Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination
Pei, X.; Tian, H.; Zhang, W.; Brouwer, A.M.; Qian, J.

Published in:
Analyst

DOI:
10.1039/c4an01086h

Citation for published version (APA):
Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination†

Xiaoliang Pei,a Haiyu Tian,a Weibing Zhang,*a Albert M. Brouwerb and Junhong Qian*a

Two fluorescent probes, m-PSP and p-PSP, for sulfite and/or sulfide were constructed by connecting a pyridinium ion to a coumarin fluorophore through an α,β-unsaturated ketone. The presence of the pyridinium salt promoted the nucleophilic addition of sulfite and sulfide to the α,β-unsaturated ketone, which could be visualized by dramatic changes in the solution’s color and fluorescence intensity. Both probes exhibit good selectivity (the selectivity coefficients toward major interferences are less than 0.07) and high sensitivity for sulfite and sulfide over thiols and other potential analytes. The detection limits of m-PSP for the analysis of sulfite and sulfide are calculated to 8.5 × 10⁻⁷ M and 2.7 × 10⁻⁷ M, respectively. Living cell imaging results indicate that both probes can be applied in biological systems.

Introduction

Sulfur-containing species such as sulfites, hydrogen sulfides and thiols are important in industrial and biological processes.1 However, they play different roles in the areas of industry, environment and physiology.2 Sulfites are widely used to preserve freshness and increase shelf life in many foods and beverages.2 Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide has been regarded as the third gaseous messenger.4 Low-molecular-weight thiols are essential in maintaining the biological redox balance.5 Therefore, efficient methods for sensitive and selective determination of sulfur-containing species are urgently required.6 Several colorimetric/fluorescent probes for sulfite, sulfide, and thiols have been designed and synthesized based on their high binding affinity towards metal ions,7 nucleophilic reaction,* reduction8 and the reaction with aldehydes.9−11 Sulfides, sulfites and thiols are well-known nucleophilic reagents and their nucleophilic reactivity decreases in the order: sulfite > sulfide > thiol.11 Some of the fluorescent probes for these species are based on the Michael addition mechanism.12 Probes for H₂S, sulfite and thiols have been constructed by conjugating an α,β-unsaturated ketone to a coumarin fluorophore.13 It has been found that a strong electron-withdrawing group at the β-position of an α,β-unsaturated ketone promotes the Michael addition reaction significantly,14 while a strong electron-withdrawing group at the 2-position enhances the reactivity slightly.15 After carefully studying some reported fluorescent probes, we envisioned that the Michael addition mechanism could be exploited to kinetically discriminate between different sulfur-containing species by rationally designed probes.

In order to distinguish sulfites, sulfides and thiols, two novel probes m-PSP and p-PSP were designed and synthesized. Compound m6 is the precursor of m-PSP and was used as a reference. Coumarin was selected as the fluorophore because of its ease of modification, photochemical stability and relatively high quantum yield.14 We designed these two fluorescent probes based on the following considerations: (1) the amino nitrogen was fused with two 6-membered rings in a julolidine structure to make both the absorption and emission wavelength shift to longer wavelengths (compared to m-CP and TSP2); (2) electron-withdrawing groups were introduced to the probes to adjust the reaction rate. In this work, m- and p-pyridine units were incorporated instead of benzene in TSP2 and were treated with MeI to form quaternary ammonium salts to further strengthen the electron-withdrawing property and to provide good solubility in water. We expected that the reactions between sulfur-containing species and the probes could be conducted in an aqueous solution. The reaction rates of both the probes would be much faster than those of TSP2, but lower than that of m-CP. Moreover, we envisaged that sulfite and sulfide might be distinguished at different time intervals based on their different reactivity (Scheme 1).

Experimental Synthesis

Probes m-PSP and p-PSP were synthesized according to Scheme 2.
Synthesis of m1. 3-Methoxyaniline (0.04 mol, 4.9 g), 1-bromo-3-chloropropane (0.6 mol, 94 g), and anhydrous sodium bicarbonate (0.32 mol, 26.9 g) were added into a 500 mL three-necked round-bottomed flask equipped with an overhead mechanical stirrer and thermometer under N2 atmosphere. The mixture was stirred at ~70 °C for 1 h and then at ~100 °C for 2 h, followed by reflux for 15 h. The reaction progress was traced by TLC. After cooling to room temperature, the reaction solution was filtered to obtain a solid, which was purified by column chromatography (PE-DCM = 2 : 1) to afford m1 as a red oily solid (5.44 g, yield: 67.0%). 1H NMR (CDCl3, 400 MHz) δ (ppm): 1.93 (m, 4H), 2.66 (m, 4H), 3.05 (m, 4H), 3.73 (s, 3H), 6.13 (d, 1H, J = 8.0 Hz), 6.72 (d, 1H, J = 8.0 Hz).

Synthesis of m2. m1 (0.025 mol, 5.00 g) was dissolved in a mixed solution containing 25 mL of 47% HI, 40 mL of concentrated HCl, and 100 mL of H2O. After refluxing for 15 h, another 25 mL of concentrated HCl was added to the solution. The solution was further refluxed for 40 h, and then cooled in an ice bath. 50% NaOH and phosphate buffer (6.9 g of NaH2PO4·2H2O and 1.4 g of Na2HPO4·12H2O in 100 mL of H2O) were employed to adjust the pH to ~6.0. The product was extracted with dichloromethane, and the organic phase was washed with brine and dried over MgSO4. The solvent was removed under reduced pressure to afford a brown residue, which was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 8 : 1) to yield compound m2 as white crystals (3.87 g, 82%). 1H NMR (CDCl3, 400 MHz) δ (m, 4H), 2.67 (m, 4H), 3.09 (m, 4H), 4.44 (s, 1H), 6.06 (d, 1H, J = 8.0 Hz), 6.66 (d, 1H, J = 8.0 Hz).

Synthesis of m3. POCl3 (5.0 mL) was added dropwise to freshly distilled DMF (5.0 mL) and stirred at 0–5 °C under N2 atmosphere for 15 min. 3.8 g of m2 (0.02 mol) in 10 mL of dry DMF was added dropwise to the POCl3–DMF solution. The solution was stirred at room temperature for 30 min, and at 60 °C for another 30 min. The mixture was slowly poured into ice water (100 mL), and aged for 2 h to afford blue-green solid. The precipitate was filtered and washed with water followed by purification using column chromatography on silica gel (petroleum ether–CH2Cl2 = 1 : 1) to afford m3 as a yellow oil (3.72 g, yield: 86%). 1H NMR (CDCl3, 400 MHz) 1.93 (m, 4H), 2.68 (t, 4H, J = 6.2 Hz), 3.28 (m, 4H), 6.84 (s, 1H), 9.37 (s, 1H), 11.8 (s, 1H).

Synthesis of m4. 10 drops of piperidine were added to the ethanol solution (50 mL) containing m3 (3.5 g, 0.016 mol) and diethylmalonate (5.12 g, 0.032 mol). The above solution was heated to 50 °C under N2 atmosphere for 30 min to yield a canary coloured solid (2.5 g, 0.01 mol in 10 mL of DMF solution. The resulting solution was cooled to room temperature and poured into ice water (250 mL). The solution’s pH was adjusted to ~7.0 with NaOH solution (0.1 M) to obtain a yellow precipitate. The solid was washed with water and then purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 3 : 1) to afford compound m4 as a orange-yellow crystal (2.86 g, 74%). 1H NMR (CDCl3, 400 MHz) δ (m, 4H), 2.75 (t, 2H, J = 6.5 Hz), 2.88 (t, 2H, J = 6.5 Hz), 3.26 (m, 4H), 5.99 (d, 1H, J = 9.2 Hz), 6.84 (s, 1H), 7.46 (d, 1H, J = 9.2 Hz).

Preparation of m5. POCl3 (5.0 mL) was added dropwise to freshly distilled DMF (5.0 mL). The solution was stirred at 0–5 °C under N2 atmosphere for 30 min to yield a canary coloured solution. A solution of compound m4 (2.5 g, 0.01 mol in 10 mL of DMF) was then added to the above solution. The mixed solution was first stirred at room temperature for 30 min, and at ~60 °C for another 12 h. The reaction mixture was slowly added into ice water (100 mL) and aged for 2 h. NaOH solution (20%) was used to adjust the solution’s pH to ~7.0 to yield a precipitate. The resulting solid was dried to afford compound m5 as a crimson solid (2.18 g, 81%). 1H NMR (CDCl3, 400 MHz) δ (s, 1H), 2.69 (t, 2H, J = 6.4 Hz), 2.81 (t, 2H, J = 6.4 Hz), 3.30 (m, 4H), 6.91 (s, 1H), 8.06 (s, 1H), 10.03 (s, 1H).

Synthesis of m6 and m7. 30 drops of pyrrolidine were added to 50 mL of CH2Cl2–EtOH (1 : 1, v/v) containing compound m5 (1.0 g, 3.72 mmol) and 3-acyclopypyridine (1.8 equiv.) The resulting clear red solution was stirred at room temperature for 12 h to afford reddish precipitate. The solid was isolated by column chromatography on silica gel (CH2Cl2–ethyl acetate = 2 : 1) to afford compound m6 as red crystals (0.88 g, 64%). 1H
NMR (DMSO-d6, 400 MHz) δ (ppm): 9.28 (s, 1H), 8.78 (d, 1H, J = 4.5 Hz), 8.33 (d, 1H, J = 7.9 Hz), 8.15 (d, 1H, J = 15.1 Hz), 7.72 (s, 1H), 7.69 (d, 1H, J = 15.4 Hz), 7.44 (m, 1H), 6.93 (s, 1H), 3.34 (m, 4H), 2.90 (t, 2H, J = 6.2 Hz), 2.77 (t, 2H, J = 6.2 Hz), 1.99 (m, 4H). Compound m7 was obtained by the same procedure with 4-acetylpypyridine instead of 3-acetylpypyridine (0.84 g, 61%).

Synthesis of m-PSP and p-PSP. Compound m6 (200.0 mg, 0.54 mmol) and an excess amount of iodomethane were dissolved in acetonitrile (25 mL). The above solution was stirred in dark at room temperature for 8 h and then reflushed for 10 h. A dark-green precipitate was obtained by addition of cold absolute ethanol (20 mL). The precipitate was collected by filtration and recrystallization from absolute ethanol to obtain m-PSP (175 mg, 84%).

1H NMR (DMSO-d6, 400 MHz) δ (ppm): 9.55 (s, 1H), 9.15 (d, 1H, J = 6.1 Hz), 9.03 (d, 1H, J = 8.1 Hz), 8.40 (s, 1H), 8.28 (m, 1H), 7.92 (d, 1H, J = 15.3 Hz), 7.83 (d, 1H, J = 15.3 Hz), 7.11 (s, 1H), 4.45 (s, 3H), 2.75 (m, 4H), 2.51 (m, 4H), 1.89 (m, 4H).

13C NMR (400 MHz, DMSO-d6) δ (ppm): 185.2, 160.4, 152.2, 149.0, 147.7, 147.3, 144.5, 120.2, 118.8, 111.4, 108.7, 105.6, 50.2, 49.6, 48.7, 27.2, 21.0, 20.0; HR-MS +: 387.1703 for (M + C0I)+.

Further experimental and computational details are given in the ESI.†

Results and discussion

The photophysical responses of m-PSP/p-PSP toward sulfite and sulfide

As designed, compounds m-PSP/p-PSP (Table 1) display a strong absorption band in the visible region with a peak at 529 nm and 546 nm, respectively, which is 60–80 nm red-shifted relative to that of a N,N-diethyl amino coumarin compound.³⁻⁵ About 18 nm red shift in the absorption of m-PSP relative to that of the intermediate m6 indicates that the N-methylpyridinium ion is a stronger electron-withdrawing group than pyridine. The trend towards lower excitation energies going from coumarin to m6 to p-PSP is nicely reproduced by quantum-chemical calculations (see ESI† for details). Compounds m-PSP/p-PSP are virtually nonfluorescent, possibly because the strong charge-transfer character accompanied by a large structural reorganization leads to rapid radiative decay.

Initially, the time-dependent absorption and emission spectra of m-PSP in the presence of sulfite or sulfide were investigated in phosphate buffer (PBS; 20 mM, pH 7.4). With the addition of sulfite, a new absorption peak at 418 nm rose dramatically and essentially reached the maximum within 10 min. The original peak at 529 nm reduced its intensity at the same time (Fig. 1a). The solution’s color changed from purple to yellow (shown in the inset of Fig. 1a). The well-defined isosbestic point demonstrates a clear formation of a new compound. The fluorogenic signaling behavior of m-PSP toward sulfite was also measured. m-PSP itself is non-fluorescent because of the presence of a low-energy charge-transfer state in which an electron is transferred from the coumarin to the pyridinium unit (the weak emission at 515 nm is presumably due to an impurity containing a coumarin chromophore without the extended conjugation). Upon treatment with sodium sulfite, the addition of the reagent to the double bond induced an enhancement (about 2-fold, Fig. 1b, Φf = 0.0018) in emission accompanied by a color change from dark-green to faint-green under illumination with a UV lamp. Sulfide induced a similar absorption spectral change of m-PSP (Fig. 1c), but it triggered much stronger fluorescence enhancement (about 40-fold, Fig. 1d, Φf = 0.024) of m-PSP and a bright green fluorescence appeared. Importantly, the reaction of m-PSP with sulfide was much slower than that with sulfite; however, the reaction of m-PSP with Na2SO3 was very fast and could be completed within 10 min, whereas the reaction of m-PSP with Na2S required more than 2 h. The kinetic curves of m-PSP with different reagents are shown in Fig. S3.† From these curves, it is clear that the reaction rate decreases in the order of sulfite > sulfide > thiols (t1/2 = 0.9 min for sulfite vs. t1/2 ≈ 19 min for sulfide, only about 15% of m-PSP was converted to the thiol product after 3 h).

Therefore, sulfite and sulfide could be kinetically discriminated using m-PSP as the probe. The assay times of 10 min and 2 h
were used for the evaluation of the selectivity and sensitivity of \textit{m-PSP} toward sulfite and sulfide, respectively.

The marked blue-shifts (~111 nm) in the absorption spectrum caused by sulfite and sulfide are in agreement with the addition of sulfite/sulfide to the electrophilic C=C double bond in \textit{m-PSP}, leading to a shorter conjugation structure of the reaction products. The absorption band can be attributed to the coumarin chromophore. The emission, although strongly enhanced compared to that of the precursor \textit{m-PSP}, is still quite weak. Computational evidence (ESI) indicates that low-energy charge transfer states are present in which the coumarin acts as the donor and the pyridinium ion acts as the acceptor. Thus, electron transfer is a significant decay channel for the excited coumarin chromophore in the adducts.

To gain more information of the reaction between sulfite and \textit{m-PSP}, the reaction product of \textit{m-PSP} treated with Na$_2$SO$_3$ was isolated (\(m/z\) 469.1429, calculated 469.1433). The partial 1H NMR of \textit{m-PSP} and the reaction product \textit{m-PSP}–SO$_3$H are shown in Fig. 2 (Fig. S5† is the NMR titration spectrum of \textit{m-PSP} and sodium sulfite). The resonance signals corresponding to the alkene protons H$_b$ and H$_a$ at 7.95 ppm and 7.84 ppm disappeared, and new peaks at 6.07, 5.32 and 4.49 ppm emerged. The addition of sulfite to the C=C resulted in the formation of a chiral center of H$_x$, and the two protons of the methylene group at H$_y$ were not equivalent. In addition, the resonance signal of H$_8$ (8.47 ppm) shifted to 7.78 ppm due to the shielding effect from the adjacent alkyl group.

HPLC monitoring of the reaction process (Fig. 3) confirmed the formation of a signal of major Michael addition product. Fig. 3 demonstrates that the peaks of \textit{m-PSP} and its addition product (\textit{m-PSP}–SO$_3$H) occur at about 13.1 min and 9.5 min, respectively. These peaks were already observed in the injection of the mixture of \textit{m-PSP} and sulfite after 1 min, which verified that the Michael addition reaction between sulfite and \textit{m-PSP} was very fast.

![Fig. 2 Partial 1H NMR spectrum of \textit{m-PSP} and \textit{m-PSP}–SO$_3$H in DMSO-d6.](image)

The spectral responses of \textit{p-PSP} toward sulfite/sulfide are similar to those of \textit{m-PSP} [Fig. S6,† the quantum yields of the addition products \textit{p-PSP}–SO$_3$H and \textit{p-PSP}–SH are 0.0016 and 0.015, respectively]. However, \textit{p-PSP} reacted with sulfite/sulfide at a faster rate, and the reactions between \textit{p-PSP} and sulfite and sulfide were completed within 5 min and 2 h, respectively. The strong electron-withdrawing pyridinium group favors the nucleophilic addition reaction at the double bond more effectively when it is linked at the \textit{para}-position. Therefore, the reaction rate of \textit{p-PSP} was faster than that of \textit{m-PSP}. Because compounds TSP2 hardly reacted with sulfite/sulfide in PBS14 (Fig. S7†), the strategy in the present work is proven to be reasonable.

The selectivity and competition of \textit{m-PSP} toward sulfite and sulfide over various analytes in phosphate buffer solution

We next tested the selectivity of \textit{m-PSP} for sulfite and sulfide by screening its photophysical responses to relevant analytes, Table 1 Photophysical data of the dyes in PBS

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{abs}/nm</th>
<th>ϵ/L mol$^{-1}$ cm$^{-1}$</th>
<th>λ_{em}/nm</th>
<th>Φ a</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP2</td>
<td>465</td>
<td>26 300</td>
<td>605</td>
<td>0.05413c</td>
</tr>
<tr>
<td>m6</td>
<td>511</td>
<td>52 800</td>
<td>625</td>
<td>0.007</td>
</tr>
<tr>
<td>\textit{m-PSP}</td>
<td>529</td>
<td>30 100</td>
<td>513a</td>
<td>0.00036a</td>
</tr>
<tr>
<td>\textit{p-PSP}</td>
<td>546</td>
<td>33 300</td>
<td>514a</td>
<td>0.00029a</td>
</tr>
</tbody>
</table>

a The weak emission at 515 nm is presumably due to an impurity. b the quantum yields of \textit{m-PSP} and \textit{p-PSP} are probably not precise because of the impurity.
including F^-, Cl^-, Br^-, AcO^-, HCO_3^-, CN^-, SCN^-, NO_2^-, NO_3^-, PO_4^{3-}, SO_3^{2-}, $S_2O_3^{2-}$, S^{2-}, SO_3^{2-}, cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), under the same experimental conditions. As shown in Fig. 4a, m-PSP was highly selective to SO_3^{2-} with a remarkable blue shift in the absorption spectrum at the assay time of 10 min. Thiols and sulfide induced minor absorption spectral changes (the selectivity coefficients towards thiols and sulfide are less than 0.03, Table 2), whereas other anions did not trigger noticeable changes in the absorption and emission spectra (Fig. S9a and S10a†). When the assay time was set at 2 h, both sulfite and sulfide caused dramatic blue shifts in the absorption spectra (Fig. S9b†), but they elicited different fluorescence changes (Fig. S10b†). Fig. 4b is the emission spectra of m-PSP in the presence of various species after equilibrating for 2 h. Sulfide caused a large fluorescence enhancement of m-PSP, whereas other species did not cause distinct changes in the emission spectrum (the selectivity coefficients toward thiols and sulfide are less than 0.07, Table 2). The above results indicate that m-PSP is highly specific toward sulfite and sulfide.

The competition experiments with commonly encountered anions and thiols were conducted to examine the potential of m-PSP as a selective probe for sulfites and sulfides. The absorption spectrum of m-PSP toward sulfite was not affected by other anions and thiols (Fig. 5a). Fig. 5b indicated that most of the species did not interfere with the detection of sulfite evidently, whereas the presence of sulfite greatly reduced the fluorescence intensity of m-PSP toward sulfide. Thus, m-PSP exhibits excellent selectivity and competition for sulfite/sulfide over other ions and reducing agents encountered in biological samples.

Determination of sulfite and sulfide in PBS

Quantitative analysis of sulfite and sulfide was investigated by UV-vis and fluorescence techniques. The fluorescence intensity change of m-PSP toward sulfite is relatively small; moreover, the fluorescence detection of sulfite is greatly interfered by the presence of sulfide. On the other hand, the absorption detection of sulfite is interfered by the presence of sulfite. Therefore, the ratio of absorbances at 418 nm to 529 nm (A_{418}/A_{529}) and the fluorescence intensity at 515 nm were used to quantify sulfite and sulfide, respectively. The assay time for sulfite was 10 min and that for sulfide was 2 h. The A_{418}/A_{529} ratio was linearly proportional to sulfite concentration in the range of 0–200 μM (Fig. 6a), and the detection limita was determined to be 8.5×10^{-7} M, demonstrating the suitability of m-PSP for the quantitative measurement of sulfite. Fig. 6b illustrates that with increasing sulfite concentration, the fluorescence intensity at 515 nm increased steadily to about 10 equiv. of sulfide. From

Table 2: Selectivity coefficients of m-PSP toward major interferences

<table>
<thead>
<tr>
<th>Interference</th>
<th>S^{2-}</th>
<th>SO_3^{2-}</th>
<th>Cys</th>
<th>Hcy</th>
<th>GSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{SO_3^{2-}, X}$</td>
<td>0.024</td>
<td>1</td>
<td>0.017</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>$K_{SO_3^{2-}, X}$</td>
<td>1</td>
<td>0.052</td>
<td>0.053</td>
<td>0.068</td>
<td>0.059</td>
</tr>
</tbody>
</table>

a $K_{SO_3^{2-}, X}$ was obtained from the data of A_{418}/A_{529}.b $K_{SO_3^{2-}, X}$ was from the data of I_{415}.
the concentration-dependent fluorescence intensity at 515 nm, the detection limit\(^3\) of m-PSP for the analysis of sulfite was estimated as \(2.7 \times 10^{-7} \text{M}\).

Fluorescent imaging of sulfite and sulfide in living cells

Finally, the capacity of m-PSP for the fluorescent imaging of sulfite and sulfide in living cells was evaluated. L929 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 °C and under 5% CO\(_2\) in a CO\(_2\) incubator. m-PSP was found to be cell-permeable and can react with intracellular sulfite and sulfide. After incubation with 10 \(\mu\text{M}\) of m-PSP for 30 min, no fluorescence could be observed from the cells (Fig. 7b). Pretreatment of the cells with 500 \(\mu\text{M}\) sulfite, followed by the addition of m-PSP, resulted in bright green fluorescent images (Fig. 7d). Similar results were obtained when sulfide was used instead of sulfite (Fig. 7f). These results indicate that m-PSP could be an ideal probe for subcellular imaging of active sulfite and sulfide.

Conclusions

In summary, we have designed and synthesized two fluorescent turn-on probes for discrimination between sulfite and sulfide based on the mechanism of Michael addition reaction. Both the probes exhibit excellent chromogenic responses toward sulfite within 10 min; moreover, sulfide hardly interferes the detection of sulfite at this assay time (10 min). Sulfide, on the other hand, caused significant fluorescence enhancement (about 40-fold) and dramatic color change after 2 h. Therefore, sulfites and sulfides could be distinguished by the spectral changes at different time intervals. The probes were also applied for the biological imaging of sulfite or sulfide inside living cells. Preliminary experiments indicate their potentials to probe sulfite and sulfide in biological systems.

Acknowledgements

This work was financially supported by National 973 Program (No. 2011CB910403), NSFC (21235005) and Science and Technology Commission of Shanghai Municipality (no. 12JG0500200).

Notes and references

6. Y. Li and M. Zhao, Food Control, 2006, 17, 975.
11. (a) A. P. Munro and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 2000, 1794; (b) In aqueous solution, the pK\(_a\)s of H\(_2\)SO\(_3\), H\(_2\)S and thiols are about 1.8, 7.0 and 8.5,
respectively. Hence, the nucleophile reactivity is expected to decrease in the order of sulfite > sulfide > thiol.

15 A. Hakonen, Anal. Chem., 2009, 81, 4555. The absorbance ratio at 418 nm and 529 nm (A_{418}/A_{529}, sulfite) and fluorescence intensity (sulfide) curves for the nanomolar range with error bars that display ± 3 standard deviations are shown in Fig. S11†.