 \, \text{μmol}_{p-CN} \, \text{min}^{-1} \) to the reactor via a glass/Teflon air-tight syringe and Teflon line using a microprocessor controlled infusion pump (Model 100 kd Scientific). A co-current flow of ultra pure (> 99.99%, BOC) H₂ (<1% v/v p-CN in H₂) was maintained at GHSV = 330 min⁻¹; H₂ content was well in excess of the stoichiometric requirement where the flow rate was monitored using a Humonics (Model 520) digital flowmeter. The molar β-Mo₂N to inlet p-CN molar feed rate \(n/F \) spanned the range 32–128 min. In a series of blank tests, passage of p-CN in a stream of H₂ through the empty reactor did not result in any detectable conversion. The reactor effluent was frozen in a liquid nitrogen trap for subsequent analysis. Carbon balance during the reaction was complete to better than ±4%.

3.3.2 Analytical method and activity/selectivity evaluation. The composition of the reaction/product(s) mixture was determined using a Perkin-Elmer Auto System XL chromatograph equipped with a programmed split/splitless injector and a flame ionization detector, employing a DB-1 capillary column (id = 0.33 mm, length = 30 m, film thickness = 0.20 μm). Data acquisition and manipulation were performed using the TotalChrom Workstation Version 6.1.2 (for Windows) chromatography data system and the overall reactant/product molar fractions \(x_i \) were obtained using detailed calibrations (not shown). Fractional hydrogenation \((X_{p-CN})\) was obtained from

\[
X_{p-CN} = \frac{[p-CN]_{\text{in}} - [p-CN]_{\text{out}}}{[p-CN]_{\text{in}}} \tag{3}
\]

where selectivity with respect to p-chloroaniline (p-CAN) is given by

\[
S_{p-CAN} = \frac{[p-CAN]_{\text{out}}}{[p-CN]_{\text{in}} - [p-CN]_{\text{out}}} \times 100 \tag{4}
\]

Repeated reactions with different samples from the same batch of catalysts delivered conversion/selectivity values that were reproducible to within ±7%.

4. Conclusions

We have established that the formation of β-Mo₂N by temperature programmed treatment (to 933 K) of MoO₃ in N₂/H₂ (15% v/v) occurs via a kinetically controlled stepwise reduction (MoO₃ → MoO₂ → Mo) and subsequent nitridation (Mo → β-Mo₂N). The transformation is non-topotactic with an increase in BET (from 1 to 17 m² g⁻¹) and total pore volume (from 2 × 10⁻³ to 11 × 10⁻³ cm³ g⁻¹). Hydrogen TPD measurements have revealed a significant hydrogen content (0.71 μmol m⁻³) associated with the nitride. We have demonstrated, for the first time, the catalytic action of β-Mo₂N to promote the continuous gas phase hydrogenation of p-CN where p-CAN was the sole product, i.e. 100% selective in terms of -NO₂ group reduction. We have recorded a hydrogenation rate constant \((2.0 \, \text{min}^{-1})\) for β-Mo₂N that is higher than those achieved with supported transition metals (Au/Al₂O₃, Au/TiO₂ and Pd/Al₂O₃) under comparable reaction conditions. These findings can serve as the basis for the development of Mo₂N materials as new catalysts for the cleaner production of commercially important aromatic amines with multiple applications in the fine chemical industry.

Acknowledgements

The authors are grateful to C. Burnett, R. Blackley and X. Wang for their contribution to this work, which was supported by EPSRC through Grant 0231 110525. EPSRC support for free access to the TEM/SEM facility at the University of St Andrews is also acknowledged as is financial support from the Swiss National Science Foundation.

References
