Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain

Published in:
Plant, cell and environment

DOI:
10.1111/pce.12421

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain

Magdalena M. Julkowska1*, Fionn McLoughlin1*, Carlos S. Galvan-Ampudia1, Johanna M. Rankenberg1,2,3, Dorota Kawa1, Maria Klimecka4, Michel A. Haring1, Teun Munnik1, Edgar E. Kooijman2,3 & Christa Testerink1,3

1Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands, 2Department of Biological Sciences, Kent State University, Kent, OH 44242, USA, 4Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland and 3International Institute for Complex Adaptive Matter, University of California, Davis, CA 95616 USA

ABSTRACT

Phosphatidic acid (PA) is an important signalling lipid involved in various stress-induced signalling cascades. Two SnRK2 protein kinases (SnRK2.4 and SnRK2.10), previously identified as PA-binding proteins, are shown here to prefer binding to PA over other anionic phospholipids and to associate with cellular membranes in response to salt stress in Arabidopsis roots. A 42 amino acid sequence was identified as the primary PA-binding domain (PABD) of SnRK2.4. Unlike the full-length SnRK2.4, neither the PABD-YFP fusion protein nor the SnRK2.10 re-localized into punctate structures upon salt stress treatment, showing that additional domains of the SnRK2.4 protein are required for its re-localization during salt stress. Within the PABD, five basic amino acids, conserved in class 1 SnRK2s, were found to be necessary for PA binding. Remarkably, plants overexpressing the PABD, but not a non-PA-binding mutant version, showed a severe reduction in root growth. Together, this study biochemically characterizes the PA–SnRK2.4 interaction and shows that functionality of the SnRK2.4 PABD affects root development.

Key-words: phosphatidic acid; phospholipid binding; root system architecture; SnRK2.10

INTRODUCTION

Environmental stress causes changes in the phospholipid composition of cellular membranes. Several low abundant phospholipids, including phosphoinositides (PPIs) and phosphatidic acid (PA) that act as lipid second messengers, are involved in a wide array of cellular responses (Meijer & Munnik 2003; Wang 2004; Arisz et al. 2009; Xue et al. 2009). PA is involved in stress responses as well as in development and metabolic processes (Testerink & Munnik 2011). It is normally present in small amounts, but rapidly accumulates in the lipid bilayer in response to different biotic and abiotic stress stimuli, including drought and salinity. PA is predominantly produced through two different pathways. Phospholipase D (PLD) hydrolyses structural phospholipids into PA and a remaining head group (Wang 2004; Bargmann & Munnik 2006) and phospholipase C (PLC) hydrolyses PPIs to produce diacylglycerol (DAG) (Munnik & Vermeer 2010). DAG is subsequently phosphorylated to PA by DAG kinase (DGK). Osmotic stress induces an increase in PA through both pathways (Arisz et al. 2009).

Several PLDs have been implicated in salt stress acclimation in Arabidopsis. A pldε3 knockout (KO) mutant was shown to exhibit reduced primary root growth and a reduction in the number of lateral roots in hyperosmotic conditions (Hong et al. 2008). A similar observation was made in a pldε-1/δ double mutant, which displayed lower PA accumulation in response to salt and its seedlings showed reduced primary root growth in saline conditions (Bargmann et al. 2009). For stress-induced PA formation via DGK activity, no genetic evidence has been found so far, probably due to genetic redundancy (Arisz et al. 2013). Chemical inhibitor studies and differential labelling studies did reveal a role for DGK activity in cold-induced PA responses (Gomez-Merino et al. 2005; Arisz et al. 2013). Moreover, treatment with a DGK inhibitor was found to affect the expression of the drought-induced DREB transcription factors, through an unknown mechanism (Djaf et al. 2013).

Recently, PA has been identified as an important factor in the maintenance of root growth in adverse conditions through binding of an array of proteins that are directly involved in the regulation of the root system architecture (as reviewed in McLoughlin & Testerink 2013; Pierik...
& Testerink 2014). In an affinity proteomics screen for PA-binding proteins (Testerink et al. 2004), a number of proteins involved in metabolism and stress signalling were identified, including the Arabidopsis Sucrose-non-fermenting 1 Related protein Kinases 2.4 (SnRK2.4/SRK2A) and 2.10 (SnRK2.10/SRK2B). Both protein kinases belong to the plant-specific SnRK2 class (SnRK2) (Kobayashi et al. 2004; Umezawa et al. 2000; Kulik et al. 2011), which are activated in response to salt and osmotic stress (Munnik et al. 1999; Mikolajczyk et al. 2000; Boudsocq et al. 2004; McLoughlin et al. 2012). Based upon phylogeny, the SnRK2 family has been divided into three classes (Kobayashi et al. 2004), which differ in their activation by the phytohormone abscisic acid (ABA). In Arabidopsis, SnRK2.2 (SRK2D), 2.3 (SRK2I) and 2.6 (OST1; SRK2E) are strongly activated in the presence of ABA (class 3). Together with the components PYR1, ABI1 and ABF2, the SnRK2.6/2.2/2.3 protein kinases were shown to be sufficient for ABA-induced-gene expression, and to act in the core ABA signalling pathway (Fujii et al. 2009). SnRK 2.7 and 2.8 (class 2) are involved in drought signalling (Umezawa et al. 2004; Mizoguchi et al. 2010). The members of SnRK2 class 1, SnRK2.1 (SRK2G), SnRK2.4 (SRK2.4-A), SnRK2.5 (SRK2H) and SnRK2.10 (SRK2B) are activated by osmotic stress, but not by ABA (Boudsocq et al. 2004; Umezawa et al. 2004; Boudsocq & Lauriere 2005). SnRK2.4 and 2.10 are among the most rapidly activated protein kinases in response to salt and are involved in the maintenance of root system architecture under saline conditions (McLoughlin et al. 2012). SnRK2.4 was recently shown to bind PA in vitro, and SnRK2.4-YFP accumulates in punctate structures in response to salt (McLoughlin et al. 2012), suggesting a role for membrane association in the response to salt stress.

In this study, the significance of SnRK2.4’s interaction with PA was examined. We show that SnRK2.4 targeted to punctate structures is directly associated with cellular membranes in vivo. The PA-binding domain (PABD), overlapping with the abiotic stress domain 1 (Kulik et al. 2011), was found to be sufficient for PA binding in vitro. However, the same domain fused to YFP, or SnRK2.4’s close homolog SnRK2.10, failed to localize to punctate structures in planta, showing that PA binding is not sufficient for accumulation in these punctate structures. Replacing several conserved basic amino acids in the PABD with alanines resulted in loss of binding. Moreover, overexpression of the PABD in planta reduced root growth only when these conserved amino acids were unaltered, suggesting that the PABD identified in domain 1 contributes to SnRK2.4 functional regulation and can interfere with root growth, possibly by competing for PA binding with other regulators.

MATERIALS AND METHODS

Cloning and site-directed mutagenesis

SnRK2.4, 2.10 and 2.6 FL CDS, fragments A–F, SnRK2.6 kinase domain, PABD, PABD K226A, K278A, K279A, K284A, K300A, SnRK2.4 K226A, K278A, K279A, K284A, K300A and SnRK2.4 K227A, K222A, R266A, K278A, K279A, K294A, K300A were amplified excluding the terminator with primers containing the gateway recombination attB1 and attB2 site sequences (Supporting Information Table S1), which are compatible with the recombination sites of pDONR207. The fragments were recombined in pDONR207 using BP2 Clonase according to the instructions of the manufacturer (Invitrogen, Breda, the Netherlands), resulting in pENTR(x) constructs, which were all verified by sequencing. Subsequently, all constructs were recombined into a pGEX-KG gateway expression vector (Dhonukshe et al. 2010) using LR Clonase, according to the instructions of the manufacturer (Invitrogen). The constructs were transformed to Escherichia coli strain BL21 DE3 for protein expression and purification. The pENTR-PABD was recombined into the expression clone pGII0125-R4R3 (Galinha et al. 2007) using three-way gateway, together with the ubiquitin 10 promoter, which was amplified by genomic Col-0 DNA (1986 bp upstream from the start codon) with primers containing appropriated attB recombination sites (Table S1) (Galvan-Ampudia et al., unpublished results) (box 1) and mVenus (box 3) (Nagai et al. 2002) using LR+ Clonase according to the instructions of the manufacturer (Invitrogen) (pGII0125-R4R3 Norf/pGEM, box 1: promUBQ10/pDONR207; box 2: PCR product PABD/pGEM; box 3: mVenus FLAG t35). Constructs were transformed using the Agrobacterium tumefaciens strain GV3103 to Col-0 through floral dip transformation (Clough & Bent 1998). Several primary transformants were selected using 0.3 μg mL⁻¹ norflurazon, and the plants were allowed to self-pollinate.

Mutations were induced through site-directed mutagenesis with the indicated primers (Table S1). Mutations were sequentially applied in the pENTRY-SnRK2.4 and pENTRY-PABD clones. Mutations were introduced using Pfu polymerase (Promega, Leiden, the Netherlands) according to the manufacturer’s instructions. The PCR was conducted in a volume of 50 μL using 10 ng plasmid as template, applying 21 cycles, annealing temperature: 52 °C and an extension time of 16 min. The PCR product was digested with DPNI (Fermentas St. Leon-Rot, Germany) at 37 °C for 2 h and the digestion product was purified using the GeneJet PCR purification kit (Fermentas) according to the manufacturer’s instructions and eluted in 30 μL MQ. The product was transformed into E. coli strain DH5α. Plasmids were isolated and sequenced to determine if they contained the desired mutation.

Induction and purification of GST-tagged SnRK2.4 protein fragments from E. coli

Transformed BL21 DE3 bacteria were grown overnight at 37 °C in 2xYT medium containing ampicillin. Four milliliters of o/n culture was diluted in 100 mL of pre-warmed 2xYT medium and was grown at 37 °C until OD₆₀₀ reached 0.6. The production of recombinant protein was induced by addition of IPTG up to 1 mm final concentration. The cells were induced for 6 h at 18 °C. Subsequently, cells were centrifuged at 5000 g for 15 min at 4 °C. The pellet was snap-frozen in liquid nitrogen and subsequently dissolved in PBS containing 1x complete protease inhibitor cocktail (Boehringer
Ingelheim, Alkmaar, the Netherlands). Cell contents were released by lysozyme treatment and sonication. Soluble proteins were isolated by spinning the cell suspension at 13 500 g for 30 min at 4 °C. The SnRK2.4 fragments were purified from soluble protein fraction using the GST-Sepharose beads. Proteins bound to the GST-Sepharose beads were eluted using elution buffer containing 20 mM reduced glutathione (50 mM Tris, pH 8.0). The protein concentration was determined by separating the proteins on sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), staining of the gel with colloidal Coomassie (Sigma-Aldrich, Zwijndrecht, The Netherlands) and comparison to known bovine serum albumin (BSA) dilution series.

Liposome binding assays

Liposome assays were performed as described in Julkowska et al. (2013), with some modifications. Per sample, 400 nmol of total lipids was used, unless indicated otherwise. Synthetic 1,2-dioleoyl-sn-glycerol-3-phosphatidylcholine (DOPC), 1,2-dioleoyl-sn-glycerol-3-phosphatidylethanolamine (DOPE), 1,2-dioleoyl-sn-glycerol-3-phosphatidylserine (DOPS), 1,2-dioleoyl-sn-glycerol-3-phosphate (DOPA) dissolved in chloroform, natural 1-α-phosphatidylglycerol-4-phosphate (PIP) and 1-α-phosphatidylglycerol-5-bisphosphate (PIP2) (brain, porcine-triammonium salt) in chloroform:methanol:water (20:9:1) were used (all from Avanti Polar Lipids, Alabaster, AL, USA). Liposomes were added to 500 ng purified GST-tagged protein and incubated for 30–45 min. Liposomes were harvested of salt-stressed roots (150 mM NaCl, 1% NP-40, 50 mM Tris–HCl (pH 8.0), 1 mM ethylenediaminetetraacetic acid (EDTA), 10 mM NaF, 25 mM β-glycerophosphate, 1x complete protease inhibitor cocktail (Roche, Boehringer, Amere, The Netherlands)] followed by 20 min of centrifugation at 26 000 g (4 °C). The supernatant is shown for 30–45 min. Liposomes were harvested by centrifugation at 16 000 g for 30 min, washed once in binding buffer and re-suspended in sample buffer. Samples were incubated at 95 °C for 5 min and run on 10% SDS-PAGE, blotted on Hybond-ECL and GST-tagged proteins were detected through Western blot analysis. IgG αGST mouse monoclonal (Santa Cruz, Heidelberg, Germany) was used as the primary antibody and goat anti-mouse-HRP (horseradish peroxidase) (Sigma-Aldrich) as the secondary antibody according to the manufacturer’s instructions.

Fractionation

Col-0 plants were grown in hydroponics, similar to the in-gel kinase assay (McLoughlin et al. 2012). Further, 40 mL of root material was harvested of salt-stressed roots (150 mM NaCl, 7 min, approximately 200 plants per sample). Fractionation was essentially performed as described in previous works (Monreal et al. 2010; McLoughlin et al., 2012, 2013), with some modifications. The peripheral membranes were eluted by thoroughly homogenizing the pellet in protein extraction buffer supplemented with 100 mM Na2CO3. After homogenizing, samples were incubated for 15 min on ice and the sample was spun again at 50 000 g for 1 h. The supernatant is shown as the peripheral membrane proteins and the pellet is the remaining pellet. The antibodies against specific protein markers were obtained from Agrisera, Vännäs, Sweden, unless stated otherwise: PM ATPase (Palmgren et al. 1991), PerM V-ATPase (At4g11150), ER/EndoM SAR1 (At3g62560), Cyt. UGPase (raised against barley) and SnRK2.4/2.10 (Vlad et al. 2010). Silver staining was conducted as a loading control. Protein abundances were quantified using ImageJ (NIH, Bethesda, MD, USA).

Confocal microscopy of SnRK2.4-YFP, PABD-YFP, SnRK2.4-GFP and SnRK2.10-GFP lines

The green fluorescent protein (GFP) fluorophore was excited with argon 488 nm, emission was detected between 505 and 555 nm. The YFP fluorophore was excited with argon 514 nm and emission was detected between 525 and 555 nm. Pictures were taken with a Nikon A1 (Nikon Instruments Europe, BV, Amsterdam, The Netherlands) with a 20× water lens and processed using ImageJ.

Root system architecture assay

Seeds were surface-sterilized in a desicator of 1.6 L volume using 20 mL household bleach and 600 μL 40% HCl for 3 h. The seeds were stratified in 0.1% agar at 4 °C for 48 h and sown on square Petri dishes containing ½ Murashige–Skoog, 0.5% sucrose, 0.1% monohydrate-morpholine-4-ethanesulfonic acid hydrate (MES), monohydrate and 1% daishin agar, pH 5.8 (KOH). Seeds were germinated under long day conditions (21 °C, 70% humidity, 16/8 h light/dark cycle). Four-day-old seedlings were transferred to new agar plates for root system architecture phenotyping. Plates were scanned with an Epson Perfection V700 Scanner (Epson Europe B.V., Amsterdam, The Netherlands) at 200 dpi at 4 d after transfer. Root system architecture was quantified using EZ-Rhizo software (Armengaud 2009). Further, n = 18 per line per treatment. Two independent transformants per transgenic line were tested, and two independent biological replicates were performed.

Identification of fusion proteins with YFP/mCherry

Ten-day-old seedlings of Col-0, UBQ::PABD-YFP, UBQ::non-PABD-mCherry and 3SS::YFP grown as described for the root system architecture assay were used for protein extraction. Protein extracts were prepared by incubating the ground tissue at 4 °C with 3 volumes of extraction buffer [150 mM NaCl, 1% NP-40, 50 mM Tris–HCl (pH 8.0), 1 mM ethylenediaminetetraacetic acid (EDTA), 10 mM NaF, 25 mM β-glycerophosphate, 1x complete protease inhibitor cocktail (Roche, Boehringer, Amere, The Netherlands)] followed by 20 min of centrifugation at 26 000 g (4 °C). Protein concentration was determined using bichinchoninic acid protein assay kit (Sigma-Aldrich). Samples were incubated at 95 °C for 5 min with sample buffer ran on 10% SDS-PAGE, blotted on Hybond-ECL and tagged proteins were detected through Western blot analysis. IgG α-GFP rabbit polyclonal (Invitrogen, Eugene, OR, USA) and α-mCherry goat polyclonal (Sicgen, Carcavelos, Portugal) were used as the primary
antibody and goat anti-rabbit and rabbit anti-goat-HRP respectively (Pierce, Breda, the Netherlands) as the secondary antibodies according to the manufacturer’s instructions. Two independent transformant lines per construct were tested (Supporting Information Fig. S4). Col-0 and 35S::YFP lines were used as negative and positive controls, respectively.

RESULTS

SnRK2.4 and 2.10 specifically bind to liposomes containing PA

The protein kinase SnRK2.10 was identified to bind PA in vitro in a PA-binding affinity screen using PA-coated Sepharose beads followed by identification through mass spectrometry (Testerink et al. 2004). Subsequently, both SnRK2.10 and 2.4 were shown to bind PA directly (McLoughlin et al. 2012). To further characterize their lipid binding affinity and specificity, liposome-binding assays were performed with different phospholipid compositions (Fig. 1a). The structural phospholipids PC and PE were used as the basic lipid composition of the liposomes, in which different anionic and signalling lipids were mixed. Purified E. coli-expressed GST-fused SnRK2.4 and SnRK2.10 were tested for binding to liposomes containing PA or other negatively charged phospholipids; phosphatidylserine (PS), phosphatidylinositol-4-phosphate (PI4P) and phosphatidylinositol-4,5-biphosphate (PIP2) as controls. The liposomes were composed of 50% structural lipids and 50% of anionic phospholipids to determine in vitro PA binding. Both SnRK2.4 and 2.10 showed similar lipid binding properties and specifically bound to liposomes containing PA, but not to liposomes containing other anionic (PS) or anionic phosphorylated lipids (PI4P and PIP2).

SnRK2.4/2.10 associate with membranes and are present in endomembrane compartments in Arabidopsis root tissue in saline conditions

SnRK2.4/2.10 were shown to re-localize to the microsomal membrane fraction in Arabidopsis roots (McLoughlin et al. 2012). To further investigate which subcellular fraction SnRK2.4/2.10 localize upon salt treatment, Arabidopsis root...
Multiple regions of SnRK2.4 bind PA-containing liposomes

To narrow down the candidate region(s) that bind PA, binding affinity was first tested using liposome dilution series of the SnRK2.4 isoform (Fig. 2a). SnRK2.4 was able to bind liposomes containing 50% PA at both 400 and 40 nmol total lipid content, in contrast to the SnRK2.6 isoform, which did not bind to any of the liposomes tested. As SnRK2.6 does not exhibit any PA-binding affinity, but has high homology to other SnRK2 members that do have PA-binding affinity, protein sequences were aligned to identify amino acids that are likely to be important for PA binding. Lysine and arginine residues are known to be preferred docking sites for PA (Testerink & Munnik 2005; Kooijman et al. 2007). Therefore, all of the basic residues conserved in the PA-binding SnRK2s, but absent in SnRK2.6, were considered as candidate residues involved in PA binding (underlined in Fig. 2b and highlighted in red in Fig. S3).

Two candidate amino acids were found in the N-terminal kinase domain, five were identified in domain 1, which is a 42 amino acid domain that is required for the osmotic stress response, and two were found in the C-terminal acidic domain (domain 2) (Kulik et al. 2011). A schematic overview of SnRK2.4 domains and location of candidate amino acids is displayed in Fig. 3a. To further investigate which part of the protein contains the PABD, six fragments (A–F) of SnRK2.4 were expressed as fusion proteins in E. coli and purified, with an emphasis on domain 1 (fragments B, C, E and F). Fragment A consisted of the kinase domain of SnRK2.4, fragment B is the regulatory domain, fragment C covered the osmotic response domain (domain 1) and fragment D covered the acidic domain (domain 2). As most candidate amino acids were identified in domain 1, two sub-fragments were produced for this domain; fragment E covers the N-terminal and F the C-terminal part, including the region between domains 1 and 2.

Using liposomes containing 400 nmol lipids, all indicated fragments except fragment D (domain 2) were shown to bind PA (Fig. 3b). This indicates that multiple parts of the protein could contribute to the interaction of SnRK2.4 with PA. The SnRK2.4 kinase domain has weak PA-binding affinity compared with the other fragments as it only binds to the highest concentration of liposomes tested (400 nmol). Interestingly, although the kinase domains of SnRK2.4 and 2.6 are very similar, the SnRK2.6 kinase domain, likewise SnRK2.6 full-length protein (Fig. 2a), did not show any binding affinity to liposomes containing PA (Fig. 3c). On the contrary, fragments B and C were able to bind PA even at the lowest lipid
Basic amino acids present in domain 1 are necessary for PA binding

A new fragment corresponding to domain 1, which encompasses the E fragment and the N-terminal part of fragment F (261–302), was expressed as a fusion protein and showed similar (or even higher) affinity for PA as the full-length protein (Fig. 4a). Within this PABD, the five candidate basic amino acids (fragment C; Fig. 3a) were mutated to alanines. The resulting PABD mutant PABD_{K266A, K278A, K279A, K294A, K300A} did not exhibit any PA-binding affinity (Fig. 4a), showing that these amino acids are indeed essential for PA-binding capacity of the domain. The significance of the five candidate amino acids present in the PABD was subsequently examined in the context of the full-length SnRK2.4 protein. A SnRK2.4_{K266A, K278A, K279A, K294A, K300A} mutant protein exhibited similar or only slightly reduced PA-binding affinity at all lipid concentrations tested (Supporting Information Fig. S1). As the kinase domain also exhibited some PA-binding affinity (fragment A; Fig. 3b), the candidate amino acids in the kinase domain were additionally mutated in the full-length protein. Surprisingly, the SnRK2.4_{K27A, K222A, R266A, K278A, K279A, K294A, K300A} still retained PA-binding capacity (Supporting Information Fig. S1). Summarizing, our in vitro lipid binding data indicate that although basic amino acid-based PA-binding of domain 1 represents the highest PA-binding affinity site within SnRK2.4, additional residues contribute to the lipid binding affinity of the full-length SnRK2.4 protein.

SnRK2.4 re-localization into punctate structures does not solely depend upon the identified PABD

SnRK2.4 re-localized to punctate structures in response to salt stress (McLoughlin et al. 2012) in which PA binding might play a role. In order to determine the contribution of the SnRK2.4 PABD to the re-localization, the PABD was fused to YFP and expressed in Arabidopsis under control of the ubiquitin promoter (UBQ). Unlike SnRK2.4-YFP (Fig. 4c), the PABD-YFP fusion did not accumulate in punctate structures during salt stress in root epidermal cells in several independent transgenic lines (Fig. 4e). These results indicate that SnRK2.4 re-localization does not rely solely upon the PA–PABD interaction. The mechanism of SnRK2.4 re-localization might depend on coincidence detection, where other domains are required to open up the structure exposing PABD for its interaction with PA. Further, additional protein–protein interactions might be necessary before SnRK2.4 can be incorporated in the punctate structures.

SnRK2.10, which also binds to PA, and which is highly similar in protein sequence to SnRK2.4 (Fig. 1), was previously observed to remain in the cytosol in saline conditions (McLoughlin et al. 2012). This could be explained since SnRK2.10 is expressed in different root tissues and previously observed to remain in the cytosol in saline conditions (McLoughlin et al. 2012). This could be explained since SnRK2.4 re-localized to different root tissues and no expression was observed in cell types where SnRK2.4 re-localization was observed. Therefore, the lack of re-localization of SnRK2.10 in response to salt could be due to cell-specific PA-increase in epidermis rather than a...
Figure 4. Phosphatidic acid (PA) binding of the PA-binding domain relies upon conserved basic amino acids, but is not sufficient for salt-induced re-localization. (a) Conserved basic amino acids in the PA-binding domain are prerequisite for PA binding of this domain. GST-tagged SnRK2.4, PA-binding domain and non-PABD K266A, K278A, K279A, K284A, K280A, where five conserved basic amino acids were mutated to alanine, were expressed in *Escherichia coli* and purified. GST protein fusions were incubated with different amounts of liposomes ranging between 400 and 25 nmol containing either PC/PE 1:1 or PC/PE/PA 1:1:2. The loading control is shown in the left panels and the proteins that bound to the liposomes are shown in the middle panels. A schematic representation of the SnRK2.4, PA-binding domain with the selected lysines and arginines (black) and the same amino acids mutated to alanine (light grey) in non-PABD are represented in the right panels. (b) Binding to PA is not sufficient for re-localization into punctate structures. While full-length SnRK2.4-YFP protein fusion is changing its cytosolic localization in root epidermis cells in control conditions to (c) punctate structures after salt stress treatment, (d) PABD-YFP protein fusion was observed to localize in cytosol under control and (e) salt stress conditions in root epidermis cells (f) SnRK2.10-GFP protein fusion localization in root epidermis cells was studied using SnRK2.10-GFP overexpression line. SnRK2.10-GFP localized at cytosol in control and (g) salt stress conditions, (h) overexpression of SnRK2.4-GFP line was used as a positive control. SnRK2.4-GFP localized at cytosol in control conditions but (i) significant fraction re-localized into punctate structures upon salt stress treatment.
difference in protein sequence. To test this hypothesis, localization of SnRK2.10 in epidermal cells was examined in stably transformed lines expressing the protein under control of the 3SS promoter. The cellular localization of p35S::SnRK2.4-10-GFP protein expressed in epidermal cell layers was found to be restricted to the cytosol, in control as well as in salt stress conditions (Fig. 4f,g), whereas p35S::SnRK2.4-2.10-GFP fusion protein was observed to re-locate into punctate structures after exposure to salt stress (Fig. 4h,i). This suggests that differences in protein sequence between SnRK2.10 and SnRK2.4 rather than their tissue-specific expression are responsible for the difference in re-localization into punctate structures, again indicating that besides the conserved PABD, other domains within these proteins are relevant for the re-localization.

Overexpression of a functional SnRK2.4 PABD leads to root growth reduction

The PABD of SnRK2.4 protein overlaps with domain 1, which is conserved in all SnRK2 isoforms, and needed for activation upon abiotic stress, independently of ABA (Kulik et al. 2011). The function of this domain 1 is largely unknown. In order to investigate the effect of the PABD/domain 1 on seedling growth, the wt PABD (UBQ::PABD-YFP) as well as the non-PA-binding mutant version PABD_{Δ5} (UBQ::non-PABD-mCherry) were expressed in Arabidopsis (Supporting Information Fig. S4). Overexpression of the PABD-YFP was found to significantly reduce main root length, lateral root density and total root size as well as rosette size of 8-day-old seedlings grown on agar plates, whereas no reduction in seedling growth was observed in lines overexpressing the non-PABD (Fig. 5). These results show that domain 1 of SnRK2.4 has a negative impact on seedling root growth and also highlight a role for PA binding of this domain in the observed phenotype.

DISCUSSION

The SnRK2.4 and SnRK2.10 protein kinases are rapidly activated by salt stress (McLoughlin et al. 2012) in an ABA-independent manner (Boudsoq et al. 2007). SnRK2.4 and SnRK2.10 were initially identified in a screen for PA-binding proteins (Testerink et al. 2004) and were functionally characterized to have a role in root growth in saline conditions (McLoughlin et al. 2012). This study focuses on the characterization of the PABD of SnRK2.4 and SnRK2.10 and the significance of this interaction for SnRK2.4 function in planta.

The observed specificity of SnRK2.4 and 2.10 for binding PA (Fig. 1a) indicates the presence of a specific PA-binding site, rather than a general, electrostatic interaction with anionic lipids. As both PIP and PIP2 have significantly more charge than PA (Kooijman & Burger 2009) and even 50% anionic lipid did not induce binding to membranes containing PS, PIP and PIP2, our data suggest that SnRK2.4 and 2.10 membrane binding is truly specific for PA. Comparing the presence of SnRK2.4/2.10 in endosomal membrane fractions to V-ATPase and SAR1 revealed that a small fraction of SnRK2.4/2.10 was associated with membranes (Fig. 1b). A major fraction of the SnRK2.4/2.10 present in the microsomal membrane fraction was released during the Brij-58 wash (together with the SAR1 marker), showing that the majority of SnRK2.4/2.10 proteins are contained in the vesicles rather than bound to the lipid bilayer.

By testing different SnRK2.4 protein fragments for PA binding, multiple PA-binding sites were identified. The strongest PA-binding affinity was found for domain 1 in the C-terminal domain of the protein, and weaker affinity for the kinase domain. The presence of multiple lipid binding domains present in a protein has been observed before, in yeast Opi1 protein (Loewen et al. 2004), as well as in plant TGD4 (Wang et al. 2013). The final binding strength and specificity of SnRK2.4 to certain PA pools may be dependent upon allosteric mechanisms, exposing different PA-binding sites within the SnRK2.4 protein structure. PA preferentially interacts with lysines and arginines (Testerink & Munnik 2005; Kooijman et al. 2007), and site-directed mutagenesis of basic amino acids has shown to be effective in abolishing PA binding of several PA targets (Ghosh et al. 2003; Zhang et al. 2004, 2009; Wang et al. 2006). Five positively charged amino acid residues (lysines and arginines), conserved in the PABD (domain 1) of the class 1 SnRK2 members, were identified as possible PA-binding residues. Indeed, mutation of these candidate amino acids completely abolished PA-binding affinity of the SnRK2.4 PABD (Fig. 4a). In the context of the full-length protein, however, mutating these five residues to alanine did not reduce the PA-binding affinity in vitro over a range of different lipid concentrations (Supporting Information Fig. S1). Surprisingly, mutation of additional amino acids in the kinase domain did not disrupt the binding affinity either (Supporting Information Fig. S1). These results suggest the existence of more domains that enable PA binding, but are distinct from conserved basic residues present in the kinase domain and the PABD/domain 1.

Binding to PA through the PABD alone is not sufficient for salt-induced re-localization, as the PABD remained in the cytosol after salt stress exposure (Fig. 4e). The re-localization into the punctate structures apparently requires additional SnRK2.4 protein–protein or protein–membrane interactions through other regions of the full-length protein. This conclusion is supported by studies that use a SnRK2.10 overexpression line. The homology between SnRK2.4 and 2.10 is high (89% protein sequence identity) and both protein kinases bind PA in vitro (Fig. 1a) (McLoughlin et al. 2012). Yet re-localization into punctate structures was not observed in the line overexpressing SnRK2.10-GFP (Fig. 4g). Together, this suggests that re-localization is not only dependent upon conserved basic amino acids present in the PABD of both SnRK2s but also involves additional mechanisms that remain to be identified. These mechanisms could rely upon coincidence detection of lipids, requiring multiple PA-binding sites that do differ in the protein sequences of SnRK2.4 and SnRK2.10 (Supporting Information Fig. S2), but could also be due to post-translational modifications or interactions with other proteins.
Overexpression of the identified SnRK2.4 PABD was found to affect Arabidopsis growth by reducing shoot size and root length (Fig. 5). Interestingly, the overexpression of a non-PABD (PABD\textsubscript{R266A, K278A, K279A, K294A, K300A}) did not affect seedling growth. The observed reduction in root growth could be due to impairing normal SnRK2.4 function independently of PA, through competition for proteins or elements that interact with domain 1. Domain 1 is conserved in all class 1 SnRK2 members (Supporting Information Fig. S3) and is required for activation by osmotic stress (Kulik et al. 2011). Alternatively, many PA targets have been described to be important for root development and acclimation in adverse conditions (McLoughlin & Testerink 2013). Overexpression of a PABD might reduce PA available for interaction with other proteins and could therefore disrupt the functionality of several of these proteins, resulting in growth defects. In either case, it clearly shows that SnRK2.4 PABD/domain 1 plays a role in root growth, which deserves further investigation.

Figure 5. Overexpression of phosphatidic acid-binding domain PABD results in root growth reduction. Effect of PABD on root system architecture was estimated by growing seedlings of Col-0, pUBQ::PABDR266A, K278A, K279A, K294A, K300A::RFP (pUBQ::non-PABD) and pUBQ::PABD::YFP (pUBQ::PABD) lines on agar plates: (a) root system architecture of 12-day-old seedlings and (b) root system architecture of 8-day-old seedlings grown in control conditions was quantified using EZ-Rhizo software. The bars represent the average values. \(n=16\). Error bars represent SE. Significance levels were calculated using Scheffe post-hoc test – different letters represent groups with significance < 0.05.
ACKNOWLEDGMENTS

We thank Grazyna Dobrowolska (Polish Academy of Sciences) for advice on SnRK2 protein analysis, Xavier Zarza for technical help, and the Van Leeuwenhoek Centre for Advanced Microscopy (LCAM) at the University of Amsterdam for making their confocal microscopes available and for technical support. This work was supported by the Netherlands Organisation for Scientific Research (NWO) (Grants Vidi 700.56.429, ALW 820.02.017 and ALW 846.11.002), STW Learning from Nature (10987), NGI Horizon (project 93511011) and the U.S. National Science Foundation I2CAM International Materials Institute Award (Grant DMR-0844115).

REFERENCES

Received 15 April 2014; received in revised form 17 July 2014; accepted for publication 20 July 2014

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Figure S1. PA-binding in full length SnRK2.4 protein context is not abolished by mutations of conserved basic amino acids.

Figure S2. Alignment between SnRK2.4 and SnRK2.10 protein sequence.

Figure S3. Alignment of protein sequences of all SnRK2 family members.

Figure S4. Identification of fusion proteins with YFP/mCherry.

Table S1. Primer sequences.