Herschel Finds Evidence for Stellar Wind Particles in a Protostellar Envelope: Is This What Happened to the Young Sun?

Ceccarelli, C.; Dominik, C.; López-Sepulcre, A.; Kama, M.; Padovani, M.; Caux, E.; Caselli, P.

Published in:
Astrophysical Journal Letters

DOI:
10.1088/2041-8205/790/1/L1

Citation for published version (APA):
HERSCHEL FINDS EVIDENCE FOR STELLAR WIND PARTICLES IN A PROTOSTELLAR ENVELOPE: IS THIS WHAT HAPPENED TO THE YOUNG SUN?

C. Ceccarelli, C. Dominik, A. López-Sepulcre, M. Kama, M. Padovani, E. Caux, and P. Caselli

1 Université Grenoble Alpes, IPAG, F-38000 Grenoble, France; Cecilia.Ceccarelli@obs.ujf-grenoble.fr
2 CNRS, IPAG, F-38000 Grenoble, France
3 Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090-GE Amsterdam, The Netherlands
4 Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6525-AJ Nijmegen, The Netherlands
5 Leiden Observatory, Leiden University, PO. Box 9513, 2300-RA Leiden, The Netherlands
6 Laboratoire Univers et Particules de Montpellier, UMR 5299 du CNRS, Université de Montpellier II, cc072, F-34095 Montpellier, France
7 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
8 Université de Toulouse, UPS-OMP, IRAP, F-31062 Toulouse, France
9 CNRS, IRAP 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France
10 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Received 2014 February 28; accepted 2014 May 14; published 2014 July 1

ABSTRACT

There is evidence that the young Sun emitted a high flux of energetic (⩾10 MeV) particles. The collisions of these particles with the material at the inner edge of the Protosolar Nebula disk induced spallation reactions that formed short-lived radionuclides, like 10Be, whose trace is now visible in some meteorites. However, it is poorly known exactly when this happened, and whether and how it affected the solar system. Here, we present indirect evidence for an energetic particle acceleration in the young protostar, OMC-2 FIR 4, similar to that experienced by the young solar system. In this case, the energetic particles collide with the material in the protostellar envelope, enhancing the abundance of two molecular ions, HCO+ and N2H+, whose presence is detected via Herschel observations. The flux of energetic particles at a distance of 1 AU from the emitting source, estimated from the measured abundance ratios of HCO+ and N2H+, can easily account for the irradiation required by meteoritic observations. These new observations demonstrate that the ejection of ⩾10 MeV particles is a phenomenon occurring very early in the life of a protostar, before the disappearance of the envelope from which the future star accretes. The whole envelope is affected by the event, which sets constraints on the magnetic field geometry in the source and opens up the possibility that the spallation reactions are not limited to the inner edge of the Protosolar Nebula disk.

Key words: ISM: abundances – ISM: molecules – meteorites, meteors, meteoroids – stars: formation – stars: protostars

Online-only material: color figures

1. INTRODUCTION

The birth of a star is all but a peaceful process. Newborn stars emit X-ray fluxes thousands of times higher than those of the Sun (e.g., Feigelson & Montmerle 1999), UV photons are emitted by violent shocks caused by the gas falling onto the future star and matter is ejected at supersonic speeds in protostellar outflows. Finally, there is circumstantial evidence that the stellar winds of young forming stars accelerate nuclei at energies ⩾MeV, even in Sun-like stars (e.g., Feigelson et al. 2002b). The young Sun also exhibited these violent processes during its formation (e.g., Dauphas & Chaussidon 2011). One of the strongest proofs of this energetic start is the measured high initial over-abundance of short-lived (with half-lives of ∼1 My) radionuclides, whose decay products we can still find in meteorites today. For example, the calcium–aluminum-rich inclusions (CAIs) of carbonaceous meteorites contain 10Be, with abundances larger than that found in the interstellar medium (ISM; e.g., Meyer & Clayton 2000; Chaussidon et al. 2006). The most accepted theory is that 10Be has been produced by spallation reactions of solar wind nuclei with the quiescent gas at the inner edge of the solar nebula (McKeegan et al. 2000; Gounelle et al. 2001, 2006; Chau ssidon & Gounelle 2007; Liu et al. 2010). The observed enrichment suggests doses of about 1019–1020 protons cm−2 (Gounelle et al. 2013). However, alternative theories attribute the measured 10Be enrichment to Galactic cosmic rays (CRs; Desch et al. 2004) or to spallation reactions in the atmosphere of the young Sun and incorporated in the solar wind (Bricker & Caffee 2010).

Observations of young stars provide a crucial tool to understand the early history of the solar system (e.g., Caselli & Ceccarelli 2012). In particular, the detection of large fluxes of energetic particles in young protostars would provide support for the first theory and also help to constrain theories of particle acceleration in stellar winds. Unfortunately, it is practically impossible to directly detect high-energy stellar wind particles. The detection, therefore, must rely on indirect evidence. This detection is a problem similar to finding the astronomical objects where CRs, the ⩾MeV particles pervading our Galaxy, are accelerated. In this case, the indirect detection is based on the effect that CRs have when they hit the H atoms of the ISM: (1) the creation of ⩾GeV particles of π0, which decay into detectable ⩾GeV photons (Hayakawa 1952; Stecker 1971) and (2) the enhancement of ionization in the molecular gas irradiated by ⩽GeV particles (Indriolo et al. 2010; Ceccarelli et al. 2011).

Since the expected ⩾GeV photon flux from protostars is too low to be detected with present facilities, only the second method, the measurement of enhanced molecular gas ionization,

3. ANALYSIS

3.1. Physical Conditions and Column Densities

In order to derive the physical conditions of the emitting gas and the relevant column densities, we used the non-LTE large velocity gradient (LVG) code by Ceccarelli et al. (2003), with the collisional coefficients for HCO$^+$ with para-H$_2$ from Flower (1999), retrieved from the BASECOL database (http://basecol.obspm.fr/; Dubernet et al. 2013). Because the N$_2$H$^+$ collisional coefficients are not available, we used the same coefficients as those calculated for HCO$^+$, after scaling for the different molecular weight, because they have a similar electronic structure and molecular weight. In our calculations, we used these collisional coefficients for ortho-H$_2$ as well.

We ran a grid of models covering a large parameter space in temperature (from 25 to 150 K), H$_2$ density (from 6 \times 105 to 1 \times 109 cm$^{-3}$), HCO$^+$ and N$_2$H$^+$ column density (from 1 \times 1013 to 2 \times 1015 cm$^{-2}$), and source size (0.1–200 arcsec).

Crimier et al. (2009) modeled the dust continuum emission of the outer envelope of OMC-2 FIR 4 and derived the temperature and density profiles shown in Figure 2. Using this model, we failed to reproduce the observed SLEDs. While the lower J lines can be reproduced, the higher J lines cannot. Therefore, we modeled the SLED of HCO$^+$, H13CO$^+$, and N$_2$H$^+$ simultaneously, assuming that the emission originates from two components, one of which is the cold outer envelope, and the other a warmer, denser envelope. Our aim is to estimate the average density, temperature, size, and HCO$^+$ and N$_2$H$^+$ abundances in the second component. Since HCO$^+$ and N$_2$H$^+$ share a very similar molecular structure, chemical origin (Section 3.2), and excitation mechanisms, it is highly likely that they are located in the same regions—which we will assume in the following. Some general considerations help to constrain the explored parameter space. First, the HCO$^+$ lines are likely only moderately optically thick, as the HCO$^+$ over H13CO$^+$ line intensity ratio is \sim30, slightly smaller than the standard 12C/13C ratio (\sim75; Wilson & Rood 1994). Second, the HCO$^+$ over N$_2$H$^+$ line intensity ratio is between 3 and 5. Therefore, we considered the [HCO$^+$]/[N$_2$H$^+$] abundance ratio between 3 and 10.

We found acceptable solutions ($\chi^2_{\text{red}} \leq 1$) for two components with [HCO$^+$]/[N$_2$H$^+$] between three and four and the following...
properties: (1) a first component whose temperature and density are 30–45 K and 0.8–2 × 10^6 cm^-3, respectively, namely those of the envelope at radii between 3500 and 5000 AU (Figure 2); (2) a second component whose temperature and density are 75–150 K and 1–80 × 10^6 cm^-3, and relatively compact, 6–14 arcsec, equivalent to a radius of 1250–3000 AU. Table 1 lists the parameters of the solution adopted for the chemical analysis and the range of permitted values. The predicted SLED of the adopted solution is plotted in Figure 1, together with the observations. Figure 2 shows the density and temperature of the gas derived from the LVG analysis, compared with the envelope profiles.

3.2. Chemistry

The most remarkable result from the previous analysis is the low value of \([\text{HCO}^+]/[\text{N}_2\text{H}^+] \sim 3-4\), much lower than that expected in similar astrophysical environments (Figure 3). This value is close to the elemental abundance ratio of C/N, two elements that are present in molecular clouds mostly in the form of CO and N2.

The main chemical pathway to the formation of HCO^+ and N2H^+ is the reaction of CO and N2, respectively, with H^+ (for simplicity, we will call them CR). UV photons can be ruled out, as they would destroy H2O. However, in both components the dust and gas temperatures are too low to produce a sufficiently large H2O abundance by ice sublimation and gas phase reactions (Figure 2). To verify this, we analyzed the H2O lines in the CHESS spectrum. Although the H2O lines are much broader (~20 km s^-1) than the HCO^+ and N2H^+ lines (~5 km s^-1), implying that they do not originate in the same gas, we can use them for a sanity check, to give an upper limit to the water abundance in the envelope and warm component, respectively. To this end, we ran LVG models, using the parameters in Table 1. We find that the water abundance is \(<10^{-6}\), confirming that the major destroyer of HCO^+ and N2H^+ cannot be water molecules.

The only alternative destroyer of HCO^+ and N2H^+ are, therefore, free electrons. The question is what could cause a large electron abundance. In principle, there are three possibilities: UV radiation, X-rays, and accelerated >MeV particles, namely CR-like particles (for simplicity, we will call them CR). UV photons can be ruled out, as they would destroy H2O (whose rate of formation is only given by the CR flux) and, consequently inhibit the production of HCO^+ and N2H^+. To verify this, we ran the Meudon photodissociation region (PDR) code (http://smaret.github.com/astrochem/), the OSU2009 chemical network and the results from the non-LTE LVG analysis, compared with the envelope profiles.

Table 1

<table>
<thead>
<tr>
<th>Warm Component</th>
<th>Envelope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopted Solution</td>
<td>Range</td>
</tr>
<tr>
<td>H2 density (cm^-3)</td>
<td>4.0 × 10^7</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>120</td>
</tr>
<tr>
<td>Source size (arcsec)</td>
<td>8</td>
</tr>
<tr>
<td>Source radius (AU)</td>
<td>1600</td>
</tr>
<tr>
<td>(N(\text{HCO}^+)(\text{cm}^{-2}))</td>
<td>7 × 10^{15}</td>
</tr>
<tr>
<td>(N(\text{N}_2\text{H}^+)(\text{cm}^{-2}))</td>
<td>3 × 10^{15}</td>
</tr>
<tr>
<td>HCO^+/N2H^+</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Notes. The parameter range is obtained considering solutions with \(\chi^2_{\text{red}} \leq 1\) equivalent to a 1σ level of confidence.

a Parameters of the model adopted for the chemistry and thermal analysis.

b Abundances with respect to H2.
(e.g., Maloney et al. 1996; Meijerink et al. 2006). However, Chandra X-ray observations of the region did not detect emission from OMC-2 FIR 4, therefore putting an upper limit to the X-ray flux in the energy range from 0.5 to 8 keV of 4×10^{-16} erg cm$^{-2}$ s$^{-1}$ (Feigelson et al. 2002a). For a source at a distance of 420 pc, this implies a limit on the luminosity emerging from the protostar of $\lesssim 8 \times 10^{27}$ erg s$^{-1}$. Translating this into an X-ray source luminosity requires assumptions of the column density and the shape of the X-ray spectrum. We follow the formalism by Maloney et al. (1996). Using a hydrogen column density of 2×10^{23} cm$^{-2}$ (Crimier et al. 2009), the observed luminosity limit translates into an X-ray luminosity limit of the central source of $0.03 - 70 \times 10^{30}$ erg s$^{-1}$ for an X-ray spectrum that is flat or $\propto E^{-3}$, respectively. In either case, the resulting limit for the X-ray ionization rate in the envelope at 3700 AU is $\sim 1.5 \times 10^{-20}$ s$^{-1}$, too small to explain the ionization rate probed by our observations. This result is very robust because it is a direct consequence of the observed X-ray limit and rather independent of assumptions about the intrinsic X-ray spectrum. The same X-ray luminosity could lead to higher rates closer to the emitting source if the attenuating column is significantly lower. Therefore, while an X-ray contribution in the warm component is possible, it is firmly excluded in the cold component.

In conclusion, the observed small [HCO$^+$]/[N$_2$H$^+$] ratio is due to a strongly enhanced flux of CR-like particles. In Figure 3, we plot [HCO$^+$]/[N$_2$H$^+$] at different densities and CR ionization rates, ζ, for a gas at temperatures of 40 and 120 K, respectively (Table 1). Comparison between observations and model predictions provide us with constraints on ζ: $1.5-8 \times 10^{-14}$ and $\gtrsim 1.5 \times 10^{-12}$ s$^{-1}$ in the envelope and warm component, respectively.

3.3. Thermal Balance

In addition to ionizing the molecular gas, CR also heats it. We can, therefore, further examine the hypothesis of CR irradiation by computing the gas temperature, assuming that the gas is heated by the CR and cooled by the dust–gas collisions and line emission. For the CR heating we used the results by Glassgold et al. (2012), for the cooling we adopted the formalism described in Ceccarelli et al. (1996) and considered the contributions of CO and H$_2$O molecules, and atomic oxygen. The H$_2$O abundance was computed assuming equilibrium between freeze-out on grains, and desorption triggered by CR, following the formalism of Hasegawa & Herbst (1993) and Dominik et al. (2006). We obtained a water abundance of 1.5×10^{-8} and 9×10^{-9} in the warm component and envelope, respectively. Atomic oxygen was added to the mix with an assumed abundance of 10^{-5}. We ran the thermal balance model for the range of densities and ζ given in Table 1. We obtained that the gas temperature is roughly equal to that of the dust in the cold envelope and about 70 K larger in the warm component, in agreement with the gas temperatures derived by the LVG analysis (Figure 2). In the envelope, the cooling is dominated by the CO emission, whereas, in the warm component, it is equally shared between dust–gas collisions and CO line emission.

3.4. Energetic Particle Flux

The analysis of the two previous subsections provides compelling evidence for the presence of a source of CR-like particles inside the OMC-2 FIR 4 envelope, as the inner warm component is the one with the higher ionization rate. Of particular relevance here is the flux of particles with $E \gtrsim 10$ MeV, as they can form 10Be by spallation reactions (Sisterson et al. 1997; Lange et al. 1995; Gounelle et al. 2006), and how it compares with the fluence estimated for the 10Be meteoritic enrichment: $\sim 20 - 30 \times 10^{19}$ protons cm$^{-2}$ (Gounelle et al. 2013). The underlying hypothesis is that the young Sun underwent flares, similar to those observed in YSOs (e.g., Lee et al. 1998; Feigelson et al. 2002b).

In order to estimate the $E \gtrsim 10$ MeV particle fluence, we need to know the emitted particle energy spectrum. We derived it from the measured ζ at 3700 AU (Table 1) as follows. We first assumed an input particle energy spectrum and computed ζ at 3700 AU, taking into account the geometric dilution and attenuation caused by the material between the source and 3700 AU. Then, we scaled the input particle energy spectrum so that the measured ζ at 3700 AU is reproduced. Finally, we computed the $E \gtrsim 10$ MeV particle flux at, for example, a distance of 1 AU, assuming that there is no attenuation on this scale.

Following Gounelle et al. (2001), we assumed a $0.1 - 100$ MeV input particle energy spectrum $f(E) \propto E^p$, with p varying between -4 and -2.5. To compute the attenuation, we used the formalism described in Padovani et al. (2009). Since the column density between the emitting source and 3700 AU is uncertain (1.5×10^{23} cm$^{-2}$ according to the Crimier et al. 2009 model), we consider it a variable of the model. The results of these computations are shown in Figure 4. We found that for a column density of 1.5×10^{23} cm$^{-2}$ the flux is $\sim 1 - 3 \times 10^{19}$ protons cm$^{-2}$ yr$^{-1}$. Therefore, an irradiation time of a few years at 1 AU (or correspondingly longer at larger distances) would easily account for the fluence derived by Gounelle et al. (2013). We are aware that we ignore effects of magnetic fields on the propagation of energetic particles, such as (partial) confinement (Gounelle et al. 2001) and path distortions that increase the attenuation columns (Padovani et al. 2013). Quantifying these effects would require knowledge of the magnetic field in the region. However, our simple calculations suggest an $E \gtrsim 10$ MeV particle flux similar to, if not larger than, that of the young Sun.

4. CONCLUSIONS

We presented the analysis of the HCO$^+$ and N$_2$H$^+$ SLED, observed by the Herschel HIFI CHESS Key Program toward OMC-2 FIR 4, to constrain the energy spectrum of the incident particles and the luminosity of the source. We also used the results to constrain the attenuation due to dust–gas collisions and CO line emission.
the protostar OMC-2 FIR 4. The comparison with a non-LVG model shows the presence of a warm (∼120 K) and dense (∼4 × 10^7 cm^-3) component, in addition to the envelope (∼40 K and ∼1 × 10^6 cm^-3) probed by continuum observations (Crimier et al. 2009).

The most remarkable and important result of this work is the derived low [HCO\(^+\)]/[N_2H\(^+\)] abundance ratio: ∼3–4. We showed that this suggests the presence of a large flux of CR-like particles inside the envelope, with a ionization rate of 1.5–8 × 10^{-14} and ≥1.5 × 10^{-12} s^{-1} in the envelope and warm component, respectively.

The estimated flux of E ≥ 10 MeV particles at 1 AU distance from the emitting source, ≥1–3 × 10^{19} protons cm^{-2} yr^{-1}, is more than that recorded in the 10Be of meteoritic material assuming flare times of a few years.

The present observations support the theory that meteoritic 10Be was formed in situ by spallation reactions, rather than moved from the solar atmosphere (Section 1). They also show that young protostars still embedded in their placental envelope can be sites of energetic particle ejections, as indirectly suggested for the young Sun by the recent analysis of 10Be in CAI 411 (Gounelle et al. 2013). These particles affect the entire envelope, and not only the circumstellar disk, providing constraints on the magnetic field structure. These findings will certainly have an impact on the present theories of the energetic particle acceleration in the young solar system as well as on the magnetic field geometry in protoclusters.

We are indebted to an anonymous referee for very useful comments on CR transport. CC and AL-S acknowledge funding from the French space agency CNES. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.

REFERENCES

Chaussidon, M., & Gounelle, M. 2007, CRGeo, 339, 827
Chaussidon, M., Robert, F., & McKeegan, K. D. 2006, GeCoA, 70, 224
Dauphas, N., & Chaussidon, M. 2011, AREPS, 39, 351
Hayakawa, S. 1952, PThPh, 8, 571
Stecker, F. W. 1971, Natur, 234, 28